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Abstract

Proper scoring rules incentivize experts to accu-
rately report beliefs, assuming predictions cannot
influence outcomes. We relax this assumption and
investigate incentives when predictions are perfor-
mative, i.e., when they can influence the outcome
of the prediction, such as when making public pre-
dictions about the stock market. We say a predic-
tion is a fixed point if it accurately reflects the
expert’s beliefs after that prediction has been made.
We show that in this setting, reports maximizing
expected score generally do not reflect an expert’s
beliefs, and we give bounds on the inaccuracy of
such reports. We show that, for binary predictions,
if the influence of the expert’s prediction on out-
comes is bounded, it is possible to define scoring
rules under which optimal reports are arbitrarily
close to fixed points. However, this is impossible
for predictions over more than two outcomes. We
also perform numerical simulations in a toy setting,
showing that our bounds are tight in some situa-
tions and that prediction error is often substantial
(greater than 5-10%). Lastly, we discuss alterna-
tive notions of optimality, including performative
stability, and show that they incentivize reporting
fixed points.

1 INTRODUCTION

As AI capabilities increase, this raises concern for safety,
including how to scalably control AI systems with super-
human capabilities [Russell, 2019, Ngo et al., 2022]. One
proposed design for safety is oracle AI [Armstrong et al.,
2012; Armstrong, 2013; Bostrom, 2014, Ch. 10]. An oracle
AI makes predictions or forecasts about the world, but does
not autonomously pursue goals. It could thus be safer while
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still being useful for many applications.

A proper scoring rule assigns scores to forecasts in a way
that incentivizes honest reporting of beliefs [Brier, 1950;
Good, 1952, Section 8; McCarthy, 1956; Savage, 1971;
Gneiting and Raftery, 2007]. Proper scoring rules have been
used to incentivize honest reports from experts [Carvalho,
2016]. They could thus be used as an objective for oracle
AIs. However, prior work assumes that predictions them-
selves do not influence the events they are trying to predict.
In reality, predictions may be performative [Perdomo et al.,
2020, Armstrong and O’Rorke, 2017], meaning that they
can influence the distribution of outcomes. For example, an
AI predicting stock market prices might be able to influ-
ence whether people buy or sell stocks, and thus influence
whether its predictions come true or not. This makes it im-
portant to investigate incentives and honesty of predictions
when predictions are performative.

In this paper, we analyze the case of an AI model or human,
henceforth called expert, making a probabilistic forecast
over a finite set of possibilities to maximize a proper scoring
rule. We say that a prediction is performatively optimal if
it maximizes expected score, and we define a prediction as
a fixed point or self-fulfilling if it is equal to the expert’s
beliefs, conditional on the expert having made that predic-
tion. We investigate to what extent honest predictions, i.e.,
fixed points, are incentivized in this setting.1 All else equal,
honest predictions are preferable since, assuming a suffi-
ciently capable expert, they provide us with more accurate
information. However, if an expert has incentives other than
to predict honestly—e.g., to bring about fixed points with
lower entropy—this is undesirable even if the expert other-
wise makes approximately accurate predictions.

The setting in which a model’s predictions can influence the
predicted distribution has been discussed as performative
prediction [Perdomo et al., 2020] in the machine learning

1We assume that the AI model can be ascribed explicit beliefs,
so that its reports can be characterized as honest if they reflect the
model’s beliefs.
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literature. However, performative prediction focuses on clas-
sification or regression tasks with arbitrary model classes
and loss functions rather than probabilistic predictions incen-
tivized by proper scoring rules. The literature is motivated
by minimization of a given loss function, whereas we take a
mechanism design perspective, asking which scoring rules
incentivize honest predictions. Focusing on a special case
and taking a different perspective will lead to original results
that are unique to our setting.

Contributions. In Section 3, we adapt the performative pre-
diction formalism to probabilistic predictions or forecasts.
We allow for an arbitrary function f describing the relation-
ship between the expert’s predictions and distributions over
predicted outcomes caused by these predictions.

In Section 4, we show that for any strictly proper scoring
rule, there exist functions f from predictions to beliefs
such that performatively optimal reports are not fixed
points, even if one exists and is unique. Moreover, we show
that under reasonable distributions over such functions, op-
timal reports are almost never fixed points. This strength-
ens analogous results from the performative prediction liter-
ature.

In Section 5, we then provide upper bounds for the inaccu-
racy of reported beliefs, and for the distance of predictions
from fixed points.

In Section 6, we use the bounds to develop scoring rules
that make the bounds arbitrarily small for binary pre-
dictions. We also show that when reporting a prediction
over more than two outcomes, the bounds cannot be
made arbitrarily small.

In Section 7, we perform numerical simulations using
the quadratic scoring rule, to show how the inaccuracy
of predictions and the distance of predictions from fixed
points depend on the expert’s influence on the world via
its prediction. The results show that our bounds are tight
in some cases. They also show that substantially inaccurate
reports (i.e., with errors greater than 5− 10%) are common
in our toy setting.

In Section 8, we discuss alternatives to performative optimal-
ity that do not set incentives other than honest predictions.
We show that performatively stable [Perdomo et al., 2020]
predictions are fixed points. We then consider repeated risk
minimization, repeated gradient descent, no-regret learning
and prediction markets, and show that all of these settings
lead to predictions that are fixed points or close to fixed
points.

Finally, in Section 9, we elaborate on related work, and
in Section 10, we conclude and outline avenues for future
work.

Proofs are in corresponding sections in Appendix A.

2 BACKGROUND

Proper scoring rules. Proper scoring rules are used to in-
centivize an expert to report probabilistic beliefs honestly.
Consider a prediction given by a probability distribution
p ∈ ∆(N ) over a set N := {1, . . . , n} of n ∈ N dis-
joint and exhaustive outcomes. We identify each distribu-
tion p ∈ ∆(N ) with a vector p ∈ [0, 1]n and write pi
for the probability of event i ∈ N under distribution p.
A scoring rule is a function S : ∆(N ) × N → R, where
R := [−∞,∞] is the extended real line. Given prediction
p ∈ ∆(N ) and outcome i ∈ N , the expert receives the
score S(p, i). We write S(p, q) := Ei∼q[S(p, i)] for the
expert’s expected score, given that outcome i follows distri-
bution q ∈ ∆(N ).

Definition 1. A scoring rule S is called proper if S(q, q) ≥
S(p, q) for all p, q ∈ ∆(N ). It is called strictly proper if
this inequality is strict whenever p 6= q.

Example 1 (Logarithmic scoring rule). The logarithmic
scoring rule is defined as S(p, i) := log pi and S(p, q) =∑n
i=1 qi log pi. This is also the negative of the cross-entropy

loss employed in training, for example, current large lan-
guage models [Brown et al., 2020]. It is strictly proper.

Example 2 (Quadratic scoring rule). Another strictly proper
scoring rule is the quadratic score, defined as S(p, i) :=
2pi − ‖p‖22 with S(p, q) = 2p>q − ‖p‖22. This is an affine
transformation of the Brier score, making them equivalent
scoring rules.

Gneiting and Raftery [2007, Theorem 1] provide a charac-
terization of proper scoring rules, which will be helpful for
stating and proving many of our results.

First, given a convex function G : ∆(N ) → R, a sub-
gradient is a function g : ∆(N ) → Rn such that for any
p, q ∈ ∆(N ), we have G(q) ≥ G(p) + g(p)>(q − p). In
general, this function may not be unique. Throughout this
paper we assume that whenever the subgradients are finite,
they are normalized to lie in the tangent space of ∆(N ),
i.e., g(p) ∈ T := {x ∈ Rn |

∑
i xi = 0}. This can be

assumed since if g(p) is a subgradient of G at point p, so is
(gi(p)− 1

n

∑
j gj(p))i.

Theorem 1 (Gneiting and Raftery, 2007). A scoring rule S
is (strictly) proper, if and only if there exists a (strictly)
convex function G : ∆(N ) → R with a subgradient
g : ∆(N )→ Rn such that S(p, q) = G(p)+g(p)>(q−p)
for all p, q ∈ ∆(N ).

Differentiable scoring functions. If G is differentiable at
some point p, then the subgradient g(p) is just the gradi-
ent of G, g(p) = ∇G(p). As before we let ∇G(p) be an
element of the tangent space T . For any v ∈ T , g(p)>v
then gives the directional derivative of G at point p in the
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Figure 1: Maximal inaccuracy and maximal distance to fixed
point (FP) of optimal predictions, depending on the slope of
f , according to our simulation and our theoretical bound.

direction v. Note that sinceG is only defined on the simplex
∆(N ), the partial derivatives are not well-defined.2

Given G, g as in the Gneiting and Raftery characterization,
we write Dg(p) ∈ Rn,n for the Jacobian matrix of g, if it
exists (i.e., this is the Hessian of G). Note that because g is
only defined on ∆(N ), the matrix representation of Dg(p)
in Rn,n is not unique. Generally it does not matter which
representation of Dg(p) we use. Importantly, for all v ∈ T ,
Dg(p)v will always be unique and (because we assume that
g(p) is in the tangent space) in T .

3 PROBLEM SETTING

In this paper, we take the stance of a principal trying to elicit
honest predictions from an expert (human or AI system). We
assume that the expert reports a prediction p to maximize
the expected score given by a proper scoring rule, S(p, q).

Importantly, we assume that the expert’s beliefs over out-
comes, q, can themselves vary given different predictions
p, because the expert may believe that its predictions affect
the probability of outcomes. To model this, we assume that
there is a function f : ∆(N )→ ∆(N ) such that beliefs are
given by q = f(p).3 We assume f is known to the expert,
but not to the principal.

In the case of an AI system, f(p) could also be seen as a
ground distribution from which we sample to train a model
(see Appendix D.3). In that case, the objective is to design a
training procedure that sets the right incentives. However,
in most of the following, we assume f(p) are the subjective
beliefs of a highly capable and knowledgeable expert.

2For example, in the case of three outcomes, the partial
derivative at (0.3, 0.4, 0.4) w.r.t. the first entry is the limit
limε→0(G(0.3 + ε, 0.4, 0.4)−G(0.3, 0.4, 0.4))/ε. But G(0.3 +
ε, 0.4, 0.4) is not (necessarily) defined for positive (or negative) ε.

3Note that any other factor influencing the expert’s belief q
can be incorporated into f by marginalizing. For example, assume
q is a function q = g(p;X) where p is the expert’s prediction
and X is some environmental factor the expert is uncertain about.
Then we can let f(p) := EX [g(p, X)].

We say that a prediction p is performatively optimal [Per-
domo et al., 2020] if p ∈ arg max∆(N ) S(p, f(p)). In the
following, we will not assume convexity of this objective.
Our bounds will depend on differentiability of S and f .

A point p is a fixed point of f if f(p) = p. By Brouwer’s
fixed point theorem, if f is continuous, a fixed point p ∈
∆(N ) always exists. Moreover, if f is Lipschitz continuous
with constant Lf < 1, then by Banach’s fixed point theorem,
the fixed point is unique.

Example 3 (Bank Run). A newspaper’s AI predicts whether
a certain bank will suffer a bank run or not. Readers
use this information when deciding whether to withdraw
their money. Specifically, imagine that the probability of
a bank run as a function of the AI expert’s prediction
p = (p1, p2) ∈ ∆({1, 2}) is given by the (monotonic)
function f : ∆({1, 2}) → ∆({1, 2}) whose entries are de-
fined by f1(p) = p1− 3(p1− 1/10)(p1− 3/5)(p1− 9/10)/2
and f2(p) = 1− f1(p) for all p. Then f has fixed points at
p = (1/10, 9/10), p = (3/5, 2/5), and p = (9/10, 1/10).

We focus on fixed points (or approximate fixed points) as
a standard of honesty. To see why one may prefer reports
that are fixed points, consider a case in which there are no
strong guarantees (upper bounds) on ‖p− f(p)‖. Then the
actual probability of an event, fi(p), could be much higher
or lower than the reported probability pi. This would prevent
one from drawing any useful conclusions from the report.
However, if p = f(p) or ‖p− f(p)‖ is small, then one can
rely on the prediction p to guide decisions.

That being said, fixed points are not all one might care about,
especially when it comes to potential superhuman oracle AIs.
Ideally, we would want such systems to not think about how
to influence the world at all [Armstrong and O’Rorke, 2017].
Alternatively, they should choose good fixed points over
bad ones, hoping that such fixed points exist (we discuss
preferences between different fixed points in Appendix B).
Regardless, it is still important to understand whether and
when fixed points are incentivized. For instance, if a model
reports fixed points, one could try to use it only in situations
in which a unique desirable fixed point exists.

Relation to performative prediction. As noted in the intro-
duction, our setting is a special case of performative predic-
tion [Perdomo et al., 2020]. In performative prediction, the
goal is to find a model parameter that minimizes empirical
risk for a classification or regression task, assuming that the
choice of parameter can influence the data distribution. The
loss-minimizing parameter when taking into account this
influence is called performatively optimal. The analogue to
fixed points in performative prediction are performatively
stable predictions.

We indicate below when our results are analogous to results
in the performative prediction setting. However, most of our
results are unique to our setting. We take the perspective
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of a mechanism designer instead of taking a loss function
as given. Moreover, we focus on fixed points instead of
performative optima. In particular, we bound the quantity
‖p− f(p)‖ corresponding to the inaccuracy of predictions,
which does not have a direct analogue in performative pre-
diction. We give a more detailed comparison in Section 9.

Additional notation. We use 1 to denote the vector
(1, . . . , 1)> ∈ Rn and I to denote the identity matrix. We
define int(∆(N )) := {p ∈ ∆(N ) | ∀i : 0 < pi < 1} and
use ‖x‖ :=

√
x>x to denote the Euclidean norm on Rn.

4 INCENTIVES TO PREDICT
NON-FIXED-POINTS

We begin by investigating whether an expert makes honest
predictions, even in the presence of performativity. In per-
formative prediction, it has been shown that performative
optimality comes apart from performative stability (the anal-
ogous concept to a fixed point in our setting) [Perdomo et al.,
2020, Izzo et al., 2021]. However, one may ask whether this
is always the case or whether, e.g., some scoring function
would prevent this.

We show that this is not the case: fixed points are in general
not optimal. First, we show that for any strictly proper scor-
ing rule there exist cases where a fixed point exists but the
optimal prediction is not a fixed point. Afterwards, we show
that when assuming differentiability and some reasonable
distribution over f , optimal predictions are almost surely
not fixed points.

Proposition 1. Let S be any strictly proper scoring rule.
For any interior fixed point p∗ ∈ int(∆(N )) there ex-
ists a function f with Lipschitz constant Lf < 1 and a
unique fixed point at p∗, such that there exists p′ 6= p∗

with S(p′, f(p′)) > S(p∗, f(p∗)). That is, the unique fixed
point of f is not performatively optimal.

Note that since the function f has Lipschitz constant strictly
smaller than 1, it represents a world that “dampens” the
influence of the prediction, leading to a unique fixed point
by Banach’s fixed point theorem. It is interesting that the
expert still prefers to make a prediction that is not a fixed
point.

The above result raises the question whether a situation
where fixed points are suboptimal is a niche counterexample
or whether it is common. We show that under some rela-
tively mild assumptions, the optimal prediction is almost
surely not a fixed point. The intuition behind this result is
that if a prediction p is an interior point and optimal, then
∇p(S(p, f(p))) = 0. Using the Gneiting and Raftery char-
acterization, we can show that this is a knife-edge case in
which g(p)>Df(p) = 0. Given sufficiently continuous dis-
tributions, this happens with probability 0. The conditions

on the stochastic field {F (p)}p∈int(∆(N )) ensure this con-
tinuity, i.e., that the distributions over f as well as Df(p)
do not assign positive probability to any single point or
subspace, hence almost never sampling the knife edge case.
The condition would hold, e.g., for a Gaussian process with
smooth kernel and mean functions (see Example 5 in Ap-
pendix A.3).

Theorem 2. Let S be a twice differentiable strictly
proper scoring rule. Let F := {F (p)}p∈int(∆(N )) be a
stochastic field with values in ∆(N ) and let Y (p,v) :=
(Πn−1F (p),Πn−1∂vF (p)) for p ∈ int(∆(N )) and v ∈
T ∩ Sn−1. Assume that

• the sample paths p  F (p) are twice continuously
differentiable

• for each p ∈ int(∆(N )) and v ∈ T ∩ Sn−1, the
random vector Y (p,v) has a joint density hY (p,v) and
there exists a constant C such that hY (p,v) ≤ C for
all p ∈ ∆(N ),v ∈ Sn−1 ∩ T .

Then, almost surely, there is no point p ∈ int(∆(N )) such
that p ∈ arg maxp′ S(p′, F (p′)) and F (p) = p.

5 BOUNDS ON THE DEVIATION FROM
FIXED POINTS

In the previous section, we have shown that performatively
optimal predictions are generally not fixed points, i.e., they
inaccurately represent the expert’s beliefs. But how inaccu-
rate should we expect predictions to be, and what properties
of S and f determine this inaccuracy? Assuming differentia-
bility of f and S, this section provides upper bounds for the
inaccuracy of optimal predictions p (i.e., ‖p− f(p)‖) and
their distance from fixed points p∗ (i.e., ‖p−p∗‖). Note that,
while the latter has a direct analogue in the performative
prediction literature [Perdomo et al., 2020, Theorem 4.3],
evaluating the inaccuracy of predictions only makes sense in
our context where parameters are probability distributions.

For our bounds we will use the following notation. We use
‖A‖op = maxv∈T

‖Av‖
‖v‖ for the operator norm of A on

the tangent space. It is equal to A’s largest singular value
when seen as an automorphism on the tangent space. We use
A|T � γ to denote that v>(A− γI)v ≥ 0 for all v ∈ T . If
A is symmetric, this is equivalent to saying that the smallest
eigenvalue of A on the tangent space is at least γ. Further,
note that if g is a subderivative of G and ‖g(p)‖ < LG
for all p ∈ ∆(N ), then LG is a Lipschitz constant of G.
Similarly, if ‖Df(p)‖op ≤ Lf for all p ∈ ∆(N ), then Lf
is a Lipschitz constant of f .

Theorem 3. Let S be a strictly proper scoring rule, and
let G, g as in the Gneiting and Raftery characterization
(Theorem 1). Let p ∈ ∆(N ) and assume f,G, g are dif-
ferentiable at p. Assume Dg(p)|T � γp for some γp > 0.
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Figure 2: Heatmap of L2 distance of optimal prediction p to true probability distribution f(p) (left) and to the fixed point
p∗ (right), depending on fixed point position p∗1 and α (slope of f ), for the quadratic scoring rule.

Then whenever p is a performatively optimal report,

‖p− f(p)‖ ≤ ‖Df(p)‖op‖g(p)‖
γp

.

In particular, if f has Lipschitz constant Lf ,G has Lipschitz
constant LG, and G is γ-strongly convex, then we have
‖p− f(p)‖ ≤ LfLG

γ .

In the case where f has Lipschitz constant Lf < 1, we
can use the above results to derive a bound on how far the
optimal report is from the (by Banach’s fixed point theorem
unique) fixed point.

Theorem 4. Same assumptions as Theorem 3. Assume fur-
ther that f has Lipschitz constant Lf < 1. Let p∗ be the
unique fixed point of f . Then for the performatively optimal
report p,

‖p− p∗‖ ≤ ‖g(p)‖‖Df(p)‖op

(1− Lf )γp
≤ LfLG

(1− Lf )γp
.

Note that the assumption that Lf < 1 ensures that f ’s fixed
point is unique by Banach’s fixed point theorem. Without
Lf < 1, no trivial bound holds, as we show in Proposition 3
in Appendix A.6.

This bound is analogous to a bound in [Perdomo et al.,
2020, Theorem 4.3]. Our bound differs in that we use Eu-
clidean distance instead of Wasserstein distance to measure
the sensitivity of f to the choice of report. Moreover, as-
suming a L`-Lipschitz and γ-strictly convex loss function
`, their bound depends on the ratio L`

γ . We instead bound

this distance against the ratio ‖g(p)‖
γp

, which will allow us
to minimize the bound in the two-outcome case by using

exponential functions (Theorem 5). This would not be pos-
sible when assuming γ-strict convexity, since there exist no
functions that globally make the ratio L`

γ arbitrarily small.
Perdomo et al. [2020] show that their bound can be made
small by regularizing the loss function, but this would be
undesirable in our setting, since regularized scoring rules
would be improper and thus cease to incentivize honest
reports even for constant f .

Example 4 (Bound for the quadratic scoring rule). Con-
sider the quadratic scoring rule S(p, i) = 2pi − ‖p‖2. Note
that we can represent this in Gneiting and Raftery’s char-
acterization with G(p) = ‖p‖2 and g(p) = 2p − 2

n1.
Thus, Dg(p) = 2I , where I is the identity matrix. Hence
Dg(p) � 2. Further, ‖g(p)‖2 = 2‖p − 1

n1‖. Thus, for f
with Lipschitz constant Lf , Theorem 3 implies that for the
optimal report p we have that ‖f(p)−p‖ ≤ Lf‖p− 1

n1‖ ≤
Lf
√

(n− 1)/n. If Lf < 1, then by Theorem 4 we further
have ‖p− p∗‖ ≤ Lf

1−Lf
‖p− 1

n1‖ ≤
Lf

1−Lf

√
(n− 1)/n.

6 APPROXIMATE FIXED-POINT
PREDICTION WITH THE RIGHT
PROPER SCORING RULES?

The above results show that depending on the scoring rule
we can obtain bounds on the accuracy of performatively
optimal predictions. Can we make these bounds arbitrarily
small by choosing an appropriate scoring rule, e.g., one that
makes ‖g(p)‖/γp very small at each point? In this section,
we show that the answer is yes in the two-outcome case and
no in the general case.

Theorem 5. Consider the case of two outcomes, i.e., let
N = {1, 2}. Let Lf ∈ R and ε > 0. Then there exists a
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scoring rule S s.t. under any f with Lipschitz constant Lf ,
any optimal report p satisfies ‖p − f(p)‖ ≤ ε. If Lf < 1,
then there also exists a scoring rule that additionally ensures
that under any f with Lipschitz constant Lf , any optimal
report satisfies ‖p−p∗‖ ≤ ε, where p∗ is the (unique) fixed
point of f .

Note that if there are multiple fixed points, then S still
induces preferences between—approximately—predicting
these fixed points. In particular, because S(p,p) is convex,
the performatively optimal fixed point will either be the
one that maximizes or the one that minimizes p1 among the
fixed points. This may be undesirable as the expert still has a
strong incentive other than (though compatible with) honest
prediction. We discuss this in more detail in Appendix B.

Can arbitrarily good bounds be achieved with
practical proper scoring rules? Our proof of
Theorem 5 uses exponential scoring rules with
g(p) = (eLfp1/(

√
2ε),−eLfp1/(

√
2ε)>. For high K,

this scoring rule seems impractical, because the stakes vary
greatly over the interval. For example, S((2/3 + ε, 1/3 −
ε), (2/3, 1/3))/S((1/2 + ε, 1/2− ε), (1/2, 1/2)) = eLf/(6

√
2ε).

Hence, as we increase Lf/ε, it becomes exponentially
more important for the expert to predict accurately near
2/3 than to predict accurately near 1/2. In particular, an
AI model trained with this scoring rule may be much
worse at predicting probabilities near 1/2 than near 2/3.
Similarly, it is unrealistic to reward a human expert with,
say, millions of dollars near 2/3 and with just a few cents
near 1/2. Unfortunately, it turns out that all possible scoring
rules that achieve bound ε under Lipschitz constant Lf have
this undesirable property, though the exact bound turns out
somewhat complicated.

Theorem 6. Suppose S is a proper scoring rule s.t. for
some ε, Lf > 0 we have that whenever f is Lf -Lipschitz,
the optimal report p satisfies ‖f(p) − p‖ < ε. Let 3ε ≤
pl ≤ ph ≤ 1 − 4ε and δ = ε/(Lf + 1). Then the ratio of
the supremum and infimum over p1 ∈ [pl, ph] of S((p1 +
4δ, 1−p1−4δ), (p1, 1−p1))−S((p1, 1−p1), (p1, 1−p1))
is at least

Lf
2Lf + 6

(
3
Lf + 1

Lf + 3

)(Lf+1)(ph−pl)/(8ε)−5/2

.

In particular, for fixed positive Lf , this term is exponential
in 1/ε and for fixed positive ε it is exponential in Lf .

Intuitively, the assumption on S is that it ensures small
accuracy bounds of ε for functions with Lipschitz constant
Lf . Now note that |S((p1 +4δ, 1−p1−4δ), (p1, 1−p1))−
S((p1, 1 − p1), (p1, 1 − p1))| is the cost to the expert of
misreporting by 4δ when the true distribution is (p1, 1−p1).
If this term is large, then the expert cares a lot about not
misreporting by 4δ, and if the term is small, the expert does
not mind misreporting much. Our result shows that the value

of this term is much larger for some p1 than it is for others,
i.e., that for some probabilities p1 the expert cares a lot more
about accurately reporting p1 than it does for other values of
p1. Our theorem puts a lower bound on the ratio between the
lowest and largest possible values of that term. In particular,
this does not hinge on probabilities p1 near 0 or 1 and holds
even if we restrict attention to probabilities between, say,
1/4 and 3/4.

Theorem 5 shows that in the binary prediction case, given a
Lipschitz constant Lf for the environment, we can achieve
arbitrarily good bounds ε on the inaccuracy of the perfor-
matively optimal report. Unfortunately, this ceases to be
possible in the many-outcome case. In that case, if all we
know about f is that it has Lipschitz constant Lf , there is
some error ε, linear in Lf as Lf → 0, that we must allow
regardless of what strictly proper scoring rule we use.

Theorem 7. For any Lipschitz constant Lf , for ε > 0
sufficiently small, there is no proper scoring rule S for the
three-outcome case that achieves the following property:
Whenever f is Lf -Lipschitz, there is some performatively
optimal report p with ‖f(p)− p‖ ≤ ε. In particular, there
exists some function ε(Lf ) with ε(Lf ) ∼ cLf as Lf → 0
for some fixed constant c, s.t. the above property cannot be
achieved with ε = ε(Lf ). Thus, the best achievable bound
is in Ω(Lf ) as Lf → 0, i.e. scales at least linearly with Lf
in the limit.

7 NUMERICAL SIMULATIONS

In this section, we provide some numerical simulations
for the Brier score, to see how inaccurate performatively
optimal predictions might be in practice. Throughout, we
consider only affine-linear functions f . This in particu-
lar means that all functions f have operator norms be-
tween 0 and 1 and aside from degenerate cases a unique
fixed point. The Mathematica notebook for our experi-
ments (including some interactive widgets) is available
at https://github.com/johannestreutlein/
scoring-rules-performative. Although our ex-
periments are set in toy models with linear f and small sets
of outcomes, they provide an initial estimate of the degree
to which predictions can be off, depending on how much
influence the expert can exert using their prediction.

7.1 BINARY PREDICTION

Experimental setup. We begin with the binary prediction
case, i.e.,N = {1, 2}. We consider f to be affine linear with
slope α and fixed point p∗ ∈ ∆(N ), thus yielding the func-
tional form f(p) := p∗ + α(p− p∗) for all p ∈ ∆({1, 2}).
Note that for all α ∈ [0, 1] and all p∗ ∈ ∆(N ), a func-
tion thus defined is indeed a function ∆(N )→ ∆(N ). For
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Figure 3: Scatter plots showing the L2 inaccuracy (left) and the distance to a fixed point (right) of the performatively optimal
reports against the operator norm of A in our experiments. In both plots, each point corresponds to a run of the experiments.
The blue lines are found by linear regression on the points. The red lines are the bound given in Example 4 as a function of
the Lipschitz constant Lf .

α < 0, whether f is a function ∆(N ) → ∆(N ) depends
on p∗. We restrict attention to α ∈ [0, 1] for simplicity.

Graphing inaccuracy and distance to fixed points. In
Figure 2 (left), we plot the inaccuracy ‖p − f(p)‖ of the
performatively optimal report p against α, p∗1. In Figure 2
(right), we plot the L2 distance ‖p∗ − p‖ of the performa-
tively optimal report p to the fixed point p∗. For that plot
we limit α to the range [0, 0.95], because of instability at
α ≈ 1. Note that relatively high inaccuracies can be found
at various qualitatively different points in the graphs, even
when the slope of f is small, i.e., when the oracle has little
influence on the environment.

Assessing our bounds. To evaluate our bounds, we max-
imize distances across possible choices of fixed points
p∗ ∈ ∆({1, 2}), and plot the maximal inaccuracy of the
optimal prediction as well as the maximal distance from
a fixed point in Figure 1. We compare to both theoretical
bounds from Example 4, i.e., ‖p − f(p)‖2 ≤ α/

√
2 and

‖p− p∗‖2 ≤ α/((1− α)
√

2).

For both quadratic and log scoring rule (results in Ap-
pendix C), our theoretical bounds are tight for slopes
α ≤ 0.5. For higher slopes, inaccuracy goes down, as the
function f(p) becomes closer to the identity function, and
optimal predictions are bounded in [0, 1].

7.2 HIGHER-DIMENSIONAL PREDICTION

Experimental setup. Next, we turn to higher-dimensional
predictions. We consider a model with five possible out-
comes and linear f : p 7→ Ap for A ∈ Rn×n. f is an auto-
morphism on the simplex if and only if all of its columns
are in the simplex. We hence randomly generate the matrix
A by sampling each column uniformly from the simplex.
Note that A is the Jacobian of f at every point.

For each fA thus created, we first find the performatively
optimal report p and the fixed point p∗. We then record the

following quantities: the operator norm of fA; the distance
of the fixed point distribution to the uniform distribution
‖p∗− 1

n1‖; the distance of the optimal report to the uniform
distribution ‖p − 1

n1‖; the distance of the performatively
optimal report to the fixed point ‖p∗ − p‖; the inaccuracy
of the performatively optimal report ‖f(p) − p‖. We are
interested in how the second two items depend on the first
two. We are also interested in how tight our bounds (from
Example 4) are.

We collected 1000 random functions fA, but aborted 52 runs
because they didn’t terminate within 120 seconds, leaving
us with 948 data points.

Inaccuracy. Figure 3 (left) plots the L2 inaccuracy (i.e., the
distances ‖p− f(p)‖). The blue line shows the best linear
fit to the data points, which is given by −0.0314 + 0.234x,
whereas our bound is 2Lf/

√
5 ≈ 0.8944Lf . The average

L2 inaccuracy is 0.100 with a standard deviation of 0.0770.
The quartiles are 0.0419, 0.0759, 0.138. The correlation be-
tween the operator norm of fA and ‖p− f(p)‖ is 0.312.

Distance to fixed points. Figure 3 (right) plots the L2
distance to the fixed point against the operator norm of
fA. The linear best fit (blue line) is given by −0.0966 +
0.440x, whereas our bound is 2Lf/(

√
2(1 − Lf )) ≈

0.8944Lf/(1− Lf ). The average L2 distance to the fixed
point is 0.152 with a standard deviation of 0.154 and quar-
tiles 0.0442, 0.0915, 0.210. The correlation between the op-
erator norm of fA and ‖p∗ − p‖ is 0.294.

The role of the location of the fixed point. The graphs
for the binary prediction case show that the location of the
fixed point matters a lot for the accuracy of optimal reports
(though the direction of the effect depends on the slope of f ).
A similar effect can be observed in the many outcome case.
In fact, the effect of the location of the fixed point is actually
stronger (though less reliable) than the effect of the operator
norm of fA. We provide more detail in Appendix C.2.2.
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Loose bounds, tight bounds. Figure 3 show that (in con-
trast to the binary prediction case), our bounds in terms
of the operator norm of f are typically quite loose. For
example, the average slack of the inaccuracy bound is
0.404 with a standard deviation of 0.0998 and quartiles
0.337, 0.400, 0.471. Recall from Example 4 that in addition
to bounds in terms of Lf alone we have bounds in terms of
Lf and ‖p− 1

n1‖. These bounds are much tighter with an
average slack of 0.0644 with a standard deviation of 0.0597
and quartiles 0.0274, 0.0487, 0.0830.

Discussion. Based on our simulations, misprediction in
the five outcome case seems similarly problematic as in
the binary prediction case. In contrast to the binary case,
the bounds in terms of Lf are quite loose. The bounds in
terms of ‖p − 1

n1‖ are much tighter. Note that because
these bounds depend on the performatively optimal report,
they can only be derived a posteriori once a report has been
submitted. As in the two-outcome case, both the location of
the fixed point and the operator norm/slope of f matter a lot
for accuracy and distance to fixed point of the performatively
optimal report.

8 FIXED POINTS VIA ALTERNATIVE
NOTIONS OF OPTIMALITY

Here, we focus on alternative settings that lead to accurate
predictions and do not induce preferences over fixed points.
The idea behind all of them is that, instead of optimizing p
and f(p) jointly, we keep q := f(p) fixed while choosing a
prediction p to maximize S(p, q). Repeating this procedure
leads to honest predictions, where the choice of fixed point
depends on contingent facts such as initialization, instead of
being chosen to maximize S(p,p). An AI model using this
procedure could be safer, because its predictions are honest,
and because it does not optimize its choice of fixed point
for any goal. In this section we give a summary of a more
detailed treatment with formal results in Appendix D.

Performative stability. Alternatives to performative opti-
mality have been discussed in the performative prediction
literature. Translated into our setting, a prediction p∗ is
called performatively stable if p∗ ∈ arg maxp S(p, f(p∗)).
This implies p∗ = f(p∗) whenever S is strictly proper, so
performative stability is equivalent to being a fixed point.

Repeated risk minimization and gradient descent. Per-
domo et al. [2020] consider learning algorithms that con-
verge to performatively stable points, including repeated risk
minimization and repeated gradient descent. In repeated
risk minimization, we repeatedly update predictions via
pt+1 := arg maxp S(p, f(pt)). Repeated gradient descent
instead updates predictions via gradient descent on this ob-
jective. There also exist stochastic gradient descent versions
of these algorithms [Mendler-Dünner et al., 2020]. All of
these schemes lead to stable points under appropriate condi-

tions. We include a convergence proof for repeated gradient
descent in our setting in Appendix D.2.

No-regret learning and prediction markets. We also pro-
vide results for no-regret learning (Appendix D.4) and pre-
diction markets (Appendix D.5). We introduce a no-regret
learning setting and show that policies have sublinear regret
if and only if they have sublinear prediction error. This dif-
fers from the setting considered by Jagadeesan et al. [2022],
in which no-regret policies converge to performatively opti-
mal predictions. Next, we provide a prediction market model
and show that, if the weight of each trader in the market
is small, equilibrium predictions by the market are close
to fixed points. This is analogous to a result by Hardt et al.
[2022] bounding the distance of a market equilibrium from
performatively stable points.

9 RELATED WORK

Performative prediction. In performative prediction, the
goal is to find a model parameter θ ∈ Rd that minimizes
an expected loss E[`(Z; θ)] where Z is a stochastic sam-
ple, usually a pair of input and target, Z = (X,Y ). Unlike
in the vanilla supervised learning setting, Z ∼ D(θ) is
sampled from a distribution D(θ) that itself depends on
the chosen model parameter. Performatively optimal pa-
rameters are defined via θPO ∈ arg minθ EZ∼D(θ)[`(Z; θ)],
and the definition of performatively stable parameters is
θPS ∈ arg minθ EZ∼D(θPS)`(Z; θ). In general, performa-
tively stable and optimal parameters can differ [Perdomo
et al., 2020, Ex. 2.2].

Our setting could be seen as a special case in which θ is
a single distribution p, data points are discrete outcomes
y, and the distribution D(θ) is given by f(p). Unlike in
the general performative prediction setting, we can deter-
mine the accuracy of a prediction p as the distance from
the distribution f(p) (see Theorem 3), we can character-
ize predictions as honest if they are fixed points, and loss
functions can be characterized as proper if they incentivize
honest reports. As mentioned in Section 8, performatively
stable points are fixed points and are thus a more desirable
solution concept in our setting. There are some performa-
tive prediction settings in which performative optima can
also be seen as manipulative and undesirable, such as in
recommendation algorithms [Hardt et al., 2022]. However,
as far as we are aware, we are the first to link performative
stability to honesty in prediction.

Scoring rules. While the literature on scoring rules gen-
erally assumes that predictions are not performative, a few
authors in this literature have studied agents manipulating
the world after making a prediction Shi et al. [2009], Oka
et al. [2014]. To our knowledge, the cases discussed do not
involve agents influencing the world directly through their
predictions. Chan [2022] introduce performative probabilis-
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tic predictions using scoring rules. However, they focus on
particular functional forms of f and binary predictions and
do not provide a more general analysis. Another related set-
ting in which it has been shown that no proper scoring rules
exist is that of second-order prediction, in which experts
report distributions over first-order distributions to express
epistemic uncertainty [Bengs et al., 2023].

AI oracles. Issues with performativity have been mentioned
in the literature on AI predictors or oracles Armstrong and
O’Rorke [2017]. Most prior work has focused on alleviating
performativity altogether, e.g., by making the oracle predict
counterfactual worlds it cannot influence. We are not aware
of any prior work on specifically the question of whether AI
oracles would be incentivized to output fixed points at all.

Decision scoring rules and decision markets. The litera-
ture on decision scoring rules and decision markets consid-
ers a setting in which experts make predictions about what
would happen if a decision maker were to pursue one course
of action or another. The decision maker then chooses based
on these predictions, making the predictions performative.
As shown by Othman and Sandholm [2010], the expert
may thus be incentivized to mispredict when subject to a
proper scoring rule. However, this literature typically takes
the perspective of the decision maker and thus assumes
some knowledge of f . For example, Othman and Sandholm
[2010] and Oesterheld and Conitzer [2020b] show that the
scoring rule S must be chosen to align in some sense with
the decision maker’s utility function (and thus f ). Chen et al.
[2014] propose that the decision maker could randomize
to set good incentives, which in our setting would entail
manipulating f .

Epistemic decision theory. A related topic in philosophy
is epistemic decision theory. In particular, Greaves [2013]
introduces several cases in which outcomes depend on the
agent’s credences and compares the verdicts of different
epistemic decision theories (such as an evidential and a
causal version). While some of Greaves’ examples involve
agents knowably adopting incorrect beliefs, they require
joint beliefs over several propositions, and Greaves only
considers individual examples. We instead consider only a
single binary prediction and prove results for arbitrary scor-
ing rules and relationships between predictions and beliefs.

Honest and truthful AI. Another related topic is honest
and truthful AI [Evans et al., 2021]. In our setting, an AI
that reports an inaccurate prediction to achieve a higher
score would be dishonest. Evans et al. [2021] discuss is-
sues around training AIs to be truthful and honest, such
as difficulties in judging truth. However, they do not ex-
plore performativity or proper scoring rules. We simplify
our analysis by assuming that a ground truth exists and can
be judged objectively. Burns et al. [2022] discuss extracting
latent knowledge from AIs without relying on incentivizing
honest reporting, but also do not address performativity.

10 CONCLUSION AND FUTURE WORK

If predictions cannot influence which outcome occurs, then
strictly proper scoring rules incentivize experts (humans or
AI systems) to report honest predictions. This fails if predic-
tions are performative. We showed that, in general, strictly
proper scoring rules do not incentivize accurate predictions
in a performative prediction setting. We analyzed this inac-
curacy quantitatively and gave upper bounds on inaccuracy.
We showed that in the case of binary prediction, there exist
scoring rules that incentivize arbitrarily accurate predictions.
In contrast, for more than two outcomes, it is not possible
to achieve arbitrarily strong bounds on accuracy. Our nu-
merical simulations in a toy setting confirm that our bounds
are tight in some situations and that inaccurate performative
predictions are common. Finally, we showed that by using
other types of objectives, such as minimizing regret, we can
build AI models that predict fixed points.

We hope that future work will shed further light on practical
and safe uses of AI systems as predictors, i.e., oracle AIs.
First, some of our bounds could probably be improved or
generalized (to non-differentiable f,G). Second, it would
be valuable to have more specific models of f . Precise mod-
els of f may allow for stronger results [cf. Othman and
Sandholm, 2010, Oesterheld and Conitzer, 2020b]. Third,
we take a simplistic view of safety: we take it that incen-
tives to predict honestly are good and that other incentives
are problematic. We hope that future work will augment
our analysis with more fine-grained models of safety. For
example, a common safety concern is power-seeking be-
havior [Omohundro, 2008, Turner et al., 2021]. One could
similarly ask to what extent performative oracle AI will
spend compute to improve its ability to influence the world
(cf. discussions of information acquisition, e.g. Osband,
1989; Neyman et al., 2021; Li et al., 2022; Oesterheld and
Conitzer, 2020a). Lastly, we are interested in theoretical and
experimental evaluations of the practicality of different safe
oracle AI designs and training setups.
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