
Bayesian Numerical Integration with Neural Networks

Katharina Ott1, 2 Michael Tiemann1 Philipp Hennig2, 3 François-Xavier Briol4, 5

1Bosch Center for Artificial Intelligence, Renningen, Germany
2University of Tübingen, Tübingen, Germany

3MPI for Intelligent Systems, Tübingen, Germany
4Department of Statistical Science, University College London, London, United Kingdom

5The Alan Turing Institute, London, United Kingdom

Abstract

Bayesian probabilistic numerical methods for nu-
merical integration offer significant advantages
over their non-Bayesian counterparts: they can en-
code prior information about the integrand, and
can quantify uncertainty over estimates of an inte-
gral. However, the most popular algorithm in this
class, Bayesian quadrature, is based on Gaussian
process models and is therefore associated with
a high computational cost. To improve scalabil-
ity, we propose an alternative approach based on
Bayesian neural networks which we call Bayesian
Stein networks. The key ingredients are a neural
network architecture based on Stein operators, and
an approximation of the Bayesian posterior based
on the Laplace approximation. We show that this
leads to orders of magnitude speed-ups on the pop-
ular Genz functions benchmark, and on challeng-
ing problems arising in the Bayesian analysis of
dynamical systems, and the prediction of energy
production for a large-scale wind farm.

1 INTRODUCTION

Integration is a core task in probabilistic machine learning.
It is required to perform operations such as marginalizing
out random variables, or computing normalization constants,
predictive distributions, and posterior expectations. In this
paper, we consider the computation of the integral of some
function f : X → R, where X ⊆ Rd, against some distri-
bution Π with (Lebesgue) density π : X → R:

Π[f ] =
∫
X f(x)π(x)dx, (1)

where we assume we have access to evaluations {f(xi)}ni=1

at a set of points {xi}ni=1 ⊆ X . The problem is particu-
larly challenging if f and π are multi-modal and/or are very
input-sensitive in different regions of the support. A plethora

of methods exist for tackling this task; the most common
are Monte Carlo (MC) methods, which are sampling-based
methods that have been studied extensively in theory and
practice [Robert and Casella, 2000, Owen, 2013]. This
subsumes naive Monte Carlo, Markov chain Monte Carlo
(MCMC) and quasi-Monte Carlo (QMC). Sampling is (at
least asymptotically, for MCMC) unbiased and thus a gold
standard, but precisely for this reason, it can only converge
with stochastic rate, and thus requires a large number of
samples n, both for accuracy and uncertainty quantification.

This is a challenge if evaluations of f or samples from π
are expensive. The former (“expensive f”) emerges regu-
larly in climate simulations or other large physical models.
Section 5 provides an example with a wind farm model –
a field where state-of-the-art models require hundreds of
hours of CPU for a single evaluation [Kirby et al., 2022,
2023]. The latter (“expensive sampling”) occurs when π is
a posterior distribution for a complex model conditioned on
a large amount of data. Section 5 illustrates this through an
example of Bayesian inference in dynamical system.

In such scenarios, probabilistic numerical methods (PNMs)
[Hennig et al., 2015, Cockayne et al., 2019, Oates and Sulli-
van, 2019, Wenger et al., 2021, Hennig et al., 2022], and in
particular Bayesian approaches, perform particularly well.
For numerical integration, the principle behind Bayesian
PNMs is to encode prior information about the integrand
f , then condition on evaluations of f to obtain a posterior
distribution over Π[f ]. These methods are well suited for
computationally expensive problems since informative pri-
ors can be used to encode properties of the problem and to
reduce the number of evaluations needed. In addition, the
posterior quantifies uncertainty for any finite value of n.

The most popular Bayesian PNM for integration is Bayesian
Quadrature (BQ) [O’Hagan, 1991, Diaconis, 1988, Ras-
mussen and Ghahramani, 2002, Briol et al., 2019], a
method that places a Gaussian Process (GP) [Rasmussen and
Williams, 2006] prior on f . With this convenient choice of
prior, the posterior on Π[f ] is a univariate Gaussian, whose
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Figure 1: Integration methods can be compared at a high-
level in terms of their computational cost and ability to
include prior information. In both respects, BSNs provide a
compromise in-between MC and BQ.

mean and variance can be computed in closed form for cer-
tain combinations of prior covariance and distribution. How-
ever, for high-dimensional problems where large amounts
of data are necessary, the computational cost of GPs, cubic
in n, can render BQ too computationally expensive. Fast BQ
methods have been proposed to resolve this issue [Karvonen
and Särkkä, 2018, Jagadeeswaran and Hickernell, 2019],
but these usually work for a limited range of π or {xi}ni=1,
and therefore do not provide a widely applicable solution.

This raises the question of whether an alternative probabilis-
tic model could be used in place of a GP within probabilistic
integration. Bayesian neural networks (BNNs) are an obvi-
ous candidate, as they are known to work well in high di-
mensions and with large n. Unfortunately, their application
to integration tasks is not straightforward since, in contrast
to the GP case, analytical integration of the posterior mean
of a BNN is usually intractable. This is a significant chal-
lenge which has so far prevented their use for probabilistic
numerics. We resolve this challenge by proposing the con-
cept of Bayesian Stein (neural) networks (BSNs), a novel
BNN architecture based on a final layer constructed through
a Stein operator [Anastasiou et al., 2021]. Such choice of
architecture is designed specifically so that the resulting
BNN is analytically integrable (see Section 3), and hence at
our disposal for numerical integration.

Given these approaches—MC, BQ, BSNs—a natural ques-
tion remains: “How should we select a method for a given
integration task?”. We provide an empirical answer to this
question in Section 5, where we consider a popular bench-
mark dataset, compute posterior expectations arising in the
Bayesian treatment of dynamical systems, and estimate the
expected power output of a wind farm.

Our conclusions are summarized in Figure 1 and presented
below. If sampling π and evaluating f is computationally
cheap, so one can obtain a very large number of data points
relative to the complexity of the problem, then MC methods
are likely the best choice. But if n is very limited due to
our computational budget, then BQ is likely a better option.

BSNs excel in the intermediate region where n is such that
BQ becomes prohibitively expensive but MC is not accurate
enough. The architecture of neural networks, plus sophis-
ticated deep learning software libraries, make training of
(small) neural networks memory efficient and fast. However,
achieving good accuracy at low training cost requires spe-
cial care during training for the Stein architecture. Finding
a good training setup is a main contribution of this work,
outlined in Section 4.

For all integration methods, estimates from scarce data are
imperfect, so uncertainty estimates are crucial. Bayesian
deep learning provides this functionality. Full Bayesian in-
ference is costly even for small neural networks, but we
show that a lightweight Laplace approximation [MacKay,
1992, Ritter et al., 2018] can provide good approximate
uncertainty for the Stein network.

2 RELATED WORK

BQ is the method most closely related to our proposed ap-
proach and the approach is fully detailed in Appendix 2.
Bayesian PN methods based on alternative priors have also
been proposed. These include Bayesian additive regression
tree priors [Zhu et al., 2020], multi-output Gaussian process
priors [Xi et al., 2018, Gessner et al., 2019], and Dirichlet
process priors [Oates et al., 2017b]. These priors each pro-
vide different advantages, such as the ability to model highly
discontinuous functions, vector-valued functions, or mod-
elling probability distributions respectively. Unfortunately
none of these approaches significantly improve scalability,
the main goal of our paper.

The use of (non-Bayesian) neural networks for integration
was previously proposed by Lloyd et al. [2020]. However,
their method is only applicable for uniform π and shallow
networks. Wan et al. [2020], Si et al. [2021] propose to use a
Langevin Stein operator applied to a neural network to find
good control variates for variance reduction in Monte Carlo
approximations (based on an earlier construction by Oates
et al. [2017a]). In contrast to their work, we use the neural
network to directly compute Π[f ], and our neural network
follows Bayesian semantics and can be used to quantify
uncertainty. This requires a different network architecture
and an efficient posterior inference algorithm.

3 BAYESIAN STEIN NETWORKS

We now describe BSNs. This requires introducing Stein
operators, BNNs, and Laplace approximations.

Stein Neural Networks Stein operators are a technical
construction originating in probability theory, but have re-
cently been used as a computational tool [Anastasiou et al.,
2021]. Building on this line of work, we will use Stein oper-
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ators to construct the final layer of our BNNs. The reason
for this is simple: given some function u (with possibly un-
known mean) and a distribution π, a Stein operator can map
u to a mean zero function under π. This final layer there-
fore allows us to construct flexible BNNs with the powerful
property that any draw from the posterior will have a known
mean under π. We now highlight this procedure in detail.

We call S a Stein Operator if for any suitably regular con-
tinuously differentiable u : Rd → Rd, the following holds

Π [S[u]] = 0. (2)

Suppose X = Rd, π is continuously differentiable on
X , such that ∇x log π is well-defined ([∇x log π(x)]i =
∂ log π(x)/∂xi for all i ∈ {1, . . . , d}). One example of
an operator fulfilling (2) is the diffusion Stein operator
[Gorham et al., 2019, Barp et al., 2019]:

Sm[u](x) :=
(
m(x)>∇x log π(x)

)>
u(x)

+∇x · (m(x)u(x)) ,
(3)

where ∇x · u(x) =
∑d
i=1 ∂ui(x)/∂xi, and m : Rd →

Rd×d is an invertible matrix-valued function. This operator
only requires access to ∇x log π(xi), and can thus be used
even if the normalization constant of π is unknown. This is
an advantage if π is itself a posterior distribution. In such
settings, samples from π can be obtained via MCMC, but
the distribution π itself cannot be evaluated directly.

To construct BSNs, we use an architecture based on a contin-
uously differentiable deep neural network uθu : X → Rd,
where θu ∈ Θu ⊆ Rp, combined with a final layer taking
the form of a Stein operator (that we call a Stein layer).
More precisely, we consider an architecture gθ : X → R:

gθ(x) := Sm [uθu ] (x) + θ0. (4)

We call this neural network a Stein neural network following
[Wan et al., 2020, Si et al., 2021, Sun et al., 2023], but note
that we use the more general diffusion Stein operators Sm
[Gorham et al., 2019, Barp et al., 2019]. Previous cases can
be recovered with m(x) = Id, where Id is a d-dimensional
identity matrix, however we will demonstrate in Section 5
that alternative choices for m can significantly improve the
performance of our method.

The parameter θ = {θ0, θu} ∈ Θ ⊆ Rp+1 denotes the
weights of the neural network gθ. Thanks to our choice of
architecture, (2) holds and we have:

Π [gθ] = θ0. (5)

The last layer of gθ directly tracks the integral of the net-
work, which is the key property for our purpose: by training
such a network gθ on data from f so that gθ ≈ f , we are
simultaneously constructing a good approximation of the
integral Π[gθ] ≈ Π[f ] (see Figure 2 for a summary).

x

f(xi)

log (xi)

θMAP

Neural network regression for gθ
{xi, f(xi),∇ log π(xi)}

x

f(xi)

g MAP(x)

Laplace approximation

0

0, MAP

p( 0 )

Figure 2: Visualization of BSNs. The BSN prior is condi-
tioned on {xi, f(xi),∇ log π(xi)}ni=1 to obtain a Bayesian
posterior on θ0. This posterior quantifies our uncertainty
about Π[f ]. For computational reasons, this posterior is ap-
proximated the Laplace approximation around the MAP
estimate θ0,MAP.

Uncertainty Estimates for Stein Neural Networks In
the context of Bayesian PNM, proposing a BNN architecture
is not enough: we are also interested in tractable uncertainty
estimates over Π[f ]. We show how to obtain this through
the Laplace approximation and a suitable choice of prior,
but further details are available in Appendix 3.

The specific architecture of the BSN model means that all
the uncertainty on Π[f ] is represented by the Bayesian pos-
terior on θ0. This can be obtained through a standard appli-
cation of Bayes’ theorem p(θ|D) ∝ p(D|θ)p(θ) where in
our case the dataset is D = {xi, f(xi),∇x log π(xi)}ni=1,
and p(θ) denotes our prior, p(θ|D) the posterior and p(D|θ)
the likelihood. The posterior on θ0 is then the marginal
of p(θ|D). Bayesian inference for deep networks provides
uncertainty estimates [Neal, 1996, Mackay, 1995] through
p(θ|D), but this posterior is intractable in general. MCMC
is a prominent tool for approximating p(θ|D), but using
it within an integration method would be circular and re-
introduce the spectre of high computational cost [Izmailov
et al., 2021]. Other popular approximate inference schemes
include variational inference [Graves, 2011, Blundell et al.,
2015, Hinton and van Camp, 1993] and ensemble methods
[Lakshminarayanan et al., 2017]. Although cheaper, the cost
associated with this can still be significant.

We instead opt for the arguably most lightweight approach
available for BNNs: the Laplace approximation [MacKay,
1992, Ritter et al., 2018]. It is a simple and computation-
ally cheap method, but yet provides competitive uncertainty
estimates [Daxberger et al., 2021]. The Laplace approxima-
tion constructs a second-order Taylor approximation around
the mode of the posterior, which amounts to a Gaussian
approximate of the posterior around the MAP (maximum a-
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posteriori) estimate. This can be criticized from a Bayesian
standpoint as the MAP estimate and the posterior mean of
the weights do not necessarily coincide. However, the MAP
estimate is the quantity that is usually tuned in deep learn-
ing and is also cheap as it only has to be computed once.
To be more precise, our approximation of the posterior is
implemented in two steps: a Laplace approximation, and an
approximation of the corresponding Hessian.

For the first step, we train the network gθ by minimizing
the mean squared error loss with weight decay regularizer,
given for λ > 0 by:

ltot(θ) = l(θ) + λ‖θ‖22
where l(θ) = 1

n

∑n
i=1 ‖f(xi)− gθ(xi)‖22

(6)

We notice that l ∝ − log p(D|θ) and λ‖θ‖22 ∝ − log p(θ)
whenever we take the prior to be p(θ) = N (θ | 0, σ2

0Ip+1)
(σ0 is related to λ through a known constant see Appendix 3).
As a result, the minimum of the loss above is indeed a MAP
estimate: θMAP = argminθltot(θ).

Of course, any Bayesian treatment of neural networks re-
quires a prior p(θ). The choice is important since the prior
encodes the model class, but there is currently no widely ac-
cepted choice. Our choice above was motivated by the fact
that for the Laplace approximation, only isotropic Gaussian
priors are currently feasible [MacKay, 1992, Ritter et al.,
2018, Daxberger et al., 2021]. Fortuin et al. [2022] suggest
that such priors are undesirable, but Wilson and Izmailov
[2020] argue to the contrary: despite their simplicity, such
priors still induce sufficiently complex distributions over
functions. Daxberger et al. [2021] note that it is often bene-
ficial to tune σ0 for inference.

Once the MAP has been identified, we can construct our
Laplace approximation using a Taylor approximation (up
to second order) of the log-posterior log p (θ | D) around
that point. This results in a Gaussian approximation of the
posterior distribution: qLaplace(θ) = N (θ | θMAP,Σ), where
Σ is proportional to the inverse Hessian of the loss ltot:

Σ−1 = −∇2 log p(D|θ)−∇2 log p(θ)

= H + σ−20 Ip+1, where H ∝ ∇2
θl(θMAP)

Our second step consists of an approximation of the Hessian.
This is necessary since it is often infeasible to calculate H
due to the large computational cost when p is large. As a
result, we use a positive definite approximation called the
Generalized-Gauss-Newton (GGN; [Schraudolph, 2002])
approximation:

HGGN = 1
σ2

∑n
i=1 J(xi)J(xi)

>,

where J(xi) = ∇θgθ(xi)|θ=θMAP and σ is the dataset noise.
This gives us another approximation of the posterior that
we denote qGGN-Laplace(θ) obtain through Σ−1GGN = HGGN +
σ−20 Ip+1. Hence, we can extract an approximation of the

posterior on the network’s prediction of the integral Π[f ]
using Eq. (5):

qGGN-Laplace(θ0) = N
(
θ0|θ0,MAP, (ΣGGN)0,0

)
.

4 ARCHITECTURE

Due to their specific architecture, naive attempts to train
BSNs can lead to unsatisfactory results. Below, as a key
contribution, we provide architectural considerations that
we have found to significantly improve the conditioning of
the loss and lead to better training.

Choice of Activation Function We require uθu to be con-
tinuously differentiable on X , which imposes restrictions
on the activation functions of the BSN. A sufficient condi-
tion is for these activation functions to be themselves con-
tinuously differentiable. This excludes the popular RELU
activation functions, but includes the CELU (‘Continuously
Differentiable Exponential Linear Units’ [Barron, 2017];
CELU(x) = max(0, x) + min(0, exp(x) − 1)), its con-
tinuous extension. It also includes the tanh (tanh(x) =
(exp(x) − exp(−x))/(exp(x) + exp(−x))), Gaussian
(Gauss(x) = exp(−x2)), and sigmoid (sigm(x) = 1/(1 +
exp(−x))), TanhShrink (TanhShrink(x) = x − tanh(x))
activations. We compared activation functions (see Figure 4
below) and found the CELU to give marginally superior per-
formance on test problems. Based on its good performance,
we use CELU activations for all experiments.

Choice of Optimization Procedure Optimization for
BSNs is challenging due to the unique network architec-
ture. For one, the architecture contains gradients of the Stein
layer, which are harder to train than standard activation
functions. This is because∇x log π can be arbitrarily com-
plicated depending on π. We find that the training of gθ
with Adam [Kingma and Ba, 2015] is considerably slower
compared with training uθu (see the Appendix 1.1.1). We
suspect that this is due to the loss landscape of the BSN
being more narrow (i.e., having a larger spread in curva-
ture eigenvalue spectrum) than that of uθu . A second order
method should alleviate this issue. Hence, we train the BSN
with L-BFGS (an approximate second order method) and the
Hessian-free optimizer [Martens, 2010] (a conjugate gradi-
ent based second order method). And indeed, (approximate)
second order optimization reaches much better performance
(for an extended discussion see the Appendix 1.1.1).

We therefore used L-BFGS throughout all subsequent ex-
periments. Such quasi-Newton methods have fallen out of
fashion in deep learning because they are not stable to noise.
In our experiments, we train on the full dataset, so noise
is not an issue. We accomplish better (i.e., lower loss) and
faster convergence (both in iterations and compute time)
with this method compared to gradient descent and its vari-
ants. Note that this approach is only feasible for relatively
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small (in number of weights p) network architectures, as
it requires storing the gradient history for the approximate
Hessian in memory. When training on the entire dataset (i.e.,
no mini-batching), we observe significant speed-up from
using GPUs when n is large (≈ 104).

Choice of m(x) For most of the experiments we set
m(x) = Id, but in general other choices for m are possible.
We test a set of different choices (m(x) = Id/(||x||22 + 1),
m(x) = Id/

√
||x||22 + 1, m(x) = Idπ(x), m(x) =

diag(x)), but find that none of these perform significantly
better than m(x) = Id (see Appendix 1.1.4 for more de-
tails).

Choice of Point Set BSNs can be implemented regardless
of the choice of {xi}ni=1, but we expect better performance
when {xi}ni=1 cover regions of high probability under π. A
simple solution is to use independent samples from π; this
will be our default choice. When independent sampling is
not possible, we can use MCMC instead, so long as π can
be evaluated up to some normalization constant. Alterna-
tives also include grid of points or QMC point sets (see the
Appendix 1.1.2 for a comparison of different point sets),
but these are usually only helpful when X is a hypercube
and π is uniform. Alternatively, one could also use active
learning (see Gunter et al. [2014], Briol et al. [2015] for
corresponding approaches for BQ) based on the Laplace
approximation of the uncertainty, but this may not perform
well for large d, and we did not explore the idea further.

Stein Architecture for Bounded Domains The architec-
ture outlined in Section 3 is only valid on the open inte-
gration domain X = Rd. For bounded X ⊂ Rd, it is in-
correct because Π[Sm[u]] = 0 is not necessarily true. This
can be guaranteed by adding a layer before the Stein layer.
For example, let ũθu(x) = uθu(x)δ(x), where δ(x) is a
smooth function (so that ũθu is continuously differentiable)
going to zero on the boundary of X . Then, π(·)ũθu(·) is
zero on the boundary of X , and as a result Π[S[ũθu ]] = 0.
When X = (a, b) ⊂ R, one such function is given by
δ(x) = (x− a)(b− x), and we will use this example where
necessary in our experiments. Beyond bounded X , the ar-
chitecture can also be adapted to manifold or discrete X ;
see Barp et al. [2022] and Shi et al. [2022] respectively.

5 EXPERIMENTS

We consider three main experiments: the Genz functions
benchmark, a parameter inference problem for a dynamical
system called Goodwin Oscillator, and an example describ-
ing the energy output of a wind farm. We compare BSNs to
the following approaches:

• Monte Carlo methods. When independent sampling
from π can be used (i.e. for the Genz benchmark and

the wind farm experiments) we use MC. When this is
not possible, we use instead an MCMC method called
Metropolis-Adjusted Langevin algorithm [MALA;
Roberts and Tweedie, 1996].

• A BQ implementation based on emukit [Paleyes
et al., 2019], with an RBF covariance function
k(x, y) = λ exp(−‖x − y‖22/l2) for some l, λ > 0.
We use log-likelihood maximization to choose l and
set the GP prior mean to 0, as we do not have any
prior knowledge about the value of the integral. In
Appendix 1.1.5 we conduct an additional experiment
using the Matern 1/2 Kernel. However, for this kernel,
the posterior mean is only available in d = 1.

• A control functional estimator based on Stein’s method
(Stein-CF) as described in Oates et al. [2019] for the
experiments on the Genz dataset and the Goodwin
oscillator. The approach can be thought of as a kernel
interpolant alternative to our neural network. We use
m(x) = Id and an RBF kernel. We use log-likelihood
maximization to set the kernel hyperparameters.

To implement the Laplace approximation, we use
laplace-torch library [Daxberger et al., 2021]. Across
all experiments we employ the same fully connected archi-
tecture for uθu , where each hidden layer has 32 units, and
we use 2 hidden layers (see the Appendix 1.1.3 for more
details).

Genz Benchmark We first consider the Genz family of
integrands [Genz, 1984], as a test ground (see Appendix 1.2
for detailed definitions). This benchmark, consisting of six
integrands with known integrals, was proposed to highlight
the performance of numerical integration methods on chal-
lenging tasks including discontinuities, peaks and oscilla-
tions. Each integrand has a parameter which can be used
to increase the dimensionality d of the domain. We fol-
low the implementation of Si et al. [2021], where the test
functions are transformed to be supported on X = Rd and
integrated against a multivariate standard Gaussian distri-
bution π. Since these functions are very cheap, we do not
expect BSN or BQ to be competitive with MC methods in
terms of runtime, but we use this experiment to showcase
the performance of BSNs for challenging integrands and
compare methods for fixed n.

In Table 1, we first consider the case d = 2 and n = 5120.
BSN and BQ both outperform MC by several orders of mag-
nitude in terms of mean relative integration error. Notably,
BSN is significantly better than BQ for the discontinuous
Genz function, indicating that the neural network is able to
adapt to rapidly changing functions. For the Gaussian Genz
function, BQ outperforms the BSN due to the fact that the
prior is more informative. Both methods lead to a significant
improvement over MC, but we can run the BSN at higher
number of data points n than BQ (see Appendix 1.2).
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Table 1: Performance on Genz integral family in d = 2. Mean relative integration error and standard deviation (based on 5
repetitions) using n = 5120.

Mean Absolute Error
Integrand MC BQ BSN
Continuous Genz 1.59e-03 ± 0.90e-03 1.40e-03 ± 0.09e-03 1.11e-05 ± 0.55e-05
Discontinuous Genz 2.69e-02 ± 2.64e-02 1.12e-02 ± 0.50e-02 2.56e-03 ± 1.94e-03
Gaussian peak 1.52e-02 ± 8.85e-03 1.17e-06 ± 1.11e-06 1.83e-04 ± 1.35e-04
Corner peak 1.85e-02 ± 1.85e-02 2.49e-04 ± 1.53e-04 6.00e-04 ± 5.39e-04
Oscillatory Genz 2.88e-01 ± 1.75e-01 4.13e-03 ± 0.89e-03 1.34e-03 ± 0.97e-03
Product peak 7.59e-03 ± 4.11e-03 1.82e-04 ± 0.42e-04 1.42e-04 ± 0.76e-04
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Figure 3: Continuous Genz function. We compare meth-
ods as a function of d for n = 100 (left) and n = 10000
(right)(mean and standard deviation based on 5 repetitions).

We then considered the impact of dimensionality on MC,
BQ, and BSN in Figure 3. We focus on the Continuous Genz
function for simplicity. If too few evaluations n are available,
the Stein network cannot approximate f well, but with a
sufficiently large n (i.e. n ≈ 102 in d = 1 and n ≈ 104 in
d = 10), BSN significantly outperforms MC and BQ.
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Figure 4: Impact of the choice of activation function for the
Continuous Genz function. Loss l (left) and mean relative
integration error (right) (mean based on 5 repetitions) as a
function of n.

We also considered the impact of the choice of activation
functions for uθu in Figure 4. Again, we focus on the Con-
tinuous Genz integrand, but limit ourselves to d = 1. We

consider a diverse set of activation functions (described in
Section 4), all continuously differentiable as required for
the final Stein layer. We find that the CELU activation leads
to the best results on the Continuous Genz dataset, but other
activation functions like the tanh and Gaussian activations
also perform well.

Finally, we have a deeper look at the Continuous Genz func-
tion in d = 20 in Figure 5. We observe that a large enough
n (n ≈ 104) is necessary for the interpolation capabilities
of the model to significantly improve performance. In those
cases, the BSN achieves significantly better performance
than MC-sampling. We note that MC sampling is cheap on
the Genz benchmark dataset, and this benchmark is only
used as a test bed to vary the complexity of our integrands,
so we only compare the MC to the other methods in terms
of sample efficiency. Both BQ and Stein-CF do not achieve
good performance and are too expensive (in runtime and
in memory) to run for large n. The BSN can perform well
even for much larger datasets (we ran it up to n ≈ 106).

We can compare the BSN and BQ not only in runtime but
also in terms of memory requirements. However, computing
accurate memory requirements in python can be difficult as
common python libraries use for example C++ backends.
The memory requirements of these non-python backends is
commonly not taken into account using the built-in memory
profiler. So instead, we use the profiler of our cluster, which
outputs the maximum memory required by the program.
Figure 6 shows that the BSN memory requirements increase
more slowly than for BQ. Both kernel based methods (BQ
and CF) surpass our allotted memory limit of 20 GB.

To evaluate the uncertainty estimates provided by the GGN-
Laplace approach, we calculate their calibration γ. The cali-
bration is given by the ratio between relative integration er-
ror eabs, and the standard deviation σθ0 of the GGN-Laplace
approximation of the posterior on θ0: γ = eabs/σθ0 . Sim-
ilarly, for BQ, σθ0 is the posterior standard deviation on
Π[f ]. A calibration fluctuating around one indicates a well
calibrated model, and a large calibration suggests a model
that is overconfident, rendering its uncertainty estimates un-
reliable. The GGN-Laplace approach as well as BQ lead to
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Figure 5: Continuous Genz function in d = 20. Mean relative integration error (left), and run time (center) (mean and
standard deviation based on 5 repetitions) as a function of n. Right: Run time in seconds as a function of mean relative
integration error.
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Figure 6: Continuous Genz function in d = 20. Memory re-
quirements (left) and calibration (right) (mean and standard
deviation based on 5 repetitions) as a function of n.

uncertainty estimates which are underconfident (although
less so for the BSN), especially in the high data regime (see
Figure 6). Underconfident predictions are still useful in that
they provide a prudent assessment of our uncertainty.

Bayesian Inference for the Goodwin Oscillator A chal-
lenging computational task in Bayesian inference is poste-
rior inference for parameters of dynamical systems (see for
example Calderhead and Girolami [2011]). The challenge
is due to the large computational cost of posterior sampling,
which is incurred due to the need to solve systems of dif-
ferential equations numerically at a high-level of accuracy.
In addition, large datasets can further increase the compu-
tational cost, making the task a prime candidate for BSNs.
For this experiment, we consider parameter inference in a
dynamical system called the Goodwin oscillator [Goodwin,
1965]. This model describes how the feedback loop between
mRNA transcription and protein expression can lead to os-
cillatory dynamics in a cell. It is a common benchmark for
MC methods [Calderhead and Girolami, 2009, Oates et al.,
2016, Riabiz et al., 2022].

We analyse the setting with no intermediate protein species,
leading to a system with d = 4 parameters: x =
(a1, a2, k, α) ∈ R4

+. Given a posterior distribution π, we

want to compute the posterior mean Π[f ] of each of the
ODE parameters, i.e., f(x) = x. For this experiment, the
posterior distribution is conditioned on a synthetic dataset
of 2400 observations generated for some known parame-
ter values. Our exact experimental setup is based on [Chen
et al., 2019], and we refer to the Appendix 1.3 for a detailed
description.

The posterior density π is only available in unnormalized
form, and we therefore use MALA for sampling. This is
relatively expensive: sampling n = 1000 realizations takes
around 30 seconds, which is on the same timescale as net-
work inference (∼ 1 min). For ODE problems requiring
more complex solvers or settings with a large dataset, the
sampling time might increase even further.

In this setting, ∇x log π(x) can take very large values,
which makes training the BSN harder. We find that m(x) =
Id/C for C ∈ R can considerably improve the performance.
We considered two choices for the constant C:

• the standard deviation of {∇x log π(xi)}ni=1 (called
C = std in Figure 7).

• the largest score value: C = maxi=1,...,n∇x log π(xi)
(C = max in Figure 7).

Figure 7 compares the performance of the proposed reg-
ularizations. Both choices work well, in contrast to using
no regularization at all (i.e. C = 1). We find that the BSN
either matches the performance of MALA (for parameter
α) or surpasses it (parameter a1). The Stein-CF performs
well but struggles in the high data regime due to unstable
hyperparameter optimization. The results for a2 and k are
presented in Appendix 1.3. The saturation in reached accu-
racy for both the BSN and MALA can be attributed to the
noisy likelihood evaluations.

Before concluding, we emphasize that BSN is the only avail-
able Bayesian PNM here. This is because π is unnormalized
and BQ would require an additional step of computing the
normalization constant, which would lead to additional run-
time and likely incur additional numerical error.
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Figure 7: Posterior expectations for the parameters of a
Goodwin ODE. Mean relative integration error and standard
deviation (top-left and bottom-left), and uncertainty esti-
mates (top-right and bottom-right) (based on 5 repetitions)
as a function of n.

Expected Local Turbine Thrust Coefficient for Wind
Farm Layout Design The energy produced by a wind
farm depends on factors including the distance between tur-
bines, the direction of the wind, and the wake produced by
individual turbines. To understand this phenomenon, fluid
dynamic simulations can be used to estimate a local turbine
thrust coefficient (which we denote f ), which largely deter-
mines energy production [Nishino, 2016]. Since a number
of these factors are unknown, it is common practice to rep-
resent uncertainty through a distribution (denoted π), and
calculate the expected local turbine thrust coefficient Π[f ].

A particular challenge here is the cost of evaluating f . For
the model we are using (a low-order wake model from Niay-
ifar and Porté-Agel [2016]), each evaluation of f takes ap-
proximately 130 seconds, but more accurate models [Kirby
et al., 2022] can take up to tens of hours per evaluation.
However, it is well known that f is a smooth function of the
inputs, which makes Bayesian PNMs, such as BSNs, prime
candidates for the task.

The input to our model f are the wind direction, the tur-
bulence intensity, as well as a number of parameters rep-
resenting the design of the wind farm (including parame-
ters impacting the distance between turbines, and turbine-
specific parameters such as the turbine resistance coeffi-
cient, the turbine hub height and diameter, and parameters

describe the turbine wake). The distribution π consists of
independent distributions (either mixtures of Gaussians, or
a truncated Gaussian) on each input to the wake model. The
Appendix 1.4 provides full details on the wind farm dataset.

The results are presented in Figure 8. Since the ground truth
is unknown for this problem, we ran BSN on a dataset which
is 5 times larger than what is plotted in order to get a bench-
mark value. We compared the runtime of all methods in-
cluding sampling, where we assume that all the points were
sampled sequentially (corresponding to running the experi-
ment on a single CPU). The additional runtime of both BQ
and the BSN is negligible compared to the initial sampling
time. Both methods achieve a much lower mean relative in-
tegration error compared to sampling, clearly demonstrating
the power of Bayesian PNM methods for problems involv-
ing expensive integrands.

On this dataset BQ cannot be used to compute uncertainty
estimates, because we cannot integrate the kernel twice in
closed form for truncated Gaussians. However, the uncer-
tainty estimates computed with the Laplace approximation
for the BSN accurately capture deviations from the ground
truth value (shown in Figure 8).

6 LIMITATIONS AND DISCUSSION

The primary advantage of BSNs is in terms of scalability,
but they also suffer from some limitations, discussed below.

Firstly, in contrast to GPs where prior knowledge (such as
periodicity or smoothness) about f can be encoded via a
kernel, selecting good functional priors for BNNs can be
challenging. In general, the BSN encodes that the integrand
f is smooth, as the outputs of the BSN are smooth functions
(the BSN is composition of smooth functions). Our experi-
ments show that simple prior choices are often sufficient to
achieve good results for moderately hard problems. More
advanced options [Sun et al., 2019, Pearce et al., 2019]
could be considered, but this would require novel Laplace
approximations. In cases the BNN prior is misspecified (i.e.,
the function f is not contained in the prior), we can always
increase the number of parameters of the neural network.

Secondly, our experiments suggest convergence with large
n. Although we did not analyse this convergence from a
theoretical viewpoint, we note that Si et al. [2021, Proposi-
tion 1 and 2] can be used to prove consistency of the BSN
posterior mean to the true value of the integral. Currently,
we do not have any results for the convergence rates, but
this could be an interesting direction for future research (for
example, Belomestny et al. [2023] provides a rate for a re-
lated approach). This is in contrast with the GP case where
convergence results are highly developed [Kanagawa et al.,
2020, Kanagawa and Hennig, 2019, Karvonen et al., 2020,
Wynne et al., 2021].
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Figure 8: Wind farm model. Mean relative integration error (left), and run time (centre-left) (mean and standard deviation
based on 5 repetitions) as a function of n. Center-right: Fraction of runtime BSN and BQ contribute to the total runtime which
includes the runtime of the wind farm simulation. Right: Uncertainty estimates provided by the Laplace approximation.

Thirdly, computational cost is highly dependent on the com-
plexity of the deep network uθu . Using standard matrix mul-
tiplication, neural network training is linear in the number of
(non-bias) parameters p, the number of training samples n,
and the number of gradient iterations i, i.e, O(pni). Across
all our experiments we used the same architecture for uθu
independent of n, but we expect that the complexity of the
network will need to increase significantly when high accu-
racy is required. In such cases, we expect that mini-batching
and first order optimization could improve scalability, but
would likely incur new issues with stability.

7 CONCLUSION

We have introduced a way to leverage the function approxi-
mation abilities of deep BNNs specifically for integration
through the application of a Stein operator. Employing a
Laplace approximation provides uncertainty quantification
of good quality in this architecture. We have noted that sig-
nificant work is required to stabilize the training process to
this end: both the architecture and the training method must
be adapted to the non-standard form of the loss.

BSNs perform consistently well across experiments, both in
accuracy and in runtime, and are thus an interesting alterna-
tive to BQ, especially for the intermediate regime between
very small sample size (where traditional BQ works well),
and very large sample numbers (where classic MC meth-
ods continue to be the preferred solution). Our experiments
on a variety of applications also highlight some functional
strengths of the BSN approach. In particular, it can deal
flexibly with a wide range of integration densities, including
cases in which the density is known in unnormalized form.
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