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Abstract

We consider the problem of maximizing submodu-
lar functions under submodular constraints by for-
mulating the problem in two ways: SCSK-C and
DIFF-C. Given two submodular functions f and
g where f is monotone, the objective of SCSK-C
problem is to find a set S of size at most k that max-
imizes f(S) under the constraint that g(S) ≤ θ,
for a given value of θ. The problem of DIFF-C fo-
cuses on finding a set S of size at most k such that
h(S) = f(S) − g(S) is maximized. It is known
that these problems are highly inapproximable and
do not admit any constant factor multiplicative ap-
proximation algorithms unless NP is easy. Known
approximation algorithms involve data-dependent
approximation factors that are not efficiently com-
putable.
We initiate a study of the design of approximation
algorithms where the approximation factors are ef-
ficiently computable. For the problem of SCSK-C,
we prove that the greedy algorithm produces a solu-
tion whose value is at least (1−1/e)f(OPT)−A,
where A is the data-dependent additive error. For
the DIFF-C problem, we design an algorithm that
uses the SCSK-C greedy algorithm as a subrou-
tine. This algorithm produces a solution whose
value is at least (1− 1/e)h(OPT)−B, where B
is also a data-dependent additive error. A salient
feature of our approach is that the additive error
terms can be computed efficiently, thus enabling us
to ascertain the quality of the solutions produced.

1 INTRODUCTION

For a ground set V of size n, a function f : 2V → R is sub-
modular if for every S ⊆ T ⊆ V , and for every x ∈ V − T ,
f(S ∪ {x}) − f(S) ≥ f(T ∪ {x}) − f(T ). I.e., the gain

in the value of the function when x is added to S is at least
the gain when x is added to a superset of S. Optimizing
submodular functions under various constraints has been
studied extensively. These problems are of the following
form: For a submodular function f , find a set S ⊆ V that
maximizes f(S) subject to the constraint that S ∈ F , where
F is a family of sets. A few of the well-studied constraints
are cardinality constraint, knapsack/modular constraint, and
matroid constraints. Even for the least restrictive constraint,
cardinality constraint, the problem is known to be NP-hard.
The classical work of Nemhauser et al. showed that a greedy
algorithm achieves a (1−1/e) approximation ratio if the sub-
modular function f is monotone Nemhauser et al. [1978a].

Submodular Constraints. Often, in submodular maximiza-
tion problems, there is a conflicting minimization constraint.
The generic nature of these problems is of the following
form: Given a submodular function f , another function g,
find a set S of size at most k that maximizes f(S), while
minimizing g(S). In this work, we study the case where
the function g is also a submodular function. The problem
of maximizing a submodular function under a submodular
constraint appears in a few application domains. The works
of Iyer and Bilmes [2012b, 2013] discuss several scenarios
where these problems arise naturally. These application do-
mains include sensor placement, speech data set selection,
probabilistic inference, and information diffusion Kempe
et al. [2003], Lin and Bilmes [2009, 2011], Krause et al.
[2008], Jegelka and Bilmes [2011].

SCSK-C and DIFF-C. Two of the standard ways to for-
malize the above-mentioned maximization-minimization
problem is via introducing a submodular constraint Iyer and
Bilmes [2013], Crawford et al. [2019], Wan et al. [2010]
and as maximizing the difference between submodular func-
tions Iyer and Bilmes [2012b], Narasimhan and Bilmes
[2005], Jin et al. [2021a], Kawahara and Washio [2011].
The Submodular Cost Submodular Knapsack (SCSK) is as
follows: given two non-negative, submodular functions f
and g over a ground set such that f is monotone and a value
θ, the goal is to find a set S that maximizes f(S) subject
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to the constraint that g(S) ≤ θ. The Diff problem is the
following: Given non-negative, submodular functions f and
g where f is monotone, find a set S such that f(S)− g(S)
is maximized. In this paper, we will consider generaliza-
tions of these problems called SCSK-C and DIFF-C. The
SCSK-C problem is to find set S that maximizes f subject
to the constraint g(S) ≤ θ and |S| ≤ k. Similarly, DIFF-C
problem is to find a set S that maximizes the function f − g
such that |S| ≤ k. In SCSK-C setting, we will refer to
g(X) ≤ θ as submodularity budget constraint and θ as the
submodular budget. In this work, we address the problem
of obtaining approximation algorithms for these problems
whose approximation factors can be efficiently computed.

Data Dependent Approximations. Unfortunately, for both
SCSK and DIFF (and hence for both SCSK-C and DIFF-
C) it is known that efficient approximation algorithms are
not feasible. From the work of Iyer and Bilmes Iyer and
Bilmes [2013] it follows that if P does not equal NP, then
SCSK does not admit even admit 1/n1/2−ϵ-multiplicative
approximation algorithms, for any ϵ > 0. Narasimhan and
Bilmes Narasimhan and Bilmes [2005] showed that ev-
ery set function can be represented as the difference be-
tween two submodular functions, and thus DIFF is inapprox-
imable Narasimhan and Bilmes [2005], Iyer and Bilmes
[2012b]. Given the high inapproximability of these prob-
lems, it seems that there is no hope of theoretically ana-
lyzing the quality of the solutions produced by efficient
algorithms for these problems. However, it turns out that
data-dependent approximation guarantees can be obtained
for the SCSK-C problem.

A d-multiplicative approximation for submodular maximiza-
tion produces a solution S such that f(S) ≥ d× f(OPT ),
where OPT is the optimal solution. Typically the value d
is independent of the actual function f that is being max-
imized. This is either a universal constant (such as 1/2 or
(1− 1/e)) or depends on the size of the ground set V . On
the contrary, algorithms with data-dependent approximation
guarantees have the following flavor: For a given function
f , the value of the solution produced by the algorithm is at
least df ×OPT , where df depends on the function f that
we seek to maximize and the constraints.

For the problem of SCSK-C, Iyer and Bilmes [2013], Iyer
et al. [2013] presented data-dependent approximation al-
gorithms, However, we observe that this data-dependent
approximation factor is NP-hard to compute. Given this, it
is hard to judge the quality of the solution produced by the
approximation algorithm (i.e., how close it is to the opti-
mal solution). We discuss this issue in detail in Section 2.
For the problem of DIFF-C, to the best of our knowledge,
no data-dependent approximation bounds have been estab-
lished. The works of Iyer and Bilmes [2012b], Narasimhan
and Bilmes [2005] provide a heuristic approach to solve the
problems of maximizing the difference between two sub-
modular functions f and g by replacing g with a surrogate

modular function g′ that bounds g and instead maximize
f − g′, which is submodular.

Our thesis is that data-dependent approximation factors are
more meaningful only when they can be computed efficiently.
Motivated by this, we explore the possibility of designing
algorithms with efficiently computable data-dependent ap-
proximation factors.

Our Contributions. To achieve efficiently computable ap-
proximation factors, we study the notion of multiplicative-
additive error approximation algorithms. We say that A is a
(d,A)-multiplicative-additive approximation algorithm for
the problem maximization problem if the output of A ≥
d×f(OPT )−A. We refer to d as multiplicative factor and
A as additive error.

Algorithms with Efficiently Computable Approximation Fac-
tors for SCSK-C. We first consider the standard greedy
algorithm for SCSK-C. We establish a new guarantee
on the quality of the solution produced by the solution.
Namely, we prove that if S is the solution produced, then
f(S) ≥ (1 − 1/e)f(OPT ) − Afg. Here the additive er-
ror Afg is the data-dependent factor that depends on f
and g. A hallmark of our proof and analysis is that Afg

can be computed while running the greedy algorithm with
very little overhead, thus making the computation of Afg

efficient. Combining this proof with ideas from Conforti
and Cornuéjols [1984], we refine the multiplicative error to
1
cf
(1− (1− cf

k )k), while keeping the additive error same.
We remark that while our proofs start with the standard ar-
guments known in the literature, there are critical departure
points. The main contribution in the proofs is conceptual
rather than technical, which enables us to obtain the desired
bounds.

DIFF-C via SCSK-C. We first observe that the DIFF-C
problem reduces to SCSK-C problem when the range of
g is non-negative integers. Building on this, we design an
approximation algorithm for DIFF-C that uses the natural
greedy algorithm for SCSK-C as a subroutine. Building
upon our theoretical analysis of the greedy algorithm for
SCSK-C, we analyze the quality of the solution S produced
for the DIFF-C problem and show that f(S) − g(S) ≥
(1 − 1/e)[f(OPT ) − g(OPT )] − Afg, where Afg is the
efficiently computable additive error.

Experimental Validation: As proof of concept, we have
conducted experiments in the domains of information dif-
fusion. For both problems, these experiments reveal that
in practice the additive error is small, thus indicating that
our proposed algorithms produce a solution whose value is
close to (1− 1/e) of the optimal solution.

Prior and Related Work. For submodular maximization
with knapsack/modular constraint, Sviridenko [2004] pro-
posed a greedy algorithm with 1 − 1/e approximation
ratio, albeit with time complexity of O(n5) oracle calls.
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Later works improved the run-time Feldman et al. [2020],
Yaroslavtsev et al. [2020], Li et al. [2022] with a small sac-
rifice in the approximation quality. One of the well-studied
constraints is the matroid constraint for which Nemhauser
et al. [1978b] provided a 1/2-approximation algorithm. The
breakthrough work of Calinescu et al. [2011] presented a
randomized algorithm with the optimal approximation ratio
to 1− 1/e. The work Buchbinder et al. [2019] proposed the
first deterministic algorithm with an approximation ratio of
0.5008.

The work in Harshaw et al. [2019] studied maximizing
f − g under a cardinality constraint when f is submodular
and g is modular, whereas Jin et al. [2021b] studied the
problem without the cardinality constraint and provided a
multiplicative-additive error approximation algorithm.

SCSC is a dual problem of SCSK studied in Iyer and Bilmes
[2013], Crawford et al. [2019]. The problem involves mini-
mizing a submodular function g while ensuring that another
submodular function f is no less than a given threshold τ .
There has been a vast amount of prior and related work on
submodular optimization. We refer the reader to the sur-
vey articles Krause and Golovin [2014], Buchbinder and
Feldman [2018].

2 HARDNESS OF APPROXIMATION
FACTORS

In Iyer and Bilmes [2013], Iyer et al. [2013], building on
the work of Conforti and Cornuéjols [1984], the authors
show that for Submodular Maximization under a down-
monotone constraint, the greedy algorithms can be analyzed
using data-dependent approximation factors. When applied
to SCSK-C, it follows that the natural greedy algorithm is a
1
cf
(1− (

(Kg−cf )
Kg

)kg )-approximation algorithm where

• cf is the curvature of the function f .
cf = minx∈V

1−f(x|V−{x})
f(x) .

• Kg is the size of the largest feasible set that satisfies
both the constraints,
Kg = max{|X| : g(X) ≤ θ and |X| ≤ k}.

• kg is the size of the smallest feasible S that satisfies the
constraints, but adding some element to S violates the
constraint. kg = min{|X| : g(X) ≤ θ and ∃j /∈
X, g(X ∪ j) > θ}.

To gauge the quality of the solution produced by the algo-
rithm, one should be able to effectively compute the value
of the expression 1

cf
(1− (

(Kg−cf )
Kg

)kg ). We observe that it
is NP-Hard to compute Kg .

OBSERVATION 1. Given a submodular function g and θ,
it is NP-Hard to calculate Kg where Kg = max{|X| :
g(X) ≤ θ and |X| ≤ k}.

Algorithm 1 Basic Greedy Algorithm
1: X = ∅
2: for i = 1 to k do
3: X = X ∪ {argmaxv f(X ∪ {v})|g(X ∪ {v}) ≤ θ}
4: end for
5: return X

The proof is provided in the Appendix.

This limitation implies that while we can run the algo-
rithm knowing that it has an approximation factor of
1
cf
(1 − (

(Kg−cf )
Kg

)kg ), we cannot hope to effectively com-
pute what this term evaluates to and thus we will not be
able to ascertain the quality of the solution produced. If we
attempt to bound the cf , Kg and kg, then in the worst case
cf = 1,Kg = k, kg = 1, leading to trivial 1

k -approximation
when applied to SCSK-C.

The above observation and discussion motivate the need for
establishing guarantees with efficiently computable approx-
imation factors.

3 GREEDY ALGORITHM FOR SCSK-C

In this section, we provide approximation guarantees, with
efficiently computable approximation factors, for the natural
greedy algorithm for SCSK-C. The GREEDY algorithm for
SCSK-C problem is described in Algorithm 1.

The Algorithm 1 computes X by iteratively adding the “best”
element to the partial solution. Given an element v ∈ V
and X ⊆ V , the marginal gain of v with respect to X ,
denoted f(v|X), is f(X∪{v})−f(X). Given a set S ⊆ V
and an integer γ, we define Maximum Constrained Gain
Element (denoted MCGE) as the element v that achieves
the maximal marginal gain, f(v|X) subject to the constraint
g(X ∪ {v}) ≤ γ. More formally

MCGE(S, γ) = argmax
v∈V

{f(v|S) | g(S ∪ v) ≤ γ}

where argmax{∅} is considered as undefined. Given X and
γ, we define Maximum Constrained Gain (denoted MCG)
as the marginal gain of f due to MCGE(S, γ) with respect
to S. i.e., MCG(S, γ) = f(MCGE(S, γ)|S).

The following theorem characterizes the solution obtained
using Algorithm 1 using additive and multiplicative errors.

THEOREM 1. Let OPTk,θ be the optimal value of f un-
der the constraints, and X be the solution returned by the
Algorithm 1, then the following holds

f(X) ≥ (1− 1/e)[OPTk,θ] −∑k−1
i=1 [MCG(Xi, 2θ)−MCG(Xi, θ)]

Proof. Let X∗
k,θ be an optimal solution such that f(X∗

k,θ) =
OPTk,θ and let O denote the size of X∗

k,θ. Note that O ≤ k.
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Let Xi−1 denote the partial solution at the start of the ith
iteration of the greedy algorithm; and initially X0 = ∅.

With each iteration i, we associate an additional set X ′
i as

follows. During iteration i, let ui be an element that can
maximize f(Xi−1 ∪ {u}) such that g(Xi−1 ∪ {u}) ≤ 2θ.
More precisely, let ui = MCGE(Xi−1, 2θ), and we say that
X ′

i = Xi−1 ∪ {ui}. Note that the set X ′
i is not constructed

by the greedy algorithm (X ′
i may violate the constraint

g(X ′
i) ≤ 2θ ≠⇒ g(X ′

i) ≤ θ). The set X ′
i is used for the

analysis of the algorithm.

For every 1 ≤ i ≤ k−1, we have the following inequalities.

OPTk,θ ≤ f(X∗
k,θ ∪Xi) ≤ f(Xi) +

∑
e∈X∗

k,θ

f(e|Xi)

≤ f(Xi) +
∑

e∈X∗
k,θ

[f(X ′
i+1)− f(Xi)]

≤ f(Xi) +O × f(X ′
i+1)−O × f(Xi)

The first two inequalities follow since f is monotone and
submodular. We now explain the third inequality: a sub-
tle point here is that we cannot claim that f(e|Xi) ≥
f(Xi+1) − f(Xi) as it might be possible that g(Xi ∪
{e}) > θ and this element e is not considered during it-
eration i. However, as X∗

k,θ is an optimal solution, we have
g(X∗

k,θ) ≤ θ, which, in turn, implies that g(e) ≤ θ for
every e ∈ X∗

k,θ. Therefore, g(Xi ∪ {e}) ≤ 2θ due to sub-
modularity of g. Recall that X ′

i+1 is obtained by adding
ui+1 = MCGE(Xi, 2θ) to the set Xi. Since g(Xi∪{e}) ≤
2θ, it must be the case that f(ui+1|Xi) ≥ f(e|Xi). Thus,
f(e|Xi) ≤ f(X ′

i+1) − f(Xi). The last inequality follows
because the size of the optimal solution is O.

By adding (O− 1)OPTk,θ on both sides of the last inequal-
ity and rearranging terms, we obtain

OPTk,θ − f(X ′
i+1) ≤ O − 1

O
(OPTk,θ − f(Xi))(1)

This inequality relates X ′
i+1 with Xi. However, if we could

relate Xi+1 with Xi instead, then we could obtain a re-
currence relation. To achieve this, we now consider the
relationship between the sets Xi+1 and X ′

i+1.

By our definitions of Xi+1 and X ′
i+1, we have

f(Xi+1) = f(Xi) +MCG(Xi, θ).
f(X ′

i+1) = f(Xi) +MCG(Xi, 2θ).

Thus,
−f(X ′

i+1) = −f(Xi+1)−[MCG(Xi, 2θ)−MCG(Xi, θ)].

Substituting this in Equation 1, we obtain the following
recurrence relation.

OPTk,θ − f(Xi+1) ≤ O − 1

O
(OPTk,θ − f(Xi))

+ [MCG(Xi, 2θ)−MCG(Xi, θ)].
(2)

For notational brevity, we use MCGDi to denote
MCG(Xi, 2θ)−MCG(Xi, θ).

Algorithm 2 Basic Greedy with Additive Error Computa-
tion
1: X = ∅;A = 0
2: for i = 1 to k do
3: w = argmaxv{f(X ∪ {v} | g(X ∪ {v}) ≤ θ}.
4: if (i ̸= 1) then
5: u = argmaxv{f(X ∪ {v})|g(X ∪ {v}) ≤ 2θ}.
6: A = A + f(u|X) − f(w|X).
7: end if
8: X = X ∪ {w}.
9: end for
10: return A and X .

CLAIM 1.

OPTk,θ − f(Xk) ≤
(
O − 1

O

)k−1

(OPTk,θ − f(X1))

+

k−1∑
i=1

MCDGi

The proof of the claim is provided in the Appendix.

Since f(X1) ≥ OPTk,θ

O , it follows that OPTk,θ−f(X1) ≤
O−1
O ·OPTk,θ. Plugging this in the inequality from Claim 1

we obtain that

f(Xk) ≥ (1− 1/e)OPTk,θ −
k−1∑
i=1

MCDGi

This concludes the proof.

3.1 ADDITIVE ERROR: COMPUTATION
INTERPRETATION AND TIGHTNESS

Computation. We show that additive error term∑k−1
i=i MCG(Xi, 2θ) −

∑k−1
i=1 MCG(Xi, θ) can be com-

puted very efficiently. Consider Algorithm 2. Consider an
iteration ℓ of this algorithm, note that u = MCG(Xℓ−1, θ)
and v = MCG(Xℓ−1, 2θ). Thus at the end of the algo-
rithm A equals

∑ℓ−1
i=i MCG(Xi, 2θ)−

∑ℓ−1
i=1 MCG(Xi, θ).

Clearly, the set X is the greedy solution. Note that the total
number of calls made by Algorithm 2 to f and g is O(nk),
which is asymptotically the same as the number of calls
made by the Algorithm 1. Here n is the size of the ground
set. As stated in the introduction, this paves way for a quick
understanding of the quality of the result generated by the
greedy algorithm.

Interpretation. We now discuss the interpretation of the ad-
ditive error. Informally, additive error captures the difference
between the solutions produced by the greedy algorithms
that are run with submodular budgets of 2θ and θ. More
precisely, it is the following. Let Xi be the set at the end of
the ith iteration of the greedy algorithm (with submodular
budget θ). Let wi be the maximum marginal gain possible
with respect to Xi with submodular budget of θ and ui be
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the maximum marginal gain possible with respect to Xi

with submodular budget of 2θ. The additive loss is the sum
of the differences ui − wi.

Tightness. Next, we consider whether the approximation
factors in the above analysis can be improved. In the above,
the additive error is data-dependent, and it is natural to ask
whether this is necessary. Our next result establishes that the
additive error can not be made data-independent even if we
settle for a multiplicative factor that is lower than (1− 1/e).
We establish the following result whose proof appears in the
appendix.

THEOREM 2. There does not exist a polynomial time algo-
rithm A for SCSK and SCSK-C such that it outputs a set X
with guarantee f(X) ≥ d ·OPT −A where d < 1, A > 0
are universal constants.

3.2 EXTENSIONS

We extend the above proof and analysis in two different
directions. First, we can refine the above result and capture
the multiplicative error using the curvature of the function
f , denoted by cf and defined as 1 −minx

fV −{x}(x)

f(x) . The
proof of the following theorem is provided in the appendix.

THEOREM 3. Let X be the solution produced by Algo-
rithm 1, then

f(X) ≥ 1

cf

(
1− (1− cf

k
)k
)
OPTk,θ −A,

where A is the additive error same as in Theorem 1.

We next consider a slight modification of Algorithm 2. Note
that the for loop is executed exactly k times. Suppose that
during an iteration i, there is no element v such that g(X ∪
{v}) ≤ θ. Once this happens the algorithm does not append
any new elements to X in future iterations, however, the
value A could keep changing (as there could be elements
u for which g(X ∪ {u}) ≤ 2θ. Consider a modification
where the algorithm stops when it fails to find an element v
such that g(X ∪ {v}) ≤ θ. In this case, the algorithm will
produce a set X of size ℓ ≤ k. We can bound the quality of
the solution produced as stated in the following theorem.

THEOREM 4. Let OPTk,θ be the optimal value of f under
the constraints, and X be the solution with |X| = ℓ obtained
from above describe modified version of Algorithm 2, then
the following holds

f(X) ≥ (1− (1− 1/k)ℓ)[OPTk,θ] −∑ℓ−1
i=1 [MCG(Xi, 2θ)−MCG(Xi, θ)]

The proof of the above theorem is exactly the same as the
proof of Theorem 1. Thus we omit the proof. Note that,

Algorithm 3 Algorithm for DIFF-C: LINEAR-APPROX

1: S = ϕ
2: for i = 0 to λ do
3: X = A(f, g, k, i)
4: if f(X) − g(X) > f(S) − g(S) then
5: S = X
6: end if
7: end for
8: return X

both the additive error and multiplicative error (which is
(1 − (1 − 1/k)ℓ) can be computed efficiently in this case
as well. The main difference between Theorem 1 and 4 is
that Theorem 1 has a higher (and thus better) multiplica-
tive factor but also a higher additive error (and thus worse)
compared to Theorem 4.

4 FROM SCSK-C TO DIFF-C

In this section, we design algorithms for DIFF-C, that
use algorithm for SCSK-C as a subroutine. Algorithm 3
(LINEAR-APPROX algorithm) presents the algorithm for
DIFF-C problem.

The bound λ on the iteration is based on the maximum
valuation of g; A denotes the algorithm for addressing the
SCSK-C problem. In each iteration i (i.e., for each valua-
tion of g), A is used to compute the set X for which f is
maximal under the constraint that g’s valuation is ≤ i and
|X| ≤ k. The difference between f and g at X is then com-
pared against the prior computed difference and the larger
of the two is considered as the current maximal difference.

THEOREM 5. Let f and g be two submodular functions
where f is monotone, and let h = f − g. In Algorithm 3,
if the subroutine A can solve SCSK-C exactly, then the
algorithm produces a set S such that h(S) ≥ h(OPT ) −
1. Algorithm 3 makes O(λ) calls to A, where λ = k ×
maxe∈V g(e).

The proof is provided in the Appendix.

THEOREM 6. In Algorithm 3, suppose that Algorithm A is
the Basic Greedy Algorithm (Algorithm 1) for SCSK-C, let
h = f − g. If Algorithm 3 outputs a set G then

h(G) ≥ (1− 1/e)h(OPT )−A,

where the additive error A can be computed efficiently.

Proof. We will start with some notation. Let S∗
i is the op-

timal solution to the SCSK-C instance with θ = i. Let
Gi be the set returned by the Basic Greedy Algorithm for
SCSK-C instance with θ = i. Let A(i) be the correspond-
ing additive error. We first consider the case when the range
of g is integers. By Theorem 1, we have for 1 ≤ i ≤ λ,

f(Gi) ≥ (1− 1/e)f(S∗
i )−A(i) (3)
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Let OPT be the optimal solution for h = f − g, and let
θ∗ = g(OPT ). Note that h(OPT ) = f(OPT ) − θ∗. Let
the solution returned by the Algorithm 3 occur at i = β.
Thus the set G returned by the algorithm is Gβ and h(G) =
h(Gβ) = f(Gβ)− g(Gβ). Note that g(Gβ) must equal β,
otherwise the algorithm would not have returned the set Gβ .

Since the algorithm returned the set Gβ , we have f(Gβ)−
β ≥ f(Gθ∗)− θ∗. And we also know that by Inequality 3
f(Gθ∗) ≥ (1− 1/e) f(OPT )−A(θ∗). Thus

f(Gβ)− β
≥ f(Gθ∗)− θ∗

≥ (1− 1/e) f(OPT )−A(θ∗)− θ∗

= (1− 1/e) (f(OPT )− θ∗)− (θ∗/e+A(θ∗))
= (1− 1/e)h(OPT )− (θ∗/e+A(θ∗))

In the above we can view θ∗

e + A(θ∗) as additive error.
However, since we do not know the value of θ∗, we do
not know how to compute this value efficiently, instead
will exhibit and upper bound on this quantity that can be
comouted efficiently. One way to achieve this is to compute
i/e + A(i), 1,≤ i,≤ λ and take the maximum of these
values. This will be an upper bound on the additive error and
clearly, this quantity can be computed efficiently. Below we
employ another approach to bound the above quantity. We
will first derive a bound on θ∗. Building on this, we derive
an efficiently computable upper bound on θ∗

e +A(θ∗).

We know that f(S∗
β) − β is at most f(OPT ) − θ∗ and

f(Gβ)−β is at least f(Gθ∗)−θ∗. A worst possible scenario
at which this happens is f(Gβ) is as large as possible and
f(Gθ∗) is as small as possible. This happens when f(Gβ) =
f(S∗

β) and f(Gθ∗) equals (1−1/e)f(OPT )−A(θ∗). Thus
in this scenario

f(Gβ)− β = f(S∗
β)− β ≤ f(OPT )− θ∗

Since f(Gθ∗) = (1 − 1/e)f(OPT ) − A(θ∗), we obtain
that

f(Gβ)− β ≤ f(Gθ∗) +A(θ∗)

1− 1/e
− θ∗

Thus

θ∗ ≤ f(Gθ∗) +A(θ∗)

1− 1/e
− f(Gβ) + β

From this it follows that

θ∗ ≤ B = max
i

f(Gi) +A(i)

1− 1/e
− f(Gβ) + β

Thus B is the desired upperbound on θ∗. Note that for every
i, we can compute f(Gi)+A(i) while running Algorithm 3.
Thus the bound B can be efficiently computed. Let A =
maxi≤B(A(i) + i/e). Note that θ∗

e +A(θ∗) ≤ A. Thus we
have

h(S) = h(Gβ) ≥
(
1− 1

e

)
h(OPT )−A

When the range of g is not necessarily positive integers,
then, as in the proof of Theorem 5 the additive error will
have an additional factor of 1.

Computing the Additive Error. We note that the additive
error A can be computed efficiently as follows: When call
the Greedy algorithm for SCSK-C in Step 3, we can compute
A(i). Thus we keep track of A(i)+ i/e for every 1 ≤ i ≤ λ.
As discussed above we can compute the value B while run-
ning the algorithm. This implies that A = maxi≤B(A(i)+i)
can be computed efficiently.

LOG-APPROX Algorithm: a faster approximation for
DIFF-C. We now make a few remarks about improving the
runtime of Algorithm 3. The run time of the is proportional
to λ, which in turn depends on the range of g — the algo-
rithm is invoking A(f, g, k, i) for every i, 1 ≤ i ≤ λ. This
could be expensive in practice. Thus we propose a modifica-
tion to the Algorithm; we refer to the modified version as
LOG-APPROX algorithm. This algorithm calls A(f, g, k, 2i)
for every i, 1 ≤ log λ. This will ensure that we make only
log λ invocations of the subroutine A and thus drastically
reduce the run time. By doing the same analysis as above
we can prove that h(S) ≥ 1

2 (1− 1/e)h(OPT )−A.

5 EXPERIMENTS

In this section, we empirically examine the performance
of SCSK-C and DIFF-C on the application of Informa-
tion Diffusion in social networks. All the algorithms are
implemented in C++ and run on a Linux server with AMD
Opteron 6320 CPU (8 cores and 2.8 GHz) and 64GB RAM.

Information Diffusion. The diffusion of information in a
social network under various probabilistic diffusion models
is captured as a submodular function Kempe et al. [2003].
For a (seed) set X ⊆ V , the submodular function f(X)
is the expected number of users influenced by X . On the
other hand, there is often some cost function g associated
with each seed set; a candidate g, in the context of social
influence, quantifies the value of a set of entities in the
network based on the number of followers of the set. We
use such a submodular cost function in our experiments.
The goal is to find a seed set of size ≤ k that maximizes f
(influence) while minimizing g (cost).

Datasets. For the application of information diffusion,
we collect six directed networks to conduct experiments:
NetHept Net [2009], p2p-Gnutella31 Ripeanu et al. [2002],
Facebook Leskovec and Mcauley [2012], Bitcoin Kumar
et al. [2016], Wikipedia Leskovec et al. [2010] and DBLP
Yang and Leskovec [2012]. The number of nodes of them
ranges from 3,783 to 317,080. Due to space limitations, we
present the plots only for three of these graphs.
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Algorithm 4 Budget-Conscious Greedy Algorithm
1: Input: θ1, · · · , θk .
2: X = ∅
3: for i = 1 to k do
4: If there is no v such that g(X ∪ {v}) ≤ θi, then
5: X remains unchanged
6: Else X=X ∪ {argmaxvf(X ∪ {v})|g(X ∪ {v}) ≤ θi}
7: end for
8: return X

5.1 EXPERIMENTS FOR SCSK-C

The main objective we seek in these experiments is to
demonstrate that the approximation factors can be com-
puted efficiently, which helps to gain an understanding of
the quality of the solution. For the Natural greedy algorithm
(Algorithm 2), we compute the additive error produced and
also study how the additive error changes as the submodular
budget θ increases.

Comparison Algorithms. We compare the solutions pro-
duced by the Natural Greedy algorithm (Algorithm 2) with
two variants. Note that during each iteration of the Algo-
rithm 2, the entire submodular budget θ is made available.
We obtain a budget-conscious variant of this algorithm that
allows iteration i to spend at most θi < θ budget. Algorithm
4 describes this strategy. By following an analysis that is
very similar to that of Theorem 1, we can show that this
algorithm produces a set X for such that f(X) is at least
(1− 1/e)f(OPT )−A, and A can be computed efficiently.
We use the following budget-conscious algorithms (Algo-
rithm 4). Equal Partition: Use θ/k, 2θ/k, · · · θ as input
to the budget-conscious Greedy algorithm. Random Parti-
tion: Select a random sequence of thresholds to use in the
budget-conscious Greedy Algorithms.
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Figure 1: SCSK-C, NetHept; k = 50, a) θ vs. f(X); b) θ
vs. Additive Error with submodular cost on Basic Greedy,
Random Partition and Equal Partition

Results Analyses. We chose k = 50 and varied the sub-
modularity budget θ from 10 to 300. The results are shown
in Fig. 1 to 4. As can be seen, the Basic Greedy, Equal
Partition and Random Partition algorithms produce very
similar results, except for Facebook. It can be seen from
Fig. 1b, 2b, 4b, that as the submodular budget increases,
the additive error decreases. Recall that the additive factor
is approximately the difference between the quality of the
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Figure 2: SCSK-C, p2p-Gnutella31; k = 50, a) θ vs. f(X);
b) θ vs. Additive Error with submodular cost on Basic
Greedy, Random Partition and Equal Partition
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Figure 3: SCSK-C, Wikipedia; k = 50, a) θ vs. f(X); b) θ
vs. Additive Error with submodular cost on Basic Greedy,
Random Partition and Equal Partition

seed sets produced with submodular constraints θ and 2θ.
Thus all θ grows larges there may not be much difference
between the constraints g(X) ≤ θ and g(X) ≤ 2θ. It is
likely that a set that satisfies the latter constraint will also
satisfy the former constraint.

We analyze the quality of the produced solutions. For
NetHept, p2p-Gnutella31 and DBLP, the additive error is
less than 10% of f(X) most of the time and much smaller
many times. When this happens, we can conclude that for all
these sets f(X) ≥ 0.53f(OPT ). For example, for NetHept,
when k = 50, θ = 200, the greedy algorithm produced
a solution X of size 50, and the additive error is 0 and
f(X) = 968.21. This implies that f(X) ≥ 0.63f(OPT ).
Another example is DBLP, at θ = 20, Basic Greedy pro-
duced a solution with value 13810 and the additive error is
1044. This implies that additive error is less than 7.5% of the
optimal value. Thus we can be guaranteed that the value pro-
duced by the algorithm is at least 0.55f(OPT ). For graphs
such as Facebook, Bitcoin, and Wikipedia, additive errors
are higher. For example, for Bitcoin with θ = 160, the Basic
Greedy produced a solution with value 110, whereas the ad-
ditive error is 26. This implies that the value of the solution
is at least 0.4f(OPT ). The density of the graphs could ex-
plain this phenomenon. The Average degrees of Facebook,
Bitcoin, and Wikipedia graphs are 43, 12, and 29, whereas,
for the other graphs, the average degree is less than 8. For
higher average degree graphs, there is a larger difference
between the constraints g(X) ≤ θ and g(X) ≤ 2θ.

In terms of running time, all the three algorithms can finish
in 12 seconds on the NetHept network with over 15,000
nodes, demonstrating the time-efficiency of our algorithm
(the details are presented in supplementary materials). Com-
pared to Random Partition and Basic Greedy algorithms,
Equal Partition is faster because it started from a small cost,

1624



0 50 100 150 200 250 300

1

1.5

2

2.5

3

·104

θ

f
(X

)

0 50 100 150 200 250 300

0

500

1,000

1,500

θ

A
dd

iti
ve

E
rr

or

Figure 4: SCSK-C, DBLP; k = 50, a) θ vs. f(X); b) θ
vs. Additive Error with submodular cost on Basic Greedy,
Random Partition and Equal Partition

which allows for faster identification of the element incur-
ring maximal marginal gain within the cost budget (at a
specific iteration). In contrast, Random Partition can gen-
erate various cost sequences while the submodular cost of
each iteration for Basic Greedy is fixed.

5.2 EXPERIMENTS FOR DIFF-C
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Figure 5: DIFF-C, NetHept; a) Budget vs Difference on
LOG-APPROX, LINEAR-APPROX and supSub; b) Budget
vs Additive error on LOG-APPROX and LINEAR-APPROX
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Figure 6: DIFF-C, p2p-Gnutella31; a) Budget vs Difference
on LOG-APPROX, LINEAR-APPROX and supSub; b) Budget
vs Additive error on LOG-APPROX, LINEAR-APPROX

We use Basic Greedy of SCSK-C (Algorithm 1) as a sub-
routine of LOG-APPROX and LINEAR-APPROX.

Baseline Algorithm. We compare our methods against the
supSub method proposed by Iyer and Bilmes [2012a]. This
replaces the submodular function g with a surrogate modular
function g′ and attempts to maximize f−g′. In addition, this
method iteratively updates the surrogate modular function g′

the seed set until convergence. The work of Jin et al. [2021b]
presents the best known algorithm (called ROI-Greedy) to
maximize f − g′, when f is submodular and g′ is modular.
In our implementation of supsub, we use this algorithm. We
vary the cardinality constraint k from 10 to 100 to compare
our LOG-APPROX and LINEAR-APPROX with supSub.

Results Analyses. As we see in Fig. 6 to 8, Algorithm

LOG-APPROX and LINEAR-APPROX perform better than
the supSub method. Interestingly, we observe that LOG-
APPROX and LINEAR-APPROX produced similar results on
NetHept, p2p-Gnutella31, Bitcoin and DBLP. The plots of
the Bitcoin network are presented in supplementary materi-
als. Based on this observation, it is sufficient to use Algo-
rithm LOG-APPROX when the cost function is submodular,
as it is fast and only sacrifices a small amount of objec-
tive value. While supSub performed well on Wikipedia, it
required more time to converge on the Bitcoin network.
Overall, there is still a substantial performance gap between
our LINEAR-APPROX/LOG-APPROX and supSub. Details
of the timing results are presented in supplementary materi-
als. When we examine the additive errors, we find the same
pattern as for SCSK-C. For low average degree graphs,
the average (over all choices of k) additive errors are small
(8%, 4%, 6% for NetHept, P2P and DBLP) and larger for
graphs denser graphs (29%, 43%, 13% for Wiki, Facebook,
and Bitcoin). This implies that for the Nethept graph, the (av-
erage) quality of the solution produced is at least 0.55OPT
whereas for the Wiki graph, the (average) quality of the
solution is at least 0.34OPT .
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Figure 7: DIFF-C, Wikipedia; a) Budget vs Difference on
LOG-APPROX, LINEAR-APPROX and supSub; b) Budget
vs Additive error on LOG-APPROX and LINEAR-APPROX

20 40 60 80 100

1

1.5

2

2.5

·104

k

f
(X

)
−

g
(X

)

20 40 60 80 100

1,200

1,400

1,600

1,800

2,000

k

A
dd

iti
ve

E
rr

or

Figure 8: DIFF-C, DBLP; a) Budget vs Difference on LOG-
APPROX, LINEAR-APPROX and supSub; b) Budget vs Ad-
ditive error on LOG-APPROX and LINEAR-APPROX

6 CONCLUSIONS

In this work, for SCSK-C and DIFF-C, we designed al-
gorithms, and established multiplicative-additive approxi-
mation guarantees on the quality of the solutions produced
while ensuring that the multiplicative factor and the additive
error can be computed efficiently. An interesting research
direction is to extend this methodology to other submodular
optimization problems.
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