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1 IDENTIFIABILITY RESULTS

Here we cite and correct needed results from [Kagan et al., 1973, Lemma 10.2.3, Theorem 10.3.1]:

Theorem 1.1 (Identifiability for independent non-constant sources [Kagan et al., 1973, Lemma 10.2.3, Theorem 10.3.1]).
Let x ∈ Rp be a p-dimensional random vector with two representations:

A(1)y(1) + µ(1) = x = A(2)y(2) + µ(2), (1)

with the following properties for i = 1, 2:

1. A(i) ∈ Rp×k(i) is a (non-random) matrix with non-zero columns and for which no two columns are proportional to
each other,

2. µ(i) ∈ Rp a (non-random) column vector,

3. y(i) ∈ Rk(i) is a random vector such that:

(a) its k(i) components {y(i)
1 , . . . , y

(i)

k(i)
} are mutually independent,

(b) each of its components y(i)
j is a non-constant random variable (a.s.), i.e. does not have a delta-peak distribution,

j = 1, . . . , k(i).

Then we have the following:

µ(2) − µ(1) ∈ A(1)Rk
(1)

= A(2)Rk
(2)

, rank(A(1)) = rank(A(2)). (2)

In particular, there exist c(1) ∈ Rk(1) , c(2) ∈ Rk(2) such that: µ(2) − µ(1) = A(1)c(1) = A(2)c(2).

Furthermore, the following statements hold:

1. If the l-th column of A(2) is not proportional to any column of A(1), then y(2)
l is a normally distributed random variable.

2. Assume that the l-th column ofA(2) is proportional to the j-th column ofA(1) with proportionality constant1 0 6= λ ∈ R,
i.e.: a(2)

l = λ · a(1)
j . Then there exists a (complex) polynomial g such that we have the following equation for the

characteristic functions of the components y(2)
l and y(1)

j (in a neighborhood of the origin):

φ
y
(2)
l

(λt) = φ
y
(1)
j

(t) · exp(g(t)). (3)

In particular y(2)
l is (non-)normal if and only if y(1)

j is (non-)normal.
1Note that this proportionality constant was forgotten to be reintroduced in [Kagan et al., 1973, Theorem 10.3.1] after it was “w.l.o.g.”

removed in [Kagan et al., 1973, Lemmata 10.2.4, 10.2.5.].
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The following result is a corollary from the work of [Kagan et al., 1973] and is used for proving the main result of our paper.

Theorem 1.2 (Identifiability of the single view ICA model). Let x ∈ Rp be a random variable. Assume that we have the
following two representations of x:

A(1)(y(1) + ε(1)) + b(1) = x = A(2)(y(2) + ε(2)) + b(2), (4)

with the following properties for i = 1, 2:

1. A(i) ∈ Rp×k(i) is a (non-random) matrix with full column rank, i.e. rank(A(i)) = k(i) ≤ p,

2. b(i) ∈ Rp a (non-random) column vector,

3. ε(i) ∈ Rk(i) is an uncorrelated k-variate normal random variable: ε(i) ∼ N (µ(i),Σ(i)), with mean µ(i) ∈ Rk(i) and a
positive-definite diagonal covariance matrix Σ(i) ∈ Rk(i)×k(i) ,

4. y(i) ∈ Rk(i) is a random variable such that:

(a) its k(i)-components {y(i)
1 , . . . , y

(i)

k(i)
} are mutually independent,

(b) each of its component y(i)
j is a non-constant random variable (a.s.), j = 1, . . . , k(i),

(c) y(i) has no normal components, i.e. if we can write: y(i) ∼ ỹ(i) + ŷ(i) with ỹ(i) |= ŷ(i), then ỹ(i) and ŷ(i) are
non-normal,

5. ε(i) is independent from y(i): ε(i) |= y(i).

Then k(1) = k(2) =: k and there exist a permutation matrix P ∈ Rk×k, an invertible diagonal matrix Λ ∈ Rk×k and a
column vector c ∈ Rk such that:

A(2) = A(1)PΛ,

and such that the corresponding random variables have the same distributions:

PΛy(2) + c ∼ y(1), PΛ(ε(2) − µ(2)) ∼ ε(1) − µ(1), PΛΣ(2)Λ>P> = Σ(1).

Proof. 1. In the first part of our proof we show that k(1) = k(2) =: k and A(2) = A(1)PΛ for some permutation matrix
P ∈ Rk×k, an invertible diagonal matrix Λ ∈ Rk×k.

First, for i = 1, 2 we state an equivalent formulation of the linear representation of x given in 4. According to [Kagan et al.,
1973, Lemma 10.2.3], there exist a constant column vector c(2) ∈ Rk(2) such that b(2) − b(1) = A(2)c(2). It follows that
x̃ = x− b(1) = A(1)(y(1) + ε(1)) = A(2)(y(2) + ε(2) + c(2)).

Furthermore, note that if y(i) is non-normal, then the random variables g(1) = y(1) + ε(1) and g(2) = y(2) + ε(2) + c(2) are
also non-normal. This follows from the fact that if g(i) is normal then both y(i) and ε(i) would be normal according to the
Lévy-Cramér theorem.

Thus, we can apply Theorem 1.1 for the two representations of x̃, x̃ = A(1)g(1) and x̃ = A(2)g(2). Since every component
of g(i) is non-normal, it follows that every column of A(1) is proportional to a column of A(2) and vice versa.

Now assume w.l.o.g that k(1) > k(2). Then, there exist two columns of A(1) that are proportional to a column of A(2).
However, this is a contradiction to assumption 1. that the matrix A(1) has full column rank.

Thus, it follows that k(1) = k(2) =: k and A(2) = A(1)PΛ for some permutation matrix P ∈ Rk×k, an invertible diagonal
matrix Λ ∈ Rk×k. Moreover,

A(1)(y(1) + ε(1)) = A(1)PΛ(y(2) + ε(2) + c(2)).

Multiplying with (A(1),>A(1))−1A(1),>, which gives:

y(1) + ε(1) = PΛ(y(2) + ε(2) + c(2)).



2. In the remaining we show that there exists a column vector c such that y(1) ∼ PΛ(y(2) + c(2)) + c and ε(1) − µ(1) ∼
PΛ(ε(2) − µ(2)) (or equivalently Σ(1) = PΛΣ(2)Λ>P>). Now, define ỹ(2) = PΛy(2), c̃(2) = PΛc(2) and ε̃(2) = PΛε(2)

which is normally distributed with mean ˜µ(2) = PΛµ(2) and a diagonal covariance matrix Σ̃(2) = PΛΣ(2)Λ>P>.

Define the characteristic functions of y(1), ỹ(2), ε(1), ε̃(2) as φy(1)(·), φỹ(2)(·), φε(1)(·), φε̃(2)(·) : Rk → R, from assumption
5. it follows that

φε(1)(t)φy(1)(t) = eit
>c̃(2)φε̃(2)(t)φỹ(2)(t)

φε(1)(t)

k∏
i=1

φ
y
(1)
i

(ti) = eit
>c̃(2)φε̃(2)

k∏
i=1

φ
ỹ
(2)
i

(ti)

The last equation follows from assumption 4a. Now set ti = 0 for all i 6= 1. We get for all t1

exp(it1µ
(1)
1 − Σ

(1)
11 t

2
1)φ

y
(1)
1

(t1) = exp(it1c̃
(2)
1 ) exp(it1µ̃

(2)
1 − Σ̃

(2)
11 t

2
1)φ

ỹ
(2)
1

(t1).

W.l.o.g. we assume 0 < Σ
(1)
11 < Σ̃

(2)
11 . Thus, the characteristic function given by exp(−(Σ̃

(2)
11 − Σ

(1)
11 )t21) is a well

defined characteristic function of a normally distributed random variable with mean 0 and variance Σ̃
(2)
11 − Σ

(1)
11 . Then,

the characteristic function of y(1)
1 is proportional to a product of the characteristic functions of ỹ(2)

1 and a Gaussian
random variable. This is a contradiction to the assumption that y(1)

1 does not have a normal component (assumption 4c). It
follows that, Σ

(1)
11 = Σ̃

(2)
11 and for all t1 ∈ R φ

y
(1)
1

(t1) = exp it1(c̃
(2)
1 + µ̃

(2)
1 − µ

(1)
1 )φ

ỹ
(2)
1

(t1), i.e. ỹ(2)
1 + c1 ∼ y(1)

1 where

c1 = c̃
(2)
1 + µ̃

(2)
1 − µ

(1)
1 . The remaining statements can be proven analogously.

1.1 PROOF OF THEOREM 3.1

Proof. First, we can directly apply Theorem 1.2 to every single view d, d ∈ {1, . . . , D} which ensures the identifiability
of the mixing matrices up to permutation and scaling, i.e. there exists a permutation matrix Pd and an invertible diagonal
matrix Λd such that A(2)

d = A
(1)
d PdΛd and rank(A

(2)
d ) = rank(A

(1)
d ) = kd.

W.l.o.g., let c(1) > c(2). That means that the shared sources in representation (1) are more than the ones in representation
(2). It follows, according to Theorem 1.1, that there exist a component of the shared sources from (1) and an individual
component from (2) in every view such that they are both proportional. More precisely, for any d ∈ {1, . . . , D} there exist
k, l ∈ {1, . . . , kd} such that s(1)

0k is a component of the shared sources s(1)
0 and s(2)

dl is a component from the individual
sources s(2)

d such that s(1)
0k + ε

(1)
d0k = (Λd)ll(s

(2)
dl + ε

(2)
d1l). Let r 6= d be another view such that there exist m ∈ {1, . . . , kr}

with s(2)
mr being an individual component and s(1)

0k + ε
(1)
r0k = (Λd)mm(s

(2)
rm + ε

(2)
r1m). This is contradiction to the assumption

that s(2)
rm |= s

(2)
dl . It follows that c(1) = c(2).

Furthermore, Var(xd) = σ
(1)2
d A

(1)
d A

(1),>
d = σ

(2)2
d A

(2)
d A

(2),>
d = σ

(2)2
d A

(1)
d PdΛ

2
dP
>
d A

(1),>
d . Multiplying with A(1),†

d =

(A
(1)>
d A

(1)
d )−1A

(1)>
d from left and A(1),†,>

d = A
(1)
d (A

(1)>
d A

(1)
d )−1 from right yields σ(1)2

d Ikd = σ
(2)2
d PdΛ

2
dP
>
d . It follows

that σ
(2)2
d

σ
(1)2
d

Λ2
d = Ikd . Computing the covariance between two different views d, l ∈ {1, . . . , D} gives

Cov(xd, xl) = A
(1)
d0 A

(1),>
l0 = A

(2)
d0 A

(2),>
l0 = A

(1)
d0 Λd[c, c]Λl[c, c]A

(1),>
l0

where Λd[c, c] is an invertible diagonal matrix composed by the first c columns and rows of the matrix Λd. By multiplying
with the left-inverse of A(1)

d0 from the left and right-inverse of A(1),>
d from the right, we get for any d and l Λd[c, c]Λl[c, c] =

Ic. It follows that all entries of Λd equal 1 or −1 and therefore σ
(2)2
d

σ
(1)2
d

= 1 for every d.

In the remaining, we will show that the distribution of the sources is identifiable even in the cases when they have normal
components. Let s(1)

i be component from s̃
(1)
i . Furthermore, there exist j ∈ {1, . . . , kd} such that s(1)

i + ε
(1)
i = s

(2)
j + ε

(2)
j .



Taking the characteristic functions from both sides yields

φ
s
(1)
i

(t)φ
ε
(1)
i

(t) = φ
s
(2)
j

(t)φ
ε
(2)
j

(t)

Since σ(1)2
d = σ

(2)2
d and the noise and sources are with 0 mean, the above equation simplifies to φ

s
(1)
i

(t) = φ
s
(2)
j

(t), i.e.

φ
s
(1)
i

(t) ∼ φ
s
(2)
j

(t).

1.2 ADDITIONAL RESULTS

Theorem 1.3. Let x1, . . . , xD forD ≥ 3 be random vectors which are generated according to the model defined in Equation
1. Furthermore, we assume that we have the following two representations of x1, . . . , xD according to Equation 1:

A
(1)
d0 s

(1)
0 +A

(1)
d1 s

(1)
d +A

(1)
d ε

(1)
d = xd = A

(2)
d0 s

(2)
0 +A

(2)
d1 s

(2)
d +A

(2)
d ε

(2)
d , d ∈ {1, . . . , D},

Additionally, to the assumptions of Equation 1 it holds that

1. each of the components s(i)
dj of s(i)

d for j = 1, . . . , k
(i)
d − c(i) is non-Gaussian.

2. s(i)
0 can have Gaussian components. Furthermore, if the number of Gaussian components exceeds 2, for all k, l ∈
{1, . . . , c} with k 6= l it holds that γ(i)

k 6= γ
(i)
l , where γ(i)

k and γ(i)
l are the variances of the components s(i)

0k and s(i)
0l

Then, for fixed number of shared sources c and for all d = 1, . . . , D k
(1)
d = k

(2)
d = kd, and there exist a permutation matrix

Pd ∈ Rkd×kd and an ivertible diagonal matrix Λd ∈ Rkd×kd such that

A
(2)
d = A

(1)
d PdΛd

Proof. Theorem 1.1 yields that if the individual components are not normal, then for each column of a(1)
j of A(1)

d1 there is

a column a(2)
i of A(1)

d1 such that there exist λ 6= 0 with a(2)
j = λa

(1)
j . Since all mixing matrices have full column rank, it

follows that there is one-to-one correspondence between the columns of A(1)
d1 and the columns of A(2)

d1 , and thus k(1)
d = k

(2)
d

If at most one of the shared components is normal please refer to Comon [1994]. Now consider the case when at least two
components are normal. First, the number of normal components in both representations is the same since c is fixed and the
number of non-normal components is identifiable with the same arguments as above.

Computing the covariance between two different views d, l ∈ {1, . . . , D} yields

Cov(xd, xl) = A
(1)
d0 Γ(1)A

(1),>
l0 = A

(2)
d0 Γ(2)A

(2),>
l0

where Γ(i) is the covariance matrix of s(i)
0 for i = 1, 2. We define Aγ,(i)d0 = A

(i)
d0 Γ(i) 1

2 for any d ∈ {1, . . . , D}. Let
Pd = (A

γ,(1),>
d0 A

γ,(1)
d0 )−1A

γ,(1),>
d0 A

γ,(2)
d0 . Following the proof of Theorem 1 [Richard et al., 2021] we get that PdP>l =

Ic = PdP
>
k = PkP

>
l for any d, k, l ∈ {1, . . . , D}. Thus, Pl = Pd = Pk = P and they are orthogonal. Moreover, for all

d = 1, . . . , D it holds s̃(1)
0 + ε̃

(1)
d = P (s̃

(2)
0 + ε̃

(2)
d ) where ε̃(i)d ∼ N (0, σ

(i)2
d Γ(i)−1) and s̃(i)

0 = Γ(i)− 1
2 s

(i)
0 . From the last

equation it follows that σ(1)2
d Γ(1)−1 = P (σ

(2)2
d Γ(2)−1)P>. Lemma 2 [Richard et al., 2021] implies that P is a sign and

permutation matrix.



2 JOINT DATA LOG-LIKELIHOOD

Lemma 2.1. Let W ∈ Rc×k such that WW> = Ic and x1, . . . , xN ∈ Rk such that for every j = 1, . . . , k, we
have

∑N
i=1(xij)

2 = 1 and for every j 6= k, we have
∑N
i=1 x

i
jx
i
k = 0. Then for every j = 1, . . . , c, it also holds that∑N

i=1((Wxi)j)
2 = 1.

Proof. Let Wj be the j−th row of W . Then

N∑
i=1

((Wxi)j)
2 =

N∑
i=1

(

k∑
l=1

Wjlx
i
l)

2 =

N∑
i=1

k∑
l=1

k∑
r=1

Wjlx
i
lWjrx

i
r

=

k∑
l=1

k∑
r=1

WjlWjr

N∑
i=1

xilx
i
r =

k∑
l=1

k∑
r=1

WjlWjrδlr =

k∑
r=1

W 2
jr = 1

where δlr = 1 if l = r and 0 otherwise. For the fourth equation we used that
∑N
i=1(xij)

2 = 1 and
∑N
i=1 x

i
jx
i
k = 0 for all

j 6= k; and for the last one we used WW> = Ic.

2.1 DERIVATION

Under the generative model assumptions and optimization constraints stated in Section 4, it holds

L(W1, . . . ,WD) =

N∑
i=1

log f(z̄i0) +

N∑
i=1

D∑
d=1

log pZd,1
(zid,1) +N

D∑
d=1

log |Wd| (5)

− 1

2σ2

( D∑
d=1

trace(Zd,0Z
(1)>
d )− 1

D

D∑
d=1

D∑
l=1

trace(Zd,0Z
>
l,0)
)

(6)

Proof. Let x = (x>1 , x
>
2 , . . . , x

>
D)> ∈ RKD , s̃ = (s̃>1 , s̃

>
2 , . . . , s̃

>
D)> ∈ RKD , ε = (ε>1 , ε

>
2 , . . . , ε

>
D)> ∈ RKD , where

KD =
∑D
d=1 kd and for Wd = A−1

d define

W =


W1 0 . . . 0 0
0 W2 . . . 0 0

. . .
0 0 . . . WD−1 0
0 0 . . . 0 WD

 , A =


A1 0 . . . 0 0
0 A2 . . . 0 0

. . .
0 0 . . . AD−1 0
0 0 . . . 0 AD

 .

Furthermore, let zd := Wdxd = s̃d+εd, and zd,0 := s0+εd0 ∈ Rc and zd,1 := sd+εd1 ∈ Rkd−c, i.e. zd = (zd,0, zd,1)>. Let
pX be the joint distribution of x1, . . . , xD, pZ the joint distribution of z1, . . . , zD, pZ0

the joint distribution of z1,0, . . . , zD,0,
pZ1 the joint distribution of z1,1, . . . , zD,1 and pZd,1

the probability distribution of zd,1.

Note that the model in Equation 1 is equivalent to x = Az. By multiplying with the inverse of A (i.e. W) from the left we
get Wx = z. Then for the joint likelihood of x1, . . . , xD we get

pX(x) = pZ(z)|W|

= pZ(z)

D∏
d=1

|Wd|

= pZ0
(z1,0, . . . , zD,0)pZ1

(z1,1, . . . , zD,1)

D∏
d=1

|Wd|

= pZ0
(z1,0, . . . , zD,0)

D∏
d=1

pZd,1
(zd,1)

D∏
d=1

|Wd|.



1. Second equation: W is a block diagonal matrix and for all d = 1, . . . , D, and Wd ∈ Rkd×kd .

2. Third equation: z1,0, . . . , zD,0 |= z1,1, . . . , zD,1.

3. Fourth equation follows from the fact that z1,1, . . . , zD,1 are mutually independent since
{s1i}k1−ci=1 , . . . {sDi}kD−ci=1 , {ε1i}k1i=1, . . . , {εDi}

kD
i=1 are mutually independent.

It follows that

pZ0
(z1,0, . . . , zD,0) =

∫
pZ0|S0

(z1,0, . . . , zD,0|s0)pS0
(s0)ds0

=

∫ ( D∏
d=1

N (zd,0; s0, σ
2Ic)

)
pS0

(s0)ds0

∝
∫

exp
(
−

D∑
d=1

‖zd,0 − s0‖2

2σ2

)
pS0

(s0)ds0

=

∫
exp

(
−
D‖s0 − z̄0‖2 +

∑D
d=1 ‖zd,0 − z̄0‖2

2σ2

)
pS0

(s0)ds0

= exp
(
−
∑D
d=1 ‖zd,0 − z̄0‖2

2σ2

)∫
exp

(
− D‖s0 − z̄0‖2

2σ2

)
pS0

(s0)ds0

where z̄0 = 1
D

∑D
d=1 zd,0.

• For the second and third equation recall that zd,0 = s0 + εd0 ∈ Rc, where εd0 ∼ N (0, σ2Ic) and s0 |= εd0. This means
that zd,0|s0 ∼ N (s0, σ

2Ic). From the following equations follow

pZ0|S0
(z1,0, . . . , zD,0|s0) =

D∏
d=1

pZd,0|s0(zd,0|S0)

=

D∏
d=1

N (zd,0; s0, σ
2Ic)

• The fourth equation results from

D∑
d=1

‖zd,0 − s0‖2 =

D∑
d=1

‖zd,0 − z̄0 + z̄0 − s0‖2 =

D∑
d=1

(
‖zd,0 − z̄0‖2 + 2〈zd,0 − z̄0, z̄0 − s0〉+ ‖z̄0 − s0‖2

)
=

D∑
d=1

‖zd,0 − z̄0‖2 + 2

D∑
d=1

〈zd,0 − z̄0, z̄0 − s0〉+D‖z̄0 − s0‖2

=

D∑
d=1

‖zd,0 − z̄0‖2 + 2
〈 D∑
d=1

zd,0 −D ·
1

D

D∑
d=1

zd,0, z̄0 − s0

〉
+D‖z̄0 − s0‖2

=

D∑
d=1

‖zd,0 − z̄0‖2 +D‖z̄0 − s0‖2.

We define f(z̄0) =
∫

exp
(
− D‖s0 − z̄0‖2

2σ2

)
pS0

(s0)ds0 similarly to [Richard et al., 2020].

Note that

‖zd,0 − z̄0‖2 = ‖zd,0‖2 −
2

D

D∑
l=1

〈zd,0, zl,0〉+
1

D2

D∑
l=1

D∑
r=1

〈zr,0, zl,0〉.



Thus, it follows that

D∑
d=1

‖zd,0 − z̄0‖2 =

D∑
d=1

(
‖zd,0‖2 −

2

D

D∑
l=1

〈zd,0, zl,0〉+
1

D2

D∑
l=1

D∑
r=1

〈zr,0, zl,0〉
)

=

D∑
d=1

‖zd,0‖2 −
2

D

D∑
d=1

D∑
l=1

〈zd,0, zl,0〉+D
1

D2

D∑
l=1

D∑
r=1

〈zr,0, zl,0〉

=

D∑
d=1

‖zd,0‖2 −
1

D

D∑
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D∑
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〈zd,0, zl,0〉

Collecting all terms together we get

pX(x) = exp
(
−
∑D
d=1 ‖zd,0‖2 −

1
D

∑D
d=1

∑D
l=1〈zd,0, zl,0〉

2σ2

)
f(z̄0)

D∏
d=1

pZd,1
(zd,1)

D∏
d=1

|Wd|

The data log-likelihood can be expressed as

N∑
i=1

log pX(xi1, . . . , x
i
D) =

N∑
i=1

(
−
∑D
d=1 ‖zid,0‖2 −

1
D

∑D
d=1

∑D
l=1〈zid,0, zil,0〉

2σ2

+ log f(z̄i0) +

D∑
d=1

log pZd,1
(zid,1) +

D∑
d=1

log |Wd|
)

=

N∑
i=1

log f(z̄i0) +

N∑
i=1

D∑
d=1

log pZd,1
(zid,1) +N

D∑
d=1

log |Wd|

− 1

2σ2

( N∑
i=1

D∑
d=1

‖zid,0‖2 −
1

D

N∑
i=1

D∑
d=1

D∑
l=1

〈zid,0, zil,0〉
)

=

N∑
i=1

log f(z̄i0) +

N∑
i=1

D∑
d=1

log pZd,1
(zid,1) +N

D∑
d=1

log |Wd|

− 1

2σ2

( D∑
d=1

trace(Zd,0Z
>
d,0)− 1

D

D∑
d=1

D∑
l=1

trace(Zd,0Z
>
l,0)
)

In the case when the data is pre-whitened, it holds that the unknown unmixing matrices are orthogonal, i.e. WdW
>
d =

W>d Wd = Ikd and |detWd| = 1, and xd and zd are uncorrelated. Note that in the main paper, we used a different notation
for the mixing matrices and sources to stress the difference before and after whitening. This notation is here omitted for
simplicity.

Making similar observations as before, we get for the joint probability of the multiple views:

pX(x) = pZ0
(z1,0, . . . , zD,0)

D∏
d=1

pZd,1
(zd,1)

Note that after whitening zd,0 = α(σ)(s0 + εd0) with α(σ) = (1 + σ2)−
1
2 . With similar observations as above we get

pZ0|s0(z1,0, . . . , zD,0|s0) = pZ0|s0(α(σ)(s0 + ε10), . . . , α(σ)(s0 + εD0)|s0) =

D∏
d=1

pZd,0|S0
(α(σ)(s0 + εd0)|s0)

=

D∏
d=1

N (α(σ)(s0 + εd0); s0, σ
2Ic) =

D∏
d=1

N (zd,0;α(σ)s0, α(σ)2σ2Ic)



It follows that

pZ0
(z1,0, . . . , zD,0) =

∫
pZ0|s0(z1,0, . . . , zD,0|s0)pS0

(s0)ds0

=

∫ ( D∏
d=1

N (zd,0;α(σ)s0, α(σ)2σ2Ic)
)
pS0(s0)ds0

∝
∫

exp
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−

D∑
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= exp
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where z̄0 = 1
D

∑D
d=1 zd,0. We define fσ(z̄0) =

∫
exp

(
− D‖α(σ)s0 − z̄0‖2

2α(σ)2σ2

)
pS0

(s0)ds0 =
∫

exp
(
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1
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2σ2

)
pS0(s0)ds0. For the data log-likelihood we get

N∑
i=1

log px(xi1, . . . , x
i
D) =

N∑
i=1

log fσ(z̄i0) +

N∑
i=1

D∑
d=1
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− D · c
2α(σ)σ2

+
1
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It be easily derived from 5 by making the following observations resulting from whitening

• N
∑D
d=1 log |Wd| = ND since ∀d Wd is orthogonal

• trace(Zd,0Z
>
d,0) = c due to Lemma 2.1



3 REAL DATA EXPERIMENT

3.1 DATA ACQUISITION AND PREPROCESSING

A transcriptome dataset resembles a random data matrix (see Figure 1). Each column represents an experimental condition
(such as knock-out or stress conditions) that cells were subjected to, and each row represents a gene. So each entry of this
matrix is an expression value indicating a gene activity under a given condition (typically measured using RNA sequencing
or microarrays).

G
en
es

Experimental
outcomes

Figure 1: Example of Transcriptome Data

Our analysis is primarily based on three large gene expression data sets,
denoted by (in our code) Dataset12 [Arrieta-Ortiz et al., 2015] with 265
transcriptome datasets obtained from 38 unique experimental designs and
Dataset2 [Nicolas et al., 2012]3 containing 262 samples from 104 different
experimental conditions and Dataset34 collected and preprocessed RNA-seq
data by [Sastry et al., 2021] with 265 samples of 93 unique conditions. We
removed genes with missing values from Dataset 1 and we selected 3990
genes that are present in all three datasets.

3.2 GENE-GENE INTERACTION PIPELINE

The main steps of our methodology are presented in Algorithm 1. First, we
select the number of total and shared components. We infer latent compo-
nents from the data as described in the main paper, Section 7.2. Afterward,
we learn a sparse undirected graph from the estimated independent compo-
nents (see Section 3.2.2).

3.2.1 Selection of Total Number of ICA Components

To select the total number of components for each single dataset, we utilize the following heuristic:

1. Estimate the sources S and the mixing matrix A from the observed data X via FastICA or another related method.

2. For each component Sk, estimate its relevance by computing rk =
∑
i(Aki)

2.

3. Order the components’ relevance from the highest to the lowest value and scale them to sum to 1, i.e.
r = orderDescending(r1, . . . , rk)/(

∑
k rk).

4. For perm = 1, . . . , P , repeat:

(a) Permute the features of each sample of X to form a permuted dataset Xperm =
permuteFeaturesPerSample(X).

(b) Estimate the sources Sperm and the mixing matrix Aperm from the permuted data Xperm via FastICA or another
related method.

(c) For each permuted component Spermk , we estimate its relevance by computing rpermk =
∑
i(A

perm
ki )2.

(d) Order the permuted components’ relevance rpermk from the highest to the lowest value and scale them to sum to 1,
i.e. rperm = orderDescending(rperm1 , . . . , rpermk )/(

∑
k r

perm
k ).

5. Apply permutation testing for each value of r with respect to the values of rperm and compute the corresponding
p-values, i.e. pk = |{rpermk |rk ≥ rpermk }|/P .

6. The number of components is the number of pk’s for which pk < 0.05. The p-values indicate how many components
have higher relevance than the components from the permuted data.

In our application, we first select the number of total components kd for each dataset via the proposed procedure. Then
we fit a ShIndICA model, for which we select the first kd components according to their relevance. Thus, the performed
dimensionality reduction step happens after training.

2The dataset is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67023
3The dataset can be found at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27219
4Dataset link https://imodulondb.org/dataset.html?organism=b_subtilis&dataset=modulome

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67023
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27219
https://imodulondb.org/dataset.html?organism=b_subtilis&dataset=modulome


3.2.2 Graphical Lasso

Graphical lasso (glasso) is a maximum likelihood estimator for inferring graph structure in a high-dimensional setting
[Friedman et al., 2007]. This method uses l1 regularization to estimate the precision matrix (or inverse covariance) of a set
of random variables from which a graph structure can be determined. The optimization problem that glasso solves can be
formalized as follows

min
Θ�0
− log det(Θ) + tr(Σ̂Θ) + λ‖Θ‖1, (7)

where Σ̂ is the empirical covariance or correlation matrix and Θ := Σ−1 denotes the precision matrix. In our setting, the
input for the glasso is the Pearson’s correlation matrix of the gene representations retrieved with ICA at the preceding step.
We can read graph structure from the estimated matrix Θ̂ as follows: if the ij entry of Θ̂ is not 0 (i.e. Θ̂ij 6= 0) there is an
edge between the genes i and j, i.e. the genes might be co-regulated. We used the huge5 R package for the implementation
of the graphical lasso.

3.2.3 Extended EBIC

There are various criteria for model selection and hyperparameter tuning of glasso models. Chen and Chen [2008] propose
an information criterion for Gaussian graphical models called extended BIC (EBIC) that takes the form

− log det(Θ(E)) + tr(Σ̂Θ(E)) + |E| log n+ 4|E|γ log p, (8)

where E is the edge set of a candidate graph and γ ∈ [0, 1]. Models that yield low EBIC scores are preferred. Note that
positive values for γ lead to sparser graphs. Foygel and Drton [2010] suggest that γ = 0.5 is a good choice when no prior
knowledge is available. In our experiments, we select the λ that minimizes the EBIC score with γ = 0.5.

3.2.4 Method

All steps described above are summarized in the following pseudo-code.

Algorithm 1 Algorithmic description of the downstream task for D = 2.
1: Input:

X1,∈ Rn1×p, X2 ∈ Rn2×p is a data matrix with n1 and n2 samples and p genes
Λ is a set of regularization parameters
γ EBIC selection parameter (8)

2: Perform a data integration method to obtain S1,∈ Rk1×p, S2 ∈ Rk2×p
3: Concatenate S = (S1, S2)> ∈ Rk1+k2×p

4: Compute the Pearson correlation matrix Σ̂ ∈ Rp×p of S.
5: Estimate the precision matrices {Θ̂λ}λ∈Λ which solves 7 for each λ from the set Λ
6: Select the final Θ̂out ∈ {Θ̂λ}λ∈Λ according to EBIC(γ) (see 8)
7: Output:

the selected Θ̂out

5See https://CRAN.R-project.org/package=huge.

https://CRAN.R-project.org/package=huge


(a) (b)

Figure 2: Comparison of MultiViewICA and ShIndICA on a two-view shared response model setting. In Figure 2a, we fix
the sample size and measure the Amari distance for sources 60, 70, . . . 110. In Figure 2b the number of sources is set to 100
and we conduct the experiments for different sample sizes (x-axis). It seems that ShIndICA outperforms MultiViewICA in
both scenarios.

4 SYNTHETIC EXPERIMENTS

4.1 AMARI DISTANCE

The Amari distance [Amari et al., 1995] between two invertible matrices A,B ∈ Rn×n is defined by

amari(A,B) :=

n∑
i=1

( n∑
j=1

|cij |
maxk |cik|

− 1
)

+

n∑
j=1

( n∑
i=1

|cij |
maxk |ckj |

− 1
)
, C := A−1B.

4.2 ADDITIONAL EXPERIMENTS ON SYNTHETIC DATA

Figure 3: We have the two view case with a number of to-
tal sources and observed signals 100 and a number of sam-
ples 1000. We consider three cases of noise standard deviation:
σ = 0.1, 0.5, 1. As soon as enough shared sources are present
(around 60) ShIndICA reaches its lowest Amari distance value
(the lower, the better) in all cases. In the first two cases (σ = 0.1 or
0.5) the Amari distance gets closer to 0 when the shared sources
are 60. The error bars correspond to 95% confidence intervals
based on 50 independent runs of the experiment.

Objective function motivation. In the following ex-
periment, we compare MultiViewICA and ShIndICA
when the observed data is high-dimensional on a two-
view shared response model application, i.e., no indi-
vidual sources. The experimental setup allows com-
paring standard MLE (MultiViewICA) and MLE after
whitening (ShIndICA). Figure 2a reaches the two meth-
ods for fixed sample size 1000. In Figure 2b, we set the
number of sources to 100 and vary the sample size. For
all experiments, the noise standard deviation is 0.01.
It seems that ShIndICA performs better in the case of
insufficient data. This could be empirical evidence that
the trace has stronger regularization properties than
the MMSE term in the MultiViewICA objective.

Noisy high-dimensional views. First, we investigate
the effect of noise on the Amari distance in the two-
view experiment. We consider three cases when the
noise’s standard variation is σ = 0.1, 0.5, 1. The re-
sults are depicted in Figure 3. In the first two cases,
the results are close to the ones discussed in the main
paper. As expected, by adding noise with high vari-
ance (σ = 1) ShIndICA does not converge and affects
the quality of the estimated mixing matrices measured



Figure 4: Choice of Hyperparameter λ. The data comes from a two-view model with 50 shared and 50 individual sources
per view. The x-axis represents the noise standard deviation and the y-axis the Amari distance.

Study Application Observed Signals Latent Sources Views
Salman et al. [2019] Identifying biomarkers fMRI data brain functional networks multiple subjects
[Durieux and Wilderjans, 2019] Mental disorders detection fMRI data brain functional networks multiple subjects
[Long et al., 2020] subgroup detection fMRI data brain functional networks multiple subjects
[Huster et al., 2015] Denoising EEG data brain activity patterns multiple subjects
[Congedo et al., 2010] Diagnosis and assessment EEG data eyes-closed resting EEG patterns multiple subjects

of abnormal brain functioning
[Sompairac et al., 2019] extensive overview tumoral omics data gene/protein profiles heterogeneous omics data
[Avila Cobos et al., 2018] cell type decomposition tissue/tumor samples cell type-specific expressions tissue/tumor samples
[Fraunhoffer et al., 2022] prognostic prediction transcriptomic profiles from PDAC epithelial gene profile three types of transcriptome data

and microenvironment cells

Table 1: List of recent studies that use ICA as a common data analysis tool. We also provide the application, used data
modalities latent sources and views interpretation.

with the Amari distance. The procedure is repeated 50 times, and the error bars are the 95% confidence intervals based on
the independent runs.

Choice of λ This experiment used data from 2 views with 50 individual and 50 shared sources with varying noise
standard deviation σ ∈ {0.1, 0.5, 1, 2, 10} (x-axis). Each of the lines in Figure 4 correspond to a fixed hyperparameter
λ ∈ {0.1, 0.5, 1, 2, 10}. It can be deduced that for this particular experiment for λ ≥ 0.5 there is no significant difference in
the model performance.

5 MODEL JUSTIFICATION

Multi-view ICA importance in the scientific community. As mentioned in our introduction, we would like to point out
that ICA has proven to be a successful approach for analyzing biomedical data over the years since it solves blind source
separation problems common in neuroscience and biomedicine, as stated in the main paper. Furthermore, many biomedical
applications can be addressed as multi-view problems due to multiple subjects in a study (e.g., fMRI, EEG data) or data
coming from different modalities (e.g., omics data). This led to the development of multi-view methods. Most of those
approaches focus on shared response model setting (only shared sources), e.g., Group ICA, ShICA, MultiviewICA, IVA
methods, and their corresponding variations. We list some recent scientific applications where multi-view ICA models were
used in Table 1. We also interpreted the used views and latent and observed signals.

The shared response models are restrictive. There is a growing interest in examining individual variability rather than
shared signals in the areas mentioned above of applications [Dubois and Adolphs, 2016] , such as [Seghier and Price,
2018, Bartolomeo et al., 2017, Long et al., 2020]. For instance, one can be interested in the effect of individual brain
patterns on brain activity to develop more robust biomarkers. Another application where shared response models (GroupICA,
MultiviewICA, IVA, etc.) would not be a sensible choice is data integration of omics data. This is an important research
direction in computational biology, where we are interested in preserving the shared biological signal between datasets



(views) and individual ones, as illustrated in our example. Existing approaches for the tasks mentioned above consist of two
steps: applying ICA/IVA on the data followed by statistical analysis (as in [Long et al., 2020]) to separate the individual
from the shared sources (or vice versa). Thus, we believe ShIndICA is a valuable addition to this set of tools.

Linearity assumption in the biomedical domain. The nature of the data in the targeted domains can explain the linear
assumption. More precisely, if we consider the examples from above: the linear mixing of the components in the fMRI data
context has been justified by various studies, e.g. McKeown and Sejnowski [1998], and in the other applications, the linear
assumption can be achieved after data transformation, e.g. log-transforming the transcriptome data. Moreover, the linearity
assumption is valid in many real-life applications in the biomedical domain, where we often have a high-dimensional
setting (gene activity, experimental measurements, etc.) with a low number of observed samples (participants, experiments).
Moreover, in the low-data regime, if we know too little about the underlying problem, the linear approach is often a better
option than eventually overparametrization it with a deep learning model. Even though a non-linear multiview version will
be a valuable addition to the current active research on non-linear ICA, e.g. [Hyvärinen and Morioka, 2016, 2017, Monti
et al., 2020], the identifiability justification of the proposed methods has assumptions that are hard to satisfy in real-life data
scenarios (e.g. the assumption of Variability [Hyvärinen et al., 2019]. In our linear version, we assure identifiability without
any requirements on how distinct the views should be.

6 MODEL ASSUMPTIONS

To prove the identifiability of the stated model, we require that four assumptions should be satisfied:

1. The mixing matrices have full-column rank. This implies that we require that the sources have a minimal representation,
i.e. the number of latent sources is minimal, which is a realistic assumption.

2. The second assumption is additive noise on the sources. It can be interpreted as a measurement error on the device with
variance σ2AdA

>
d . We choose this setting compared to the Adsd + εd because, in our case, we get a likelihood in a

closed form which is not available in the latter representation. Richard et al. [2020, 2021] make a similar assumption
for the shared response model setting.

3. The sources are mutually independent and non-Gaussian. This is a standard ICA assumption [Comon, 1994]. Gaussian
random variables, called “white” noise, represent noise variables, which besides location and scale, do not carry real
information. Thus, if all sources are Gaussian, either they cannot be identified (see, for example, Proposition 3 [Richard
et al., 2020]) or additional assumptions on the variance structure need to be made to assure identifiability [Richard et al.,
2021]. The non-Gaussian random variables carry meaning and are identifiable. This is not a restrictive assumption since
the sources in real-life scenarios are often non-Gaussian: fMRI, EEG, and omics data. The fixed mean, and variance
are also assumptions often adopted in ICA (e.g. [Richard et al., 2021, Hyvärinen and Oja, 2000]).

4. The measurement error is independent of the latent signal. This is a common assumption in measurement error models
known as classical errors. It is a realistic assumption since we usually do not expect the measurement error to influence
the true signal and vice versa Richard et al. [2020, 2021], Gresele et al. [2020].
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