
Boosting AND/OR-Based Computational Protein Design:
Dynamic Heuristics and Generalizable UFO

Bobak Pezeshki1 Radu Marinescu2 Alexander Ihler1 Rina Dechter1

1University of California, Irvine
2IBM Research

Abstract

Scientific computing has experienced a surge em-
powered by advancements in technologies such as
neural networks. However, certain important tasks
are less amenable to these technologies, benefiting
from innovations to traditional inference schemes.
One such task is protein re-design. Recently a
new re-design algorithm, AOBB-K*, was intro-
duced and was competitive with state-of-the-art
BBK* on small protein re-design problems. How-
ever, AOBB-K* did not scale well. In this work,
we focus on scaling up AOBB-K* and introduce
three new versions: AOBB-K*-b (boosted), AOBB-
K*-DH (with dynamic heuristics), and AOBB-K*-
UFO (with underflow optimization) that signifi-
cantly enhance scalability.

1 INTRODUCTION

Computational protein design (CPD) is the task of creating
(or re-designing) proteins to achieve a desired functionality.
There are two general classes of CPD: de novo protein
design and protein re-design - the former being the creation
of novel proteins and the latter the task of mutating existing
proteins to enhance their functionality.

Advances in de novo protein design have been accelerated
with evolving tools for protein structure prediction [Jumper
et al., 2021, Moult et al.] and sequence design [Dauparas
et al., 2022], both leveraging advances in neural networks.
These methods excel in producing small binding proteins
that can act as activators or inhibitors. However, these tools
often operate within a flexible framework, with loose or no
constraints on the final sequence or three-dimensional struc-
ture of the designed protein. Additionally, neural network-
based protein design tools rely heavily on sequence align-
ment and leveraging homologies with known proteins for
prediction [Al-Lazikani et al., 2001, Defresne et al., 2021].

In contrast, protein re-design involves mutating the amino
acid sequence of a known protein structure to enhance its
properties, such as stability, ligand affinity, or inhibitor re-
sistance. A prominent software tool for comprehensive pro-
tein re-design, specifically for improving bonding affinity
through optimization, is OSPREY (Open Source Protein
REdesign for You) [Hallen et al., 2018]. OSPREY utilizes
BBK*, a best-first search algorithm that optimizes the K*

objective function [Ojewole et al., 2018, Hill, 1987, Mc-
Quarrie, 2000].

Recently, an alternative scheme called AOBB-K* was in-
troduced for protein re-design [Pezeshki et al., 2022].
AOBB-K* is an exact AND/OR branch-and-bound approach
that incorporates a weighted mini-bucket derived heuristic.
It demonstrated competitive performance compared with
BBK* on small protein problems with rigid backbones and
side-chain rotamers. However, AOBB-K* did not scale well
and had limited effectiveness on larger problems.

In this work, we present modifications to key components
of AOBB-K* and introduce new generalizable schemes to
enhance its scalability. Our contributions are as follows:

• AOBB-K*-b (boosted): A modified version of AOBB-
K* with a stronger wMBE-K* heuristic and modifica-
tions for more efficient search.

• AOBB-K*-DH: AOBB-K* with dynamic heuristics.

• UFO: An approximation scheme that introduces deter-
minism to empower constraint propagation.

• AOBB-K*-UFO: UFO empowered AOBB-K*.

• Empirical analysis: Evaluation of the proposed
schemes on 62 real protein benchmarks comparing
with previous AOBB-K* and state-of-the-art BBK*.

2 BACKGROUND

We begin with some relevant background. (An extended
background is provided in the Supplemental Materials).

Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:1662–1672.

mailto:<pezeshkb@uci.edu>?Subject=AND-OR Branch-and-Bound for Computational Protein Design Optimizing K*
mailto:<radu.marinescu@ie.ibm.com>?Subject=AND-OR Branch-and-Bound for Computational Protein Design Optimizing K*
mailto:<ihler@ics.uci.edu>?Subject=AND-OR Branch-and-Bound for Computational Protein Design Optimizing K*
mailto:<dechter@ics.uci.edu>?Subject=AND-OR Branch-and-Bound for Computational Protein Design Optimizing K*
https://www.ics.uci.edu/~dechter/publications.html

2.1 COMPUTATIONAL PROTEIN DESIGN

We consider the protein re-design task within the broader
Computational Protein Design (CPD) field where known
proteins are modified to alter their functions or interactions
[Gainza et al., 2016]. Specifically, some of the amino acid
positions (or residues) of a given protein are deemed as
mutable - these are amino acid positions where different
amino acid mutations will be considered - and a preferred
sequence is determined [Donald, 2011]. During the process,
sets of mutations are investigated, each representing a dis-
tinct amino acid sequence. By considering a sequence (or
even a partial sequence in some methods), it is possible to
estimate the resulting protein’s quality. This quality assess-
ment is based on an analysis of the potential conformations
of the protein’s backbone and amino acid side-chains. The
conformational state space for these structures is continu-
ous, and even when discretized remains extremely large,
resulting in an intractable problem. To address this, several
simplifications can be made: (i) limiting consideration to a
subset of mutable residues, (ii) discretizing side-chain con-
formations into rotamers, and (iii) assuming a fixed protein
backbone conformation. With these simplifying assump-
tions, numerous algorithms have been developed to identify
mutations that have the potential to enhance protein func-
tionality [Hallen and Donald, 2019, Zhou et al., 2016].

2.2 K* AND K*MAP

Modifying the affinity between protein subunits is a com-
mon objective in protein re-design. The affinity between two
protein subunits P and L is related to the rate at which they
bind into a complexed structure PL and dissociate back into
separated P and L subunits (as indicated by the chemical
equation: P + L
 PL). This equilibrium is described by
a constant Ka that can be determined in vitro by comput-
ing the ratio of persisting concentrations of each species,
Ka = [PL]

[P][L] [Rossotti and Rossotti, 1961]. However, in or-
der to compare Ka values of various designs in this manner,
it would be necessary to synthesize protein subunits through
molecular processes that are both timely and costly.

Following previous work that assumes discretization of pro-
tein structure conformations, letting Es(c) represent the en-
ergy of a particular conformation c of protein strand(s) in-
volved in structure s ∈ {P,L, PL}, R the universal gas con-
stant, T temperature (in Kelvin), and D(Cs) the discretized
conformation space, Ka can instead be approximated by

K∗ = ZPL
ZPZL

, Zs =
∑

c∈D(Cs)

e−
Es(c)
RT [Lilien et al., 2004].

Due to the independence within different states of the pro-
tein, we can generalize further as: K∗ = ZB

ZU
, where B

represents the bound (complexed) structure(s) and U repre-
sents the unbound (dissociate) structures. For a two-subunit
system, B = {PL} and U = {P} ∪ {L}. This general-

Figure 1: CPD formulated as a graphical model.

ized representation can also be used for K* computations
involving more than two subunits.

A common goal in protein redesign is to maximize protein-
ligand interaction such as by finding an amino acid assign-
ment R←r that maximizes K*:

K∗MAP = max
R

K∗(r) (1)

2.3 GRAPHICAL MODEL FOR K*MAP

A discrete graphical model can be defined as a 3-tuple
M= 〈X,D,F 〉, where: X is a set of variables for which
the model is defined; D = {DX : X ∈ X} is a set of fi-
nite domains, each defining the possible assignments for
a variable; each fα ∈ F is a real-valued function defined
over a subset of the model’s variables α ⊆ X known as
the function’s scope. More concretely, if we let Dα denote
the Cartesian product of the domains of the variables in α,
then fα : Dα→ R≥0. We let capital letters (X) represent
variables and small letters (x) represent their assignment.
Boldfaced capital letters (X) denote a collection of variables,
|X| its cardinality, DX its joint domain, and x a particular
realization in that joint domain called a configuration. Oper-
ations denoted

⊕
X (ex.

∑
X) imply

⊕
X =⇒

⊕
x∈DX .

An important graphical model task that resembles K* op-
timization is determination of the marginal maximum a-
posteriori (or MMAP) (Definition 2.1, [Dechter, 2019]).
Given the similarity, many graphical model algorithms for
MMAP can be leveraged for K* optimization.

Definition 2.1 (MMAP). Given a graphical modelM=
〈X,D,F 〉, the marginal maximum a-posteriori ofM is:

MMAP (M,Q ⊂X) = max
Q

∑
S=X\Q

∏
F

f(q, s) (2)

Inspired by Viricel et al. [2018] and Vucinic et al. [2019],
a recent formulation of CPD as graphical models was pro-
posed by Pezeshki et al. [2022] as described below:

Variables and Domains: The variables of the model con-
sist of the union of two disjoint, but related, sets: a set of
variables R representing the protein residue positions and a
set of conformation variables C representing spatial orien-
tation of the amino acids at each residue. More specifically,
there are residue variables R = {Ri | i ∈ {1, 2, ..., N}},

1663

one for each of the N protein residue being considered dur-
ing the redesign. The respective domain of each Ri consists
of the amino acids being considered for its corresponding
residue position. Each Ri is accompanied by respective
conformation variables Cγ(i) representing the spatial con-
formation of the amino acid assigned to residue Ri when
the protein is in state γ ∈ ϕ = {B,U}. Each Cγ(i) has a
domain DCγ(i) = {c | c is a rotamer for one of the possible
amino acids of Ri}. Thus, the amino acid assignment to Ri
acts as a selector into the possible assignments to Cγ(i).

Functions: Constraints C = {Cγ(i)(Ri, Cγ(i)) | i ∈
{1, 2, ..., N}, γ ∈ ϕ } ensure that the assigned rotamer
to Cγ(i) belongs to the amino acid assigned to Ri. En-
ergy functions Esbγ = {Esbγ(i)(Cγ(i)) | i ∈ {1, 2, ..., N}}
capture the energies of interaction of the amino acid at
each residue i with itself and the surrounding backbone.
Epwγ = {Epwγ(ij)(Cγ(i), Cγ(j)) | for i, j s.t. Ri and Rj
interact} capture pair-wise energies of interaction.

Objective:
Let... Zγ(r) =

∑
Cγ

∏
Cγ

Cγ(i)(ri, cγ(i))

·
∏
Esbγ

e−
Esb
γ(i)

(cγ(i))

RT

·
∏
Epwγ

e−
E
pw
γ(ij)

(cγ(i),cγ(j))

RT

(3)

Objective Function: K∗(r) =
ZB(r)

ZU (r)
, (4)

Task: K∗MAP = max
R

K∗(r), (5)

2.4 AOBB-K* ALGORITHM

AOBB-K* is an exact branch-and-bound algorithm proposed
by Pezeshki et al. [2022] for optimization of K*. AOBB-K*

constrains solutions such that the partition function of each
protein subunit, Zγ , is greater than a biologically-relevant
subunit-stability threshold Sγ as defined in [Ojewole et al.,
2018]. The algorithm takes a CPD graphical model as input
(Definition 2.2) and outputs the K*MAP value of an optimal
amino acid assignment to the residues. The algorithm is
based on a class of AND/OR search algorithms over graphi-
cal models for optimization and inference tasks [Marinescu
et al., 2014] and is empowered by constraint propagation.

Definition 2.2 (CPD Graphical Model). LetMcpd = 〈X =
R ∪C, D, F = C ∪E, S〉 be a CPD graphical model
for K*MAP optimization.

AOBB-K* (Algorithm 1) traverses an underlying AND/OR
search tree expanding nodes in a depth-first manner (line 6),
and pruning whenever any of three conditions are triggered:
(1) constraint propagation finds that the current assignments
are inconsistent (line 7), (2) a subunit-stability constraint

is violated (line 9), or (3) it can be asserted that the cur-
rent amino acid configuration cannot produce a K* better
than any previously found (line 12). Backtracking occurs
when all of a leaf node’s children have been explored and
returned from (line 14), at which point the K* value of the
sub problem the node roots is known exactly and bounds
of its parents are tightened accordingly. The algorithm pro-
gresses in this manner until it finally returns to, and updates,
the root of the search tree with the maximal K* value corre-
sponding to an amino acid configuration that also satisfies
the subunit-stability thresholds.

The version of AOBB-K* used by Pezeshki et al. [2022]
is guided by wMBE-K*, a mini-bucket-based heuristic
[Dechter and Rish, 2002] with cost-shifting [Liu and Ihler,
2011, Ihler et al., 2012], adapted for K*MAP. wMBE-K*

is described in Algorithm 2 and operates similarly to its
corresponding scheme for MMAP, wMBE-MMAP [Mari-
nescu et al., 2014]. wMBE-K* takes a variable ordering
that constrains maximizations to be processed last (line 3).
Functions are partitioned into the buckets Bk, and for any
bucket k with width larger than a provided i-bound (ie. when
the number of distinct variables in the bucket’s functions
is greater than the provided i-bound), a bounded approxi-
mation is made by partitioning the bucket functions into T
mini-buckets MB

(t)
k (line 4) and taking a power-sum over

the bucket variable (lines 9-12, 13-18, Definitions 2.3-2.4),
leveraging Holder’s Inequality [Hardy et al., 1988].

Definition 2.3 (Consolidated Mini-Bucket Function). Con-
sider a mini-bucket MB

(t)
k . We define its consolidated mini-

bucket function as f
MB

(t)
k

:=
∏
f∈MB

(t)
k

f

Definition 2.4 (Mini-Bucket Power Sum). The power sum
of a mini-bucket MB

(t)
k is defined as

∑w
X fMB

(t)
k

:=

(
∑
X(f

MB
(t)
k

)
1
w)w.

Unlike wMBE-MMAP, buckets of wMBE-K* correspond-
ing to variables in CU , whose marginal belongs to the
denominator of the K* expression, are lower-bounded (to
lead to an upper bound on K*) by using a modification to
Holder’s inequality that incorporates negative weights [Liu
and Ihler, 2011] (lines 13-18). When messages are passed
from buckets of CU to that of R the messages are inverted
to accommodate being part of the K* denominator (line 18).
Although details are omitted here, wMBE-K* can also em-
ploy cost shifting to tighten its bounds (for more details see
[Flerova et al., 2011, Liu and Ihler, 2011]).

Complexity. The time complexity of AOBB-K*’s search
is exponential in the depth of the search tree, while the
space complexity is linear in its depth. The time and space
complexity of wMBE-K* are exponential in the i-bound i.

1664

Algorithm 1: AOBB-K*

input : CPD graphical modelMcpd (Def 2.2);
pseudo tree T guiding node expansions;
K∗ upper-bounding heuristic function hK∗(.);
Zγ upper-bounding heuristic function hZγ (.)

output : K∗MAP (Mcpd)
1 begin
2 Encode deterministic relations inMcpd into CNF
3 π ← search path initialized with a dummy root node r
4 HK∗ ← tables precomputed by hK∗(r)
5 HZγ ← tables precomputed by hZγ (r) for each γ
6 while EXPAND(π, T) do
7 if ConstraintPropagation(π) = false then
8 PRUNE(π)

9 else if ∃γ ∈ ϕ s.t. ubZγ (π,HZγ) < Sγ then
10 PRUNE(π)

11 else if X ∈ R then
12 if ubK∗(π,HK∗) < lbK∗ then
13 PRUNE(π)

14 while π has no unexpanded children do
15 BACKTRACK(π)

16 return lbK∗ = K∗MAP (Mcpd)

3 BOOSTING AOBB-K*

The original AOBB-K* algorithm presented by Pezeshki
et al. [2022] showed promise with good performance com-
pared to state-of-the-art BBK* on small problems with rigid
rotamers. However it suffered from scalability issues with
its performance decreasing on problems with three mutable
residues and being unable to solve problems with four or
more mutable residues. In this paper we advance AOBB-K*

by presenting AOBB-K*-b (boosted) with modifications to
improve scalability. These enhancements, which are out-
lined below, are a mix of CPD domain-specific enhance-
ments as well as principled enhancements that can be gener-
alized to other graphical models tasks and problem domains.

3.1 BOOSTED wMBE-K*

As noted by the authors of Pezeshki et al. [2022], a main
cause of the scalability limitations of the AOBB-K* was a
sometimes weak or unbounded heuristic estimate by wMBE-
K* (Algorithm 2). This occurred primarily because of diffi-
culties in the lower-bounding computations corresponding
to the denominator of K* and lead to loose upper bounds on
the K*MAP, or - in the case of a zero-valued lower bound
- an all-together unbounded K*MAP estimate. Such loose
bounds (or lack of bounds) do not allow pruning during
search, drastically enlarging the traversed search space.

To alleviate this, we introduce wMBE-K*-b (boosted) with
three sequential improvements to wMBE-K*: (1) adjustment
of the power-sum mechanism (lines 12,16) to produce non-
zero lower-estimates at the cost of losing bound guarantees,

Algorithm 2: wMBE-K*

input : CPD Graphical modelMcpd (Def 2.2); i-bound i;
constrained variable order d = [X1, ..., Xn]

output : upper bound on the K*MAP: ubK∗MAP (Mcpd)
1 begin
2 Partition the functions f ∈ F into buckets Bn, ..., B1 s.t.

each function is placed in the bucket corresponding to the
highest-index variable in its scope.

3 foreach k = n...1 do
4 Generate a mini-bucket partitioning of the bucket

functions MBk = {MB
(1)
k , ...,MB

(T)
k } s.t.

|scope(f
MB

(t)
k

)| ≤ i, for all MB
(t)
k ∈MBk

5 if Xk ∈MAP then
6 foreach MB

(t)
k ∈MBk do

7 λ
(t)
k ← maxXk fMB

(t)
k

8 else
9 if Xk ∈ CB then // upper-bound for numerator

10 Select positive weights w = {w1, ..., wT } s.t.∑
wt∈w wt = 1

11 foreach MB
(t)
k ∈MBk do

12 λ
(t)
k ←

∑wt
Xk

f
MB

(t)
k

13 else if Xk ∈ CU then // lower-bound for denominator
14 Select a negative weight w1 and positive weights

w = {w2, ..., wT } s.t.
∑
wt∈w wt = 1

15 foreach MB
(t)
k ∈MBk do

16 λ
(t)
k ←

∑wt
Xk

f
MB

(t)
k

17 if scope(λ(t)
k) ⊆ R then

18 λ
(t)
k ← 1/λ

(t)
k

19 Add each λtk to the bucket of the highest-index variable
in its scope.

20 return λ1 = ubK∗MAP (Mcpd)

(2) adjustment to the cost shifting mechanism to prevent
cost-shifts with zeros, and (3) maximization with finite val-
ues over infinite ones (line 7). The specific adjustments and
justifications for these modifications are explained next.

1) Enforcing non-zero lower estimates. wMBE-K*, uses a
power-sum computation (lines 12,16) leveraging Holder’s
inequality to compute bounds (with a version using negative
weights for lower bounding [Liu and Ihler, 2011]). Deriving
inspiration from Domain-Partitioned MBE presented in
Pezeshki et al. [2022] we adjust the computation to omit ze-
ros in the lower-bounding power-sum (line 16) thus forcing
non-zero estimates for consistent sub problems.

Definition 3.1 (Zero-Omitted Weighted Function). The
zero-omitted w weighted function of a function f with scope
Y is: f/w(y) := f(y)w for f(y) 6= 0 and 0 otherwise.

Definition 3.2 (Zero-Omitted Power Sum). The zero-
omitted power sum of a function f that includes X in its
scope is:

∑/w
X f := (

∑
X f(x)/

1
w)w where 0

0 := 0.

1665

Specifically, line 16 is changed to: λtk ←
∑/w
Xk

f
MB

(t)
k

.

This modified version can no longer guarantee a lower
bound, however boundedness can be retained if the omit-
ted zeros correspond to conditions for bounded domain-
partitioning [Pezeshki et al., 2022]:

Theorem 3.1 (Bounded Domain-Partitioning). Consider
three variables X , Y , and Z and objective

obj =
∑
X

f(x, y) · g(x, z) (6)

Let X ′ = {x ∈ X|g(x, z) 6= 0} be a set such that εX′ =
minx∈X′g(x, z). Since this makes εX′ > 0 we can derive:

obj =
∑
x∈X′

f(x, y)·g(x, z) +
∑

x∈X\X′
f(x, y)·g(x, z) (7)

=
∑
x∈X′

f(x, y)·g(x, z) ≥ εX′ ·
∑
x∈X′

f(x, y) (8)

> 0 (9)
when f(x, z) is not identically zero over X ′.

which allows for weighted mini-buckets to retain (and im-
prove) bounds.

2) Cost shifting with non-zero values. We similarly ad-
just the cost-shifting mechanism (described in Flerova et al.
[2011], Ihler et al. [2012]) restricting cost-shifts to be only
with non-zero values. This again helps prevent numerical in-
stabilities and ensures a positive lower bound for consistent
sub problems. This does not disrupt bound guarantees.

3) Maximizing finite values. Due to the above-mentioned
adjustments, the resulting K* approximation for any [par-
tial] configuration of the residues that are consistent will
necessarily have a finite positive value (the upper bound esti-
mates on the K∗ = ZB

ZU
numerator are inherently finite and,

now, the lower estimate of the denominator is also forced
to be finite for consistent sub problems). Due to this result,
during the maximization step (line 7), we can now instead
maximize only over the available finite values.

3.2 TUNING SEARCH

Two key enhancements were also made to AOBB-K* search.

Prioritizing the wild-type assignment. Unlike many other
problem domains, when performing protein re-design a
good initial assignment to the variables is known ahead
of time: that which corresponds to the wild-type protein.
Thus, we force the wild-type to be explored first, ensuring
that we initialize our search with a powerful lower bound.

Prioritizing nodes with a finite heuristic value. Since
wMBE-K*-b produces infinite K* estimates only for invalid
configurations, we adjust node ordering during search to
first explore nodes that have a finite heuristic value. This
ensures that consistent configurations are traversed first.

Algorithm 3: AOBB-K*-DH
input : CPD graphical modelMcpd (Def 2.2);

pseudo tree T guiding node expansions;
K∗ upper-bounding heuristic function hK∗(.);
Zγ upper-bounding heuristic function hZγ (.)

output : K∗MAP (Mcpd)
1 begin
2 Encode deterministic relations inMcpd into CNF
3 π ← search path initialized with a dummy root node r
4 HK∗ ← tables precomputed by hK∗(r)
5 HZγ ← tables precomputed by hZγ (r) for each γ
6 while EXPAND(π, T) do
7 if ConstraintPropagation(π) = false then
8 PRUNE(π)

9 else if ∃γ ∈ ϕ s.t. ubZγ (π,HZγ) < Sγ then
10 PRUNE(π)

11 else
12 if depth(π) ≤ maxDepth and

HK∗(π) > dhThreshold then
13 HK∗ ← tables recomputed by hK∗(π)
14 if X ∈ R then
15 if ubK∗(π,HK∗) < lbK∗ then
16 PRUNE(π)

17 while π has no unexpanded children do
18 BACKTRACK(π)

19 return lbK∗ = K∗MAP (Mcpd)

In the Empirical Evaluation section we evaluate the perfor-
mance impact of these changes.

4 DYNAMIC HEURISTICS

Next we explore using dynamic heuristic re-computations
to improve bounds and enhance pruning during search (ex.
[Lam et al., 2014]). AOBB-K*-DH (Algorithm 3) is a gen-
eral framework for dynamic heuristic use with AOBB-K*.

AOBB-K*-DH employs search similarly to AOBB-K* with
the exception that, at each node expansion not resulting
immediately in pruning, there is a decision made whether
or not to dynamically recompute a new K* upper-bounding
heuristic conditioned on the current search path (line 12).
This decision is based on two hyper-parameters:maxDepth
(a maximum depth at which to consider recomputations)
and dhThreshold (a numerical bound on existing heuris-
tic estimates over which re-computations occur). These
hyper-parameters serve to regulate the frequency of dy-
namic heuristic re-computations since they can be costly
both in time and memory. (In particular, wMBE-K* is ex-
ponential in its i-bound hyper-parameter). When pruning
or backtracking past the point of the most recent heuristic
re-computation, the K* heuristic tables HK∗ are rolled back
to cached tables from previous computations (not shown
explicitly). Using an upper-bounding heuristic we have:

Theorem 4.1 (correctness, completeness). AOBB-K*-DH

1666

is sound and complete, returning the optimal K* value of
a corresponding amino-acid configuration that does not
violate the subunit-stability constraints.

maxDepth. The maxDepth parameter ensures that dy-
namic heuristics are not recomputed past a predeter-
mined depth, bounding the maximum number of times re-
computation can occur, as demonstrated next.

Complexity of AOBB-K*-DH wMBE-K* Computa-
tions. Since re-computation of the heuristic may occur
anywhere in the search tree up to maxDepth yielding
exp(maxDepth) number of nodes, and since each re-
computation is exp(i) given i-bound i, we can bound the
time complexity as O(kmaxDepth+i), where k is the max-
imum domain size encountered. However, the number of
nodes explored during search can be far smaller due to prun-
ing, and a tighter heuristic can further reduce the explored
space. Letting ΛDH represent the number of nodes explored
with DH, the time complexity bound can be expressed as
O(ΛDH · ki). If we let Λ be the number of nodes explored
withoutDH , the time complexities with and without DH are
O(ΛDH · ki) vs. O(Λ) respectively. Thus, if Λ

ΛDH
> ki the

use of DH will be cost-effective. Finally, since AOBB-K* is
a depth-first algorithm, the bound on the space overhead is
linear in maxDepth and exp(i) for wMBE-K*.

dhThreshold. Dynamic heuristic re-computations aim
to improve bounds and enhance pruning. However, if the
existing heuristic value is already tight, the cost of re-
computation may outweigh traversing the search space with
the current heuristic. Determining what is considered "al-
ready tight" can be uncertain for general search tasks. How-
ever, in the case of protein re-design valid solutions must
have a cost similar to the wild-type. Therefore, initially, we
can provide dhThreshold values relative to the native wild-
type K* value, improving them as better solutions emerge.

5 UFO: A PRINCIPLED SCHEME TO
INTRODUCE DETERMINISM

It is well known that utilizing constraint propagation (CP) as
a tool for pruning inconsistent search paths can greatly speed
up search Dechter [2019], Mateescu and Dechter [2008],
Darwiche [2009]. Similar ideas have been explored in mixed
interger programming [Danna et al., 2005]. More recently
in the scope of protein design Pezeshki et al. [2022] demon-
strated that introducing artificially generated determinism
by underflowing function values under a provided threshold
(Definition 5.1) can further leverage CP and enhance the
speed of solving K* optimization problems.

As our last set of algorithmic improvements we present
1) Algorithm 4: UFO (underflow-threshold optimization)
describing a general methodology for choosing underflow-
thresholds (Definition 5.1) with certain characterizations,

Algorithm 4: UFO
input :Graphical modelM = 〈X,D,F 〉; SAT solving

algorithm, SAT (.) ; time limit for binary search; a
deflation factor 0 < δ ≤ 1

output :A proposed threshold τ to use
1 begin
2 if SAT (M) = False then
3 return FAILURE
4 τmin = 0; τmax = maxF ,X f(x)

5 τ = τmax+τmin
2

; lb = −inf
6 bestAssignment = None
7 while time remains for τ binary search do
8 if SAT (Mτ) = False then
9 τmax = τ

10 else
11 τmin = τ

12 τ = τmax+τmin
2

13 τ = τmin · δ
14 return τ

and 2) AOBB-K*-UFO, AOBB-K* augmented with a CPD-
specific UFO scheme.

Definition 5.1 (τ -underflow of f , fτ). Let f be a non-
negative function and τ ∈ R+. The τ -underflow of f is
fτ (x) = f(x) if f(x) ≥ τ and 0, otherwise.

Definition 5.2 (τ -underflow of M, Mτ). For M =
〈X,D,F〉, the τ -underflow of M is Mτ = 〈X,D,Fτ 〉,
where Fτ = {fτ | f ∈ F }.

5.1 UNDERFLOW-THRESHOLD CHOICE

Clearly larger underflow-thresholds lead to more determin-
ism and consequently more aggressive CP pruning. How-
ever, if the threshold is set too high, the resulting model
becomes inaccurate and may even become inconsistent leav-
ing no configuration capable of producing a non-zero value.

Definition 5.3 (Inconsistent Model). A model is said to be
inconsistent if ∀x ∈ DX ,

∏
F f(x) = 0.

Therefore it is useful to find a threshold that is as high as
possible yet still results in a consistent model. To achieve
this UFO employs binary search to find the largest threshold
that still results in a satisfiable model (lines 7-12). Then
UFO decreases the threshold using a hyper-parameter δ
(line 14) to enable a wider array of solutions.

Note that UFO operates under the assumption that satisfia-
bility of a model can be determined quickly. This is not true
in general, nevertheless we have found that the satisfiability
sub-task underlying many optimization problems tends to
be easy. In other cases, satisfiability can be approximated
by constraint propagation schemes [Dechter, 2003].

1667

Algorithm 5: AOBB-K*-UFO
input :Mcpd (Def 2.2); xwt, wild-type assignment to

X; SAT solving algorithm, SAT (.) ; time
limit for binary search; a deflation factor
0 < δ ≤ 1; pseudo tree T guiding search; K∗

upper-bounding heuristic function hK∗(.); Zγ
upper-bounding heuristic function hZγ (.);

output :approximation to the true K∗MAP (M)
1 begin
2 τ ← UFOcpd(Mcpd, xwt, SAT (.), time-limit, δ)
3 K∗′ ← AOBB-K∗(Mcpdτ , T , hK∗(.), hZγ (.))
4 return K∗′

AOBB-K*-UFO. AOBB-K*-UFO (Algorithm 5) empow-
ers AOBB-K* by generating an underflowed modelMcpdτ
with τ determined by the UFO scheme specially adjusted
for CPD, denoted UFOcpd. This modified UFOcpd performs
underflows on the Boltzmann transformed Esb and Epw

functions (see Equation 3) and replaces the general satisfia-
bility check in the UFO algorithm (Algorithm 4, line 8) with
one that enforces satisfiability of the wild-type sequence,
thus ensuring a lower bound on the quality of solutions.

UFO for other graphical model tasks. As UFO is a
general scheme, it can be useful for a myriad of graphical
model tasks. A preliminary investigation into its use can be
found in the report Exploring UFO’s.

6 EMPIRICAL EVALUATION

6.1 EXPERIMENTAL METHODOLOGY

Benchmarks. We performed empirical evaluation on
benchmarks derived from re-design problems for real pro-
teins provided by the Bruce Donald Lab at Duke University.
To gradually increase difficulty, small problems with two
mutable residues (with five to ten total residues) were incre-
mentally enlarged by making more of the residues mutable.
Experiments were performed on the "Expanded" problem
set from Pezeshki et al. [2022] consisting of 12 problems
with 3 mutable residues, a new set of 32 problems expanded
to have 4 mutable residues, and a set of 18 problems ex-
panded to have 5 mutable residues. The names of the newly
created benchmarks are shown with three parts: d[g]-[M]-
[p] (eg. d27-4-1), where [g] represents the problem design
number as obtained from the Donald Lab, [M] indicates
the number of mutable residues after enlarging, and [p] is a
single digit representing the specific permutation of the M
residues that were made mutable. The resulting conforma-
tion spaces for these problems ranged from on the order of
106 for 3 mutable residues to 1011 for 5 mutable residues.

Algorithms. We experimented with 5 algorithms: AOBB-
K*; AOBB-K*-b (boosted) with an improved wMBE-K*-b

heuristic and search enhancements (Section 3); AOBB-K*-
b-DH, AOBB-K*-b with dynamic heuristics (Section 4);
AOBB-K*-b-UFO, AOBB-K*-b empowered with a CPD-
specific UFO scheme (Section 5); and BBK*, state-of-the-art
best-first search algorithm in comprehensive CPD software
OSPREY 3.0 [Ojewole et al., 2018, Hallen et al., 2018].

Each AOBB-K* derived algorithm was implemented in
C++. AOBB-K*-b-DH dynamic heuristic re-computations
were regulated with maxDepth = 2 and dhThreshold =
1020 ·K∗wt, where K∗wt is the wild-type K* value. The UFO
scheme used by AOBB-K*-b-UFO performed binary search
in log-space and decreased the resulting threshold with
δ = 0.2 (Algorithm 4: UFO, line 13). Because the AOBB-
K*-b algorithms use the wMBE-K*-b heuristic which does
not guarantee bounds, they do not guarantee discovery of the
optimal K* (ie. they are not complete). Similarly, schemes
empowered with UFO lose optimality guarantees.

BBK* is implemented in Java, was set to use rigid rotamers,
and given a bound-tightness of 1× 10−200[1]. Despite the
extremely small bound tightness parameter, BBK* still per-
forms noticeably as an approximate algorithm.

Experiments were run on a 2.66 GHz processor, and given
4 GB of memory and a time limit of 1hr for each problem.
As BBK* can take advantage of parallelism, it was given
access to 4 CPU cores.

6.2 RESULTS

Comparing AOBB-K*-b vs AOBB-K*. In Table 1 we ex-
amine performance of AOBB-K*-b (with tightened wMBE-
K*-b) vs. AOBB-K* on the "Expanded" benchmark set from
Pezeshki et al. [2022] with three mutable residues. We com-
pare solution quality and speed of the two algorithms. The
i-bound of AOBB-K*-b was set to i = 4. For AOBB-K*

we use the best performing i-bound as reported previously.
We highlight in blue any better K* solutions and any signif-
icantly faster completion times (equal to or under 80% of
the competing algorithm’s completion time). The wild-type
K* value ("wt K* ") is also shown.

The highlighted blue times show AOBB-K*-b finishing sig-
nificantly faster for half of the problems. It also solves a
problem that AOBB-K* could not. Finally, AOBB-K*-b is
able to find the optimal solution for each of these problems
(although it does not prove optimality).

Evaluating Dynamic Heuristics. Table 2 compares
AOBB-K*-b with and without the dynamic heuristic scheme
described in Section 4 on problems with 3 or 4 mutable
residues that both algorithms found optimal solutions for
within an hour. We compare the size of the explored search

1BBK*’s bound tightness parameter does not correlate directly
with an ω-approximation. See Ojewole et al. [2018].

1668

https://www.ics.uci.edu/~dechter/publications.html

Table 1: Performance of AOBB-K*-b vs AOBB-K* on benchmarks
with 3 mutable residues from Pezeshki et al. [2022]. Displayed
are the i-bound ("i") used by each, their respective best-found K*

value ("Soln"), their completion time ("Time"), and, as reference,
the wild-type K* value ("wt K* ").

3 Mut
Problem i Soln Time i Soln Time
00007 4 14.73 269.3 14.08 - -inf t/o
00009 4 4.51 79.9 4.09 4 4.51 99.5
00011 4 11.85 102.2 11.75 4 11.85 76.1
00012 4 13.93 69.1 13.93 4 13.93 60.9
00013 4 15.03 101.9 13.25 4 15.03 100.8
00014 4 14.36 70.9 13.96 4 14.36 60.6
00017 4 10.86 118.0 10.52 5 10.86 334.6
00019 4 14.99 77.6 14.99 5 14.99 181.3
00020 4 10.96 101.5 10.60 5 10.96 360.7
00021 4 11.92 200.4 9.37 4 11.92 205.1
00025 4 16.18 168.6 10.74 4 16.18 153.8
00030 4 11.12 154.3 10.35 4 11.12 276.6

wt K*
AOBB-K*-b AOBB-K*

space between the two algorithms (counting the number of
OR and AND nodes of the residue variables traversed) and
highlight when there are differences.

We see that dynamic heuristic re-computation reduces the
size of the traversed search space in the majority of prob-
lems. In two cases (highlighted in red) dynamic heuristics
cause an increase in the search space. This may occur when
dynamic heuristic re-computation causes the K* estimate for
a node to increase (specifically by decreasing the denomina-
tor ZU estimate which wMBE-K*-b does not guarantee to
be a lower bound), preventing the node from being pruned.

UFO Impact and Cross Comparisons. Table 3 compares
the performance of AOBB-K*-b-UFO, AOBB-K*-b-DH,
AOBB-K*-b, and BBK* on problems with three, four, and
five mutable residues. The AOBB-K*-based algorithms are
displayed in a top-down ranking per problem, with the best
ranking algorithm placed at the top. Ranking is based first
on the quality of K* found and then by the speed at which
their respective solution was first discovered (measured in
seconds and denoted "Anytime", highlighting the anytime
nature of AOBB-K* search). Large text highlights the value
responsible for the algorithm’s higher ranking, and blue
color indicates that BBK* was outperformed.

From the rank-based ordering of the algorithms, the compet-
itiveness of the UFO scheme is apparent. The frequency of
blue coloring shows the algorithms’ competitiveness against
BBK* on the problems with three and four mutable residues.
On problems having 5 mutable residues the AOBB-K*-b
schemes begin to struggle. This is likely due to the loss
of bounds from the boosted modifications of wMBE-K*-b
in conjunction with a low i-bound, heavy underflows, and
longer message passing for these larger problems. Never-
theless, AOBB-K*-UFO is still able to find good solutions,
sometimes better than that of BBK*.

We also see the potential of the AOBB-K*-DH scheme in

Table 2: Comparison of the explored search space by AOBB-K*-b
with and without use of a dynamic heuristic. Displayed are the
respective i-bounds ("i") used, best-found K* solutions ("Soln"),
completion times ("Time"), and the size of the traversed AND/OR
search space (number of residue OR and AND nodes).

M Problem Algorithm i Soln Time OR AND

AOBB-K*-b-DH 3 11.85 24.64 3 15
AOBB-K*-b 3 11.85 60.99 58 197
AOBB-K*-b 4 11.85 102.18 3 5

AOBB-K*-b-DH 3 13.93 22.06 3 13
AOBB-K*-b 3 13.93 20.72 21 122
AOBB-K*-b 4 13.93 69.05 3 4

AOBB-K*-b-DH 3 14.36 26.95 3 16
AOBB-K*-b 3 14.36 21.92 25 132
AOBB-K*-b 4 14.36 70.88 3 5

AOBB-K*-b-DH 3 11.12 54.02 70 141
AOBB-K*-b 3 11.12 2019.77 254 3666
AOBB-K*-b 4 11.12 154.28 22 25

AOBB-K*-b-DH 3 16.58 598.38 40 56
AOBB-K*-b 3 16.58 3488.56 279 1214

AOBB-K*-b-DH 3 12.96 407.78 92 251
AOBB-K*-b 3 12.96 487.66 94 437
AOBB-K*-b-DH 3 15.55 405.89 57 137
AOBB-K*-b 3 15.55 254.67 57 137

AOBB-K*-b-DH 3 15.27 37.78 9 12
AOBB-K*-b 3 15.27 21.62 9 19
AOBB-K*-b-DH 3 15.27 576.98 93 230
AOBB-K*-b 3 15.27 323.45 59 166

AOBB-K*-b-DH 3 22.65 2897.35 18 61
AOBB-K*-b 3 22.65 3025.80 24 114
AOBB-K*-b-DH 3 18.04 483.55 346 476
AOBB-K*-b 3 18.04 112.50 56 75

3

4

d43-4-2

d42-4-1

d27-4-1

d28-4-1

d28-4-2

d30-3-1

d18-4-2

d24-4-1

d11-3-1

d12-3-1

d14-3-1

terms of run-time in Table 3. On many problems shown,
AOBB-K*-b-DH performs better than AOBB-K*-b (some-
times due to a better solution found, other times due to
finding good solutions faster). However, AOBB-K*-b-DH’s
performance with respect to AOBB-K*-b is less homoge-
neous when including the easier problems from Table 2
which were omitted from Table 3.

Finally, although AOBB-K*-b generally ranked lower than
the other AOBB-K*-b variants, it keeps up with BBK*

through problems with 4 mutable residues (previously out of
range for AOBB-K*), and even finds respectable solutions
for some 5-mutable-residue problems.

Determinism. A major factor that can lead to decreased
performance on large problem for AOBB-K* schemes (eg.
problem d7-5-3) is that domain sizes increase significantly
with an increasing number of mutable residues. This re-
stricts wMBE-K* to using lower i-bounds and reduces its
accuracy. For example, AOBB-K* could use an i-bound of
4 for problems with 3 mutable residues, but was restricted
to an i-bound of 3 for problems with 5 mutable residues
in Table 3. To explore the potential of moving to more
compact representations that could enable use of higher i-
bounds, determinism in wMBE-K*-b’s computed messages
for AOBB-K*-b-UFO were evaluated. For problems with
5 mutable residues, the largest tables generated by wMBE-

1669

Table 3: Comparison of the AOBB-K*-b-[UFO/DH] schemes and
BBK* on problems ranging from 3 to 5 mutable residues. Shown
is the i-bound used, best-found K* solution (recomputed without
underflow-thresholding), the time at which the best-found solu-
tion was first discovered ("Anytime"), and the completion time
("Time"). For reference, the wild-type K* solution is also shown.

M Problem Algorithm i Soln Anytime Time Soln Time
AOBB-K*-b-UFO 3 14.99 6.15 621.83 14.99 14.99 34.00
AOBB-K*-b-DH 3 14.99 11.31 56.05 14.99 14.99 34.00
AOBB-K*-b 4 14.99 75.99 76.00 14.99 14.99 34.00
AOBB-K*-b-UFO 3 10.96 13.70 480.77 10.60 10.96 1388.13
AOBB-K*-b-DH 3 10.96 39.67 339.91 10.60 10.96 1388.13
AOBB-K*-b 4 10.96 100.02 100.03 10.60 10.96 1388.13
AOBB-K*-b-UFO 3 11.92 89.03 628.59 9.37 11.72 551.27
AOBB-K*-b-DH 3 11.92 136.44 1307.45 9.37 11.72 551.27
AOBB-K*-b 4 11.92 193.83 196.52 9.37 11.72 551.27
AOBB-K*-b-UFO 3 16.18 14.02 64.82 10.74 13.65 880.46
AOBB-K*-b-DH 3 16.18 51.92 80.22 10.74 13.65 880.46
AOBB-K*-b 4 16.18 166.74 166.75 10.74 13.65 880.46
AOBB-K*-b-UFO 3 14.89 3391.78 timeout 14.08 14.54 278.08
AOBB-K*-b-DH 3 14.49 3543.27 timeout 14.08 14.54 278.08
AOBB-K*-b 3 14.49 3293.62 timeout 14.08 14.54 278.08
AOBB-K*-b-UFO 3 15.03 12.69 1974.43 13.25 15.03 46.46
AOBB-K*-b-DH 3 15.03 22.05 79.88 13.25 15.03 46.46
AOBB-K*-b 4 15.03 165.48 timeout 13.25 15.03 46.46
AOBB-K*-b-UFO 3 10.86 29.39 timeout 10.52 10.80 89.94
AOBB-K*-b 4 10.86 657.54 timeout 10.52 10.80 89.94
AOBB-K*-b-DH 3 10.86 660.16 timeout 10.52 10.80 89.94
AOBB-K*-b-UFO 3 11.92 196.30 timeout 9.37 11.72 687.66
AOBB-K*-b-DH 3 11.92 614.88 timeout 9.37 11.72 687.66
AOBB-K*-b 4 11.72 264.92 timeout 9.37 11.72 687.66
AOBB-K*-b-UFO 3 18.19 76.49 484.69 18.04 18.18 119.88
AOBB-K*-b-DH 3 18.19 386.49 timeout 18.04 18.18 119.88
AOBB-K*-b 3 18.19 896.67 timeout 18.04 18.18 119.88
AOBB-K*-b-UFO 3 22.87 72.53 239.88 22.70 22.83 1339.15
AOBB-K*-b 3 22.74 130.95 timeout 22.70 22.83 1339.15
AOBB-K*-b-DH 3 22.74 140.66 timeout 22.70 22.83 1339.15
AOBB-K*-b-UFO 3 15.17 1570.30 timeout 14.08 14.73 401.09
AOBB-K*-b-DH 3 14.73 57.91 timeout 14.08 14.73 401.09
AOBB-K*-b 3 14.73 62.53 timeout 14.08 14.73 401.09
AOBB-K*-b-UFO 3 14.84 891.90 timeout 14.08 15.60 205.56
AOBB-K*-b 3 14.73 67.53 timeout 14.08 15.60 205.56
AOBB-K*-b-DH 3 14.73 156.68 timeout 14.08 15.60 205.56
AOBB-K*-b 3 15.55 274.30 timeout 15.48 15.55 1270.65
AOBB-K*-b-UFO 3 15.55 276.91 timeout 15.48 15.55 1270.65
AOBB-K*-b-DH 3 15.55 321.02 timeout 15.48 15.55 1270.65
AOBB-K*-b-UFO 3 7.88 22.35 128.75 7.63 7.88 130.04
AOBB-K*-b 3 7.88 129.43 timeout 7.63 7.88 130.04
AOBB-K*-b-DH 3 7.88 145.63 timeout 7.63 7.88 130.04
AOBB-K*-b-UFO 3 23.08 2068.22 timeout 22.70 23.05 timeout
AOBB-K*-b 3 22.74 222.66 timeout 22.70 23.05 timeout
AOBB-K*-b-DH 3 22.74 241.88 timeout 22.70 23.05 timeout

5

d7-5-1

d7-5-3

d27-5-1

d31-5-1

d47-5-1

4

d7-4-2

d13-4-1

d17-4-1

d21-4-1

d43-4-1

d47-4-2

AOBB-K*-b-[DH/UFO]
wt K*

BBK*

3

d19-3-1

d20-3-1

d21-3-1

d25-3-1

K*-b often had a determinism ratio of > 0.95 - namely 95%
of the entries were zeros. This insight adds motivation to
moving to other representations that can take advantage of
the repeated determinism, such as relational representations.

Summary of Empirical Results. AOBB-K*-b, AOBB-K*-
b-DH, and AOBB-K*-b-UFO have now achieved scalability
to problems with 5 mutable residues. The UFO scheme
demonstrated strong performance in particular, competitive
with BBK* for these problems. Analysis of AOBB-K*-b-

DH’s explored search space shows its promise, but the cur-
rent naive implementation showed limited performance on
larger problems. Lastly, analysis of wMBE-K*-b in the pres-
ence of UFO revealed a high level of determinism indicating
that more compact representations may be beneficial. (Addi-
tional results can be found in the Supplemental Materials).

7 CONCLUSION AND FUTURE
DIRECTIONS

Conclusion. This work introduced several improvements
to the protein re-design algorithm AOBB-K* to enhance
its scalability. Refinements to its wMBE-K* heuristic were
presented sacrificing bound guarantees for tighter estimates,
and adjustments were made to its node value-ordering strat-
egy during search. These enhancements were implemented
in AOBB-K*-b (boosted) which scaled up to problems with
5 mutable residues whereas AOBB-K* could only produce
solutions to problems with 3 mutable residues. To further en-
hance pruning during search, the dynamic heuristic scheme
AOBB-K*-DH was introduced. Evaluation with a naive im-
plementation showed the promise of dynamic heuristics
being incorporated into AOBB-K*. Additionally, UFO - a
new underflow-thresholding scheme for introducing artifi-
cial determinism to strengthen constraint propagation - was
introduced. A specialized version of UFO for CPD was
incorporated into AOBB-K*-b as AOBB-K*-b-UFO and
showed competitive performance against state-of-the-art
BBK* on problems of up to 5 mutable residues. Evaluation
of these algorithms was done using 62 real-protein bench-
marks involving three to five mutable residues.

Future Directions. We leave the following as future direc-
tions: to 1. investigate modifications to wMBE-K*-b that
mitigate the risk of violating boundedness; 2. adapt richer
implementations of dynamic heuristics [Lam et al., 2014]; 3.
consider look-ahead schemes [Lam et al., 2017]; 4. extend to
finding the n-best K*’s such as approaches by Flerova et al.
[2016], Ruffini et al. [2021]; 5. investigate the trade-offs
of the dynamic heuristic hyper-parameters; 6. explore UFO
utility in other graphical model tasks; 7. explore more com-
pact representations of wMBE-K* that can take advantage
of the high levels of determinism [Mateescu and Dechter,
2008, Larkin and Dechter, 2003] or other scalable heuristics
[Lee et al., 2016]; 8. apply the proposed approaches to real
biological tasks; 9. extend these algorithms by incorporating
other state-of-the-art inference schemes, especially approx-
imate schemes [Yanover and Weiss, 2002, Hurley et al.,
2016, Lou et al., 2018a,b, Marinescu et al., 2019, 2018a,b].

Acknowledgements
We thank our reviewers for their valuable comments and
suggestions. We also acknowledge use of ChatGPT, an AI
language model developed by OpenAI, in refining text. This
work was supported in part by NSF grant IIS-2008516.

1670

https://www.ics.uci.edu/~dechter/publications.html

*References

Bissan Al-Lazikani, Joon Jung, Zhexin Xiang, and Barry
Honig. Protein structure prediction. Current Opinion in
Chemical Biology, 5(1):51–56, 2001.

Emilie Danna, Edward Rothberg, and Claude Le Pape. Ex-
ploring relaxation induced neighborhoods to improve mip
solutions. Mathematical Programming, 102:71–90, 2005.

Adnan Darwiche. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press, 2009.

Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua
Bai, Robert J Ragotte, Lukas F Milles, Basile IM Wicky,
Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Ro-
bust deep learning–based protein sequence design using
proteinmpnn. Science, 378(6615):49–56, 2022.

Rina Dechter. Constraint Processing. Morgan Kaufmann,
2003.

Rina Dechter. Reasoning with probabilistic and determin-
istic graphical models: Exact algorithms, second edition.
Synthesis Lectures on Artificial Intelligence and Machine
Learning, 13:1–199, 02 2019.

Rina Dechter and I Rish. Mini-buckets: A general scheme
for approximating inference. Journal of the ACM, pages
107–153, 2002.

Marianne Defresne, Sophie Barbe, and Thomas Schiex. Pro-
tein design with deep learning. International Journal of
Molecular Sciences, 22(21), 2021.

Bruce Donald. Algorithms in structural molecular biology.
MIT Press, 2011.

Natalia Flerova, Alexander Ihler, Rina Dechter, and Lars Ot-
ten. Mini-bucket elimination with moment matching. In
Workshop on Discrete Optimization in Machine Learning
(DISCML) at NIPS, 2011.

Natalia Flerova, Radu Marinescu, and Rina Dechter. Search-
ing for the M best solutions in graphical models. J. Artif.
Intell. Res., 55:889–952, 2016.

Pablo Gainza, Hunter M Nisonoff, and Bruce R Donald. Al-
gorithms for protein design. Current opinion in structural
biology, 39:16–26, 2016.

Mark Hallen, Jeffrey Martin, Adegoke Ojewole, Jonathan
Jou, Anna Lowegard, Marcel Frenkel, Pablo Gainza,
Hunter Nisonoff, Aditya Mukund, Siyu Wang, Graham
Holt, David Zhou, Elizabeth Dowd, and Bruce Donald.
Osprey 3.0: Open-source protein redesign for you, with
powerful new features. Journal of Computational Chem-
istry, 39, 10 2018.

Mark A. Hallen and Bruce R. Donald. Protein design by
provable algorithms. Commun. ACM, 62(10):76–84, sep
2019.

G.H. Hardy, J.E. Littlewood, and G. Pólya. Inequalities.
Cambridge Mathematical Library. Cambridge University
Press, 1988.

Terrell Hill. Statistical mechanics : principles and selected
applications. Dover Publications, 1987.

Barry Hurley, Barry O’sullivan, David Allouche, George
Katsirelos, Thomas Schiex, Matthias Zytnicki, and Si-
mon de Givry. Multi-language evaluation of exact solvers
in graphical model discrete optimization. Constraints, 21:
413–434, 2016.

Alexander. Ihler, Natalia Flerova, Rina Dechter, and Lars
Otten. Join-graph based cost-shifting schemes. In UAI,
pages 397–406, 2012.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green,
Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasu-
vunakool, Russ Bates, Augustin Žídek, Anna Potapenko,
et al. Highly accurate protein structure prediction with
alphafold. Nature, 596(7873):583–589, 2021.

William Lam, Kalev Kask, Rina Dechter, and Alexander
Ihler. Beyond static mini-bucket: Towards integrating
with iterative cost-shifting based dynamic heuristics. In
Seventh Annual Symposium on Combinatorial Search,
2014.

William Lam, Kalev Kask, Javier Larrosa, and Rina Dechter.
Residual-guided look-ahead in AND/OR search for graph-
ical models. J. Artif. Intell. Res., 60:287–346, 2017.

David Larkin and Rina Dechter. Bayesian inference in the
presence of determinism. AI and Statistics(AISTAT03),
2003.

Junkyu Lee, Radu Marinescu, Rina Dechter, and Alexander
Ihler. From exact to anytime solutions for marginal map.
AAAI’16, page 3255–3262. AAAI Press, 2016.

Ryan H. Lilien, Brian W. Stevens, Amy C. Anderson, and
Bruce R. Donald. A novel ensemble-based scoring and
search algorithm for protein redesign, and its applica-
tion to modify the substrate specificity of the gramicidin
synthetase a phenylalanine adenylation enzyme. In Pro-
ceedings of the Eighth Annual International Conference
on Research in Computational Molecular Biology, RE-
COMB ’04, page 46–57. Association for Computing Ma-
chinery, 2004.

Qiang Liu and Alexander Ihler. Bounding the partition
function using Hölder’s inequality. In International Con-
ference on Machine Learning (ICML), pages 849–856.
ACM, June 2011.

1671

Qi Lou, Rina Dechter, and Alexander Ihler. Anytime anys-
pace and/or best-first search for bounding marginal map.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 32(1), 2018a.

Qi Lou, Rina Dechter, and Alexander. Ihler. Finite-sample
bounds for marginal MAP. In Proceedings of the Thirty-
Fourth Conference on Uncertainty in Artificial Intelli-
gence, UAI 2018, Monterey, California, USA, August 6-
10, 2018, pages 725–734. AUAI Press, 2018b.

Radu Marinescu, Rina Dechter, and Alexander Ihler. And/or
search for marginal map. In Proceedings of the Thirti-
eth Conference on Uncertainty in Artificial Intelligence,
UAI’14, page 563–572. AUAI Press, 2014.

Radu Marinescu, Rina Dechter, and Alexander Ihler.
Stochastic anytime search for bounding marginal map. In
IJCAI, pages 5074–5081, 2018a.

Radu Marinescu, Junkyu Lee, Rina Dechter, and Alexander
Ihler. And/or search for marginal map. J. Artif. Int. Res.,
63(1):875–921, sep 2018b.

Radu Marinescu, Akihiro Kishimoto, Adi Botea, Rina
Dechter, and Alexander Ihler. Anytime recursive best-
first search for bounding marginal map. Proceedings of
the AAAI Conference on Artificial Intelligence, 33(01):
7924–7932, Jul. 2019.

Robert Mateescu and Rina Dechter. Mixed deterministic
and probabilistic networks. Annals of mathematics and
artificial intelligence, 54(1):3–51, 2008.

Donald McQuarrie. Statistical mechanics. University Sci-
ence Books, 2000.

John Moult, Krzysztof Fidelis, Andriy Kryshtafovych,
Torsten Schwede, Maya Topf, David Baker, Michael Feig,
Nick Grishin, Andrzej Joachimiak, David Jones, and et al.
15th community wide experiment on the critical assess-
ment of techniques for protein structure prediction.

Adegoke Ojewole, Jonathan D. Jou, Vance G. Fowler, and
Bruce Randall Donald. BBK* (Branch and Bound Over
K*): A provable and efficient ensemble-based protein
design algorithm to optimize stability and binding affinity
over large sequence spaces. J. Comput. Biol., 25(7):726–
739, 2018.

Bobak Pezeshki, Radu Marinescu, Alexander Ihler, and Rina
Dechter. AND/OR branch-and-bound for computational
protein design optimizing K*. In James Cussens and Kun
Zhang, editors, Proceedings of the Thirty-Eighth Con-
ference on Uncertainty in Artificial Intelligence, volume
180 of Proceedings of Machine Learning Research, pages
1602–1612. PMLR, 01–05 Aug 2022.

F.J.C. Rossotti and H. Rossotti. The Determination of Sta-
bility Constants: And Other Equilibrium Constants in
Solution. McGraw-Hill series in advanced chemistry.
McGraw-Hill, 1961.

Manon Ruffini, Jelena Vucinic, Simon de Givry, George
Katsirelos, Sophie Barbe, and Thomas Schiex. Guaran-
teed diversity and optimality in cost function network
based computational protein design methods. Algorithms,
14(6), 2021.

Clement Viricel, Simon de Givry, Thomas Schiex, and
Sophie Barbe. Cost function network-based design of
protein-protein interactions: predicting changes in bind-
ing affinity. Bioinformatics (Oxford, England), 34, 02
2018.

Jelena Vucinic, David Simoncini, Manon Ruffini, Sophie
Barbe, and Thomas Schiex. Positive multistate protein
design. Bioinformatics (Oxford, England), 36, 06 2019.

Chen Yanover and Yair Weiss. Approximate inference and
protein-folding. Advances in neural information process-
ing systems, 15, 2002.

Yichao Zhou, Yuexin Wu, and Jianyang Zeng. Compu-
tational protein design using and/or branch-and-bound
search. Journal of computational biology : a journal of
computational molecular cell biology, 23, 05 2016.

1672

	Introduction
	Background
	Computational Protein Design
	K* and K*MAP
	Graphical Model for K*MAP
	AOBB-K* Algorithm

	Boosting AOBB-K*
	Boosted wMBE-K*
	Tuning search

	Dynamic Heuristics
	UFO: A Principled Scheme to Introduce Determinism
	Underflow-threshold Choice

	Empirical Evaluation
	Experimental methodology
	Results

	Conclusion and Future Directions

