
APPENDIX

PROOF OF PROPOSITION 2

Proof. Denote z = tx+ (1− t)y and assume that at z the i-th function is largest, i.e. F (z) = Aiz+ bi. Then

F (z) = t(Aix+ bi) + (1− t)(Aiy + bi) ≤ tF (x) + (1− t)F (y)

PROOF OF PROPOSITION 3

Proof. The proof is by induction. We need to prove two facts. First, applying a linear function to a vector of DCPAs produces
another vector of DCPAs; second, that a maximum of two DCPAs is a DCPA.

Let F −G be a vector of DCPAs, where F and G are vectors of n CPAs and A be an m× n matrix with real coefficients.
Write A = A+ −A− where both A+ and A− have non-negative entries. Then we have

A (F −G) = (A+ −A−) (F −G) = (A+F +A−G)− (A−F +A+G).

This proves the first fact.

The second fact is easy to see from max{a, b}+ c = max{a+ c, b+ c} and max{a,max{b, c}} = max{a, b, c}.

PROOF OF PROPOSITION 7

Proof. The proof follows the following steps.

1. Let c = (a, b) and H = (a 7→ x⊺a⊺ + y. Then both c ∈ H and R(H) ∈ R(c) are equivalent to b = x⊺a+ y.

2. k-dimensional dual plane F can be written as an intersection of d − k dual hyperplanes R−1(z0), . . . ,R−1(zd−k).
A dual point R−1(f) belongs to F if and only if it is a dual of a real hyperplane f that contains the real points
z0, . . . , zd−k. Their affine span is the common plane we are looking for, and what we christen R(F ).
It is affinely spanned by d− k + 1 points, so its dimension is at most d− k. If it was smaller, we could forget some zi,
which means that F was an intersection of d− k − 1 hyperplanes, and had dimension at least k + 1.

3. F is contained in G if and only if for any hyperplane H we have

G ⊆ H ⇒ F ⊆ H

This happens precisely when for all points z = R(H) we have

z ∈ R(G) ⇒ z ∈ R(F )

that is R(G) ⊆ R(F ).

4. Let f : x 7→ a⊺x+ b. Then p(R−1(f)) = a, which is perpendicular to surfaces a⊺x = const.

5. Let c = (a, b) and H : d 7→ x⊺d+ y. Then both c ≻ H and R(c) ≻ R(H) are equivalent to b > x⊺a+ y.

6. Suppose c = (a, b), c′ = (a, b+∆), and denote f : x 7→ a⊺x+ b. Then R(c) = f,R(c′) = f +∆ – these functions
differ by a constant, so specify parallel planes. The proof for R−1 is analogous.

PROOF OF PROPOSITION 9

Proof. Firstly, let us compare the planes dual to two points, s1 and s2, such that s1 lies directly above s2. This means that
they differ only at the very last coordinate—let’s say that s1 = (a1, b1) and s2 = (a2, b2) where b1 ≥ b2. Then the dual
planes R(s1) and R(s2) are precisely

R(s1) = {(x, y1)|y1 = (a1)
⊺x+ b1},
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R(s2) = {(x, y2)|y2 = (a2)
⊺x+ b2},

and since (a1)
⊺x+ b1 ≥ (a2)

⊺x+ b2 for all x ∈ Rd, the plane R(s1) lies above R(s2).

Secondly, let us consider a point s in the dual space lying on a segment whose endpoints are s1 and s2. But then for some
p ∈ [0, 1] we have s = p · s1 + (1− p) · s2 and thus

(s)⊺
[
x
1

]
= p ·

(
(s1)

⊺

[
x
1

])
+ (1− p) ·

(
(s2)

⊺

[
x
1

])
,

so, in particular,

(s)⊺
[
x
1

]
≤ max

{
(s1)

⊺

[
x
1

]
, (s2)

⊺

[
x
1

]}
.

Thirdly, we want to piece the two together. For a point s2 lying below U(S), let us choose a point s1 ∈ U(S) lying exactly
above s2. The plane defined by it lies above the one defined by s2 according to the first paragraph. Now we only need to
show that points on U(S) define planes lying below the minimum, but this follows from the second paragraph and the fact
that all points on a convex hull of a finite set of points can be generated by taking segments whose ends lie in the hull and
adding all of the points of the segment to the hull.

PROOF OF PROPOSITION 14

Proof. This is a straightforward consequence of the more elementary identities for scalar a, b: after reducing to upper hulls
we have

(a+ b)X =(aX)⊕ (bX) (5.1)
a(X ⊕ Y ) =(aX)⊕ (aY ) (5.2)

(ab)X =a(bX) (5.3)
a(X ∪ Y ) =(aX) ∪ (aY ) (5.4)

Except 5.1, all of these hold even before taking the hull. To deal with this one, note that

(a+ b)X = {ax+ bx|x ∈ X}
⊆ {ax1 + bx2|x1, x2 ∈ X} = (aX)⊕ (bX)

so we have U((a+ b)X) ⊆ U
(
(aX)⊕ (bX)

)
. To see the reverse inclusion, write

ax1 + bx2 = a
a+b (a+ b)x1 +

b
a+b (a+ b)x2

which means that
(aX)⊕ (bX) ⊆ U

(
(a+ b)X

)

PROOF OF PROPOSITION 16

Proof. Firstly, let us note that

Al Fl−1 =(A+
l −A−

l )
(
R(Pl−1)−R(Nl−1)

)
=
(
A+

l R(Pl−1) +A−
l R(Nl−1)

)
−
(
A−

l R(Pl−1) +A+
l R(Nl−1)

)
=R

(
(A+

l ⊗ Pl−1)⊕ (A−
l ⊗Nl−1)

)
−R

(
(A−

l ⊗ Pl−1)⊕ (A+
l ⊗Nl−1)

)
.
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Now, we use the fact that max{x− y, 0} = max{x, y} − y to get that for Nl = (A−
l ⊗ Pl−1)⊕ (A+

l ⊗Nl−1), we have

σ(Al Fl−1)

= max{R
(
(A+

l ⊗ Pl−1)⊕ (A−
l ⊗Nl−1)

)
,R(Nl)} −R(Nl)

= R
(
(A+

l ⊗ Pl−1)⊕ (A−
l ⊗Nl−1) ∪Nl

)
−R(Nl),

and thus, for Pl = (A+
l ⊗ Pl−1)⊕ (A−

l ⊗Nl−1) ∪Nl, we get

Fl = σ(AlFl−1) = R(Pl)−R(Nl).

PROOF OF PROPOSITION 18

Proof. k-cell of T (S) is the region defined by the system

fi0(x) = · · · = fid−k
(x) (5.5)

fi0(x) ≥fj(x) for j ̸= i0, . . . , id−k

This can be written as
(x, y) ∈ fi0 , . . . , fid−k

(x, y) ≽ fj

In dual space this becomes
R−1((x, y)) ∋ R−1(fi0), . . . ,R−1(fid−k

)

R−1((x, y)) ≽ R−1(fj)

Therefore, the duals of points of the k-cell are precisely the dual planes containing the (d − k)-cell on vertices
R−1(fi0), . . . ,R−1(fid−k

) and tangent to the upper convex hull.

PROOF OF PROPOSITION 19

Proof. The cell of T (P ∪N) is a boundary cell iff in the equation 5.5, we have both some function fi ∈ R(P ) and some
function gj ∈ R(N). This happens exactly when the dual cell has some vertex R−1(fi) ∈ P as well as some vertex
R−1(gj) ∈ N .

PROOF OF PROPOSITION 20

Proof. Again, as before, we need to identify those linear pieces of max{F,G}, which lie on the linear pieces of F and of G.
However, this means identifying cells of U(P ∪N) which contain a cell of U(P ) and a cell of U(N) (this is due to the
duality reversing containment of hyperplanes; we mean set-wise containment here, not containment as subcells).

PROOF OF PROPOSITION 22

Proof. A k-dimensional cell σ is the set of x satisfying the system

fi0(x) = · · · = fia(x) = s > fi′(x)

gj0(x) = · · · = gjb(x) = t > gj′(x)

Where a+ b = d− k. This can be expressed as relations in the real space

(x, s) ∈ fi0 , . . . , fia (x, s) ≻ fi′

(x, t) ∈ gj0 , . . . , gjb (x, t) ≻ gj′
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After passing to the dual space this becomes

R−1
(
(x, s)

)
∋ R−1(fi0), . . . ,R−1(fia) (5.6)

R−1
(
(x, s)

)
≻ R−1(fi′) (5.7)

R−1
(
(x, t)

)
∋ R−1(gj0), . . . ,R−1(gjb) (5.8)

R−1
(
(x, t)

)
≻ R−1(gj′) (5.9)

We know that R−1
(
(x, s)

)
and R−1

(
(x, t)

)
are a pair of parallel hyperplanes; the former is tangent to U(P ) (5.7) and

contains its a-cell (5.6), while the latter is tangent to U(N) (5.9) and contains its b-cell (5.8).

View these hyperplanes as subsets of Rd+1 and consider their Minkowski sum R−1
(
(x, s)

)
⊕R−1

(
(x, t)

)
. It is straightfor-

ward to verify that it equals the hyperplane R−1
(
(x, s+ t)

)
. Since the relation ≻ of lying above is preserved by translations,

we have

R−1
(
(x, s+ t)

)
= R−1

(
(x, s)

)
⊕R−1

(
(x, t)

)
≽ R−1(fi) +R−1(gj) for all R−1(fi) ∈ P,R−1(gj) ∈ N

This means that the plane R−1
(
(x, s+ t)

)
is tangent to U(P ⊕N). Also, it contains the (a+ b = d− k)-cell σ′ on vertices{

R−1(fiα) +R−1(gjβ ) | 0 ≤ α ≤ a, 0 ≤ β ≤ b
}

(5.10)

Conversely, suppose a hyperplane H is tangent to U(P ⊕Q) and contains the (d− k)-cell σ′on the vertices from equation
5.10. Let x = p(H) be the vector of linear coefficients of H . If we had fi′(x) > fiα(x) for any i′ /∈ {i0, . . . , ia} ∋ iα, then
the point R−1(fi′) +R−1(gj0) would lie above H , which is impossible. Therefore we must have

fi0(x) = · · · = fia(x) > fi′(x) (5.11)

and a similar set of conditions involving g’s. This means that x = p(H) lies in the real cell σ.

These functions are mutually inverse, and hence provide a bijection between real points of σ and dual tangent hyperplanes
containing σ′.

Since every point of the real space belongs to a unique cell, and every dual hyperplane tangent to U(P ⊕N) intersects it in
a unique cell, the assignment σ ↔ σ′ is bijective.

Remark 1. Sign of the function on the cell (equivalently, the class to which the region belongs) depends on which of
R−1

(
(x, s)

)
,R−1

(
(x, t)

)
lies above the other.

NUMERICAL EXPERIMENTS DETAILS

The neural networks are initialized by the default Uniform distribution1. For all ReLU neural networks, the optimization is
done by stochastic gradient descent with learning rate= 0.1, momentum= 0.9 and weight decay= 0.001 (if not specified
otherwise).

2D spiral The synthetic spiral data is from the two-dimensional distribution P = (ρ sin θ + 0.04, ρ cos θ) where ρ =

(θ/4π)
4/5

+ ϵ with selected θ from (0, 4π] and ϵ ∼ unif([−0.03, 0.03]). We draw 300 positive and 300 negative training
samples from −P and P , respectively, with a random seed fixed for every run. Both the Gaussian noise injection strength
and the adversarial training strength are set at 0.01.

2D Gaussian mixture There are 3× 3 mixing components, each is an isotropic Gaussian with standard deviation σ = 0.1.
The means are grid points from {−1, 0, 1} × {−1, 0, 1}. The mixing weight is equal for all components. Both the Gaussian
noise injection strength and the adversarial training strength are set at 0.1.

Below we show some training trends for CE, Noisy and Adv in the Gaussian mixture case. It is worth noting that all trend
plots in this work, including Figure 4 and 5 are smoothed with moving averages.

1The default weight initialization in torch.nn.linear is uniform on [−
√

1/N,
√

1/N ] where N is the width.
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Figure 6: CE training trends of #Boundary (red), #Total (green), F-norm (red) vs. iteration in the Gaussian mixture case.
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Figure 7: Noisy training trends of #Boundary (red), #Total (green), F-norm (red) vs. iteration in the Gaussian mixture case.
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Figure 8: Adv training trends of #Boundary (red), #Total (green), F-norm (red) vs. iteration in the Gaussian mixture case.

AN EXAMPLE OF COMPUTATION WITH PROPOSITION 16

First we should note that in a standard ReLU network the transition functions are any affine functions but we can introduce a
‘dummmy dimension’ to realise these as linear functions.

We will consider a very simple network with two-dimensional input, one hidden layer with three neurons, and the following
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transition matrices (with the dummy dimension included). For illustrative purposes we assume that ReLU is applied also at
the last layer.

A1 =


1 −0.5 4
−2 1 0
3 3 −1
0 0 1

 , A2 =

[
0.5 −1 −0.5 2
0 0 0 1

]

The input function F0 = (x, y, 1) (where the last coordinate is a dummy) is decomposed into R(P0)−R(N0) with

P0 =

{(1, 0, 0)}
{(0, 1, 0)}
{(0, 0, 1)}

 , N0 =

{(0, 0, 0)}
{(0, 0, 0)}
{(0, 0, 0)}

 .

To compute P1 and N1, we need to decompose the matrix A1 into its positive and negative parts A+
1 and A−

1 .

N1 = (A+
1 ⊗N0)⊕ (A−

1 ⊗ P0)

=



1 0 4
0 1 0
3 3 0
0 0 1

⊗

{(0, 0, 0)}
{(0, 0, 0)}
{(0, 0, 0)}


⊕



0 0.5 0
2 0 0
0 0 1
0 0 0

⊗

{(1, 0, 0)}
{(0, 1, 0)}
{(0, 0, 1)}




=


1{(0, 0, 0)} ⊕ 0{(0, 0, 0)} ⊕ 4{(0, 0, 0)}
0{(0, 0, 0)} ⊕ 1{(0, 0, 0)} ⊕ 0{(0, 0, 0)}
3{(0, 0, 0)} ⊕ 3{(0, 0, 0)} ⊕ 0{(0, 0, 0)}
0{(0, 0, 0)} ⊕ 0{(0, 0, 0)} ⊕ 1{(0, 0, 0)}

⊕


0{(1, 0, 0)} ⊕ 0.5{(0, 1, 0)} ⊕ 0{(0, 0, 1)}
2{(1, 0, 0)} ⊕ 0{(0, 1, 0)} ⊕ 0{(0, 0, 1)}
0{(1, 0, 0)} ⊕ 0{(0, 1, 0)} ⊕ 1{(0, 0, 1)}
0{(1, 0, 0)} ⊕ 0{(0, 1, 0)} ⊕ 0{(0, 0, 1)}



=


{(0, 0, 0)}
{(0, 0, 0)}
{(0, 0, 0)}
{(0, 0, 0)}

⊕


{(0, 0.5, 0)}
{(2, 0, 0)}
{(0, 0, 1)}
{(0, 0, 0)}

 =


{(0, 0.5, 0)}
{(2, 0, 0)}
{(0, 0, 1)}
{(0, 0, 0)}


P1 = (A+

1 ⊗ P0)⊕ (A−
1 ⊗N0) ∪N1

=


{(1, 0, 4)}
{(0, 1, 0)}
{(3, 3, 0)}
{(0, 0, 1)}

⊕


{(0, 0, 0)}
{(0, 0, 0)}
{(0, 0, 0)}
{(0, 0, 0)}

 ∪


{(0, 0.5, 0)}
{(2, 0, 0)}
{(0, 0, 1)}
{(0, 0, 0)}



=


{(1, 0, 4)}
{(0, 1, 0)}
{(3, 3, 1)}
{(0, 0, 1)}

 ∪


{(0, 0.5, 0)}
{(2, 0, 0)}
{(0, 0, 1)}
{(0, 0, 0)}

 =


{(1, 0, 4), (0, 0.5, 0)}
{(0, 1, 0), (2, 0, 0)}
{(3, 3, 1), (0, 0, 1)}
{(0, 0, 0), (0, 0, 1)}

=U∗


{(1, 0, 4), (0, 0.5, 0)}
{(0, 1, 0), (2, 0, 0)}
{(3, 3, 1), (0, 0, 1)}

{(0, 0, 1)}



The last operation is reducing to the upper hull vertices and it doesn’t change the dual function R(P1).

We repeat this calculation for the next layer.
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N2 = (A+
2 ⊗N1)⊕ (A−

2 ⊗ P1)

=

[0.5 0 0 2
0 0 0 1

]
⊗


{(0, 0.5, 0)}
{(2, 0, 0)}
{(0, 0, 1)}
{(0, 0, 0)}


⊕

[0 1 0.5 0
0 0 0 0

]
⊗


{(1, 0, 4), (0, 0.5, 0)}
{(0, 1, 0), (2, 0, 0)}
{(3, 3, 1), (0, 0, 1)}

{(0, 0, 1)}




=

(
0.5{(0, 0.5, 0)}

{(0, 0, 0)}

)
⊕
(
1{(0, 1, 0), (2, 0, 0)} ⊕ 0.5{(3, 3, 1), (0, 0, 1)}

{(0, 0, 0)}

)
=

(
{(0, 0.25, 0)}
{(0, 0, 0)}

)
⊕
(
{(0, 1, 0), (2, 0, 0)} ⊕ {(1.5, 1.5, 0.5), (0, 0, 0.5)}

{(0, 0, 0)}

)
=

(
{(0, 0.25, 0)}
{(0, 0, 0)}

)
⊕
(
{(1.5, 2.5, 0.5), (0, 1, 0.5), (3.5, 1.5, 0.5), (2, 0, 0.5)}

{(0, 0, 0)}

)
=

(
{(1.5, 2.75, 0.5), (0, 1.25, 0.5), (3.5, 1.75, 0.5), (2, 0.25, 0.5)}

{(0, 0, 0)}

)
P2 = (A+

2 ⊗ P1)⊕ (A−
2 ⊗N1) ∪N2

=

[0.5 0 0 2
0 0 0 1

]
⊗


{(1, 0, 4), (0, 0.5, 0)}
{(0, 1, 0), (2, 0, 0)}
{(3, 3, 1), (0, 0, 1)}

{(0, 0, 1)}


⊕

[0 1 0.5 0
0 0 0 0

]
⊗


{(0, 0.5, 0)}
{(2, 0, 0)}
{(0, 0, 1)}
{(0, 0, 0)}




∪
(
{(1.5, 2.75, 0.5), (0, 1.25, 0.5), (3.5, 1.75, 0.5), (2, 0.25, 0.5)}

{(0, 0, 0)}

)
=

(
0.5{(1, 0, 4), (0, 0.5, 0)} ⊕ 2{(0, 0, 1)}

1{(0, 0, 1)}

)
⊕
(
1{(2, 0, 0)} ⊕ 0.5{(0, 0, 1)}

{(0, 0, 0)}

)
∪
(
{(1.5, 2.75, 0.5), (0, 1.25, 0.5), (3.5, 1.75, 0.5), (2, 0.25, 0.5)}

{(0, 0, 0)}

)
=

(
{(0.5, 0, 2), (0, 0.25, 0)} ⊕ {(0, 0, 2)}

{(0, 0, 1)}

)
⊕
(
{(2, 0, 0)} ⊕ {(0, 0, 0.5)}

{(0, 0, 0)}

)
∪
(
{(1.5, 2.75, 0.5), (0, 1.25, 0.5), (3.5, 1.75, 0.5), (2, 0.25, 0.5)}

{(0, 0, 0)}

)
=

(
{(0.5, 0, 4), (0, 0.25, 2)}

{(0, 0, 1)}

)
⊕
(
{(2, 0, 0.5)}
{(0, 0, 0)}

)
∪
(
{(1.5, 2.75, 0.5), (0, 1.25, 0.5), (3.5, 1.75, 0.5), (2, 0.25, 0.5)}

{(0, 0, 0)}

)
=

(
{(2.5, 0, 4.5), (2, 0.25, 2.5)}

{(0, 0, 1)}

)
∪
(
{(1.5, 2.75, 0.5), (0, 1.25, 0.5), (3.5, 1.75, 0.5), (2, 0.25, 0.5)}

{(0, 0, 0)}

)
=

(
{(2.5, 0, 4.5), (2, 0.25, 2.5), (1.5, 2.75, 0.5), (0, 1.25, 0.5), (3.5, 1.75, 0.5), (2, 0.25, 0.5)}

{(0, 0, 1), (0, 0, 0)}

)
Now, to reduce the result to the upper hull vertices, we can note that

1

5
(0, 1.25, 0.5) +

4

5
(2.5, 0, 4.5) = (0, 0.25, 0.1) + (2, 0, 3.6) = (2, 0.25, 3.7) ≻ (2, 0.25, 2.5), (2, 0.25, 0.5),

so the two points of the right hand side can be dropped without changing the upper hull. This gives

P2=U∗

(
{(2.5, 0, 4.5), (1.5, 2.75, 0.5), (0, 1.25, 0.5), (3.5, 1.75, 0.5)}

{(0, 0, 1)}

)
.

Finally, let’s recover the representation as a DCPA function.
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F2(x, y) = (R(P2)−R(N2)) (x, y)

= max{1.5x+ 2.75y + 0.5, 1.25y + 0.5, 3.5x+ 1.75y + 0.5, 2.5x+ 4.5}
−max{1.5x+ 2.75y + 0.5, 1.25y + 0.5, 3.5x+ 1.75y + 0.5, 2x+ 0.25y + 0.5}

EXAMPLES OF APPLICATION OF PROPOSITIONS 20 AND COROLLARY 21

One-dimensional example Consider

f1(x) = − 1
2x− 3

2 f2(x) =
1
2x+ 1

2 f3(x) = 2x+ 1

g1(x) = 0 g2(x) =2x g3(x) = 3x− 1

The DCPA function F (x) = max{f1(x), f2(x), f3(x)}−max{g1(x), g2(x), g3(x)} is plotted in figure 9(a). It has 5 affine
regions and 3 zeros.

It is represented by dual points as

max{f1, f2, f3} = R(P ), P =

{(
− 1

2
− 3

2

)
,

(
1
2
1
2

)
,

(
2
1

)}
max{g1, g2, g3} = R(N), N =

{(
0
0

)
,

(
2
0

)
,

(
3
−1

)}
Their upper convex hull U(P ∪N) is shown on figure 9(b). As predicted by proposition 20, the zero set of F is in bijection
with 1-cells of U(P ∪N) which join a point of P with a point of N . This bijection is shown explicitly in table 9(c). The
x-coordinates of zeros of F are given by negative slopes of these 1-cells.

The hull of the Minkowski sum P ⊕ N is shown in figure 9(d). In agreement with corollary 21, there are 5 vertices on
U(P ∪N). The explicit bijections between the vertices of U(P ∪N) and affine regions of F , and between tangents at each
vertex and points of the corresponding linear region, is given in the table 9(e).

Two-dimensional example Take

f1 = −x+ y + 4 f2 = x+ y − 2 f3 = −2x− y − 1

g1 = 0 g2 = 2x− y + 2 g3 = −x+ 2y + 2

which correspond to dual points

P =


−1

1
4

 ,

 1
1
−2

 ,

−2
−1
−1

 , N =


0
0
0

 ,

 2
−1
2

 ,

−1
2
2


The function F = max{f1, f2, f3} −max{g1, g2, g3} is shown on figure 10(a). There are 7 affine regions and 6 boundary
pieces.

The configuration of dual points P ∪N is shown on figure 10(b). The upper convex hull U(P ∪N) contains 4 faces, 8 edges
and 5 vertices. As predicted by proposition 20, edges joining a point of P with a point of N correspond precisely to those
affine regions of F which contain a boundary piece. Explicitly, these are f1 − g2, f1 − g3, f2 − g2, f2 − g3, f3 − g2, f3 − g3.

The Minkowski sum P ⊕ N is shown in figure 10(c). In agreement with corollary 21, 7 of the vertices lie on the upper
convex hull. Explicitly, the functions f1 − g1 and f1 − g2 are the only ones which do not have a nonempty affine region, and
the points R−1(f1) +R−1(g1) and R−1(f2) +R−1(g2) are the only ones which lie fully below the upper convex hull.
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(a) Plot of F .

◦
f1

◦
f2

◦ f3

×
g1

×
g2

×g3

(b) Points of P (marked ◦) and N (marked
×) in the dual space. Dashed lines are the
upper convex hull U(P ∪N). Double lines
join a point of P with a point of N .

vertices 1-cell zero of F
f1, g1 3x over [− 1

2 , 0] -3
f2, g2 x over [0, 1

2 ] -1
f3, g3 −2x+ 4 over [2, 3] 2

(c) Correspondence between 1-cells of U(P ∪N) and
zeros of F . We represent 1-cell as a graph of a linear
function over an interval.

f1 − g1

f2 − g1

f3 − g1 f3 − g2

f3 − g3

(d) Minkowski sum P ⊕ N in the dual space.
Dashed lines represent the upper convex hull.

vertex tangents affine region
f1 − g1 {tx+ t−3

2 }t∈[2,∞) (−∞,−2]
f2 − g1 {tx+ 1−t

2 }
t∈[

1
2 ,2]

[−2,− 1
2 ]

f3 − g1 {tx+ 1− 2t}
t∈[0,

1
2 ]

[− 1
2 , 0]

f3 − g2 {tx+ 1− 4t}t∈[−1,0] [0, 1]
f3 − g3 {tx− 5t}t∈(−∞,−1] [1,∞)

(e) Tangents to U(P ∪ N) and the corresponding affine
regions. We represent each tangent line as a graph of a linear
function. They are parameterised by their slope t.

Figure 9: Illustration of the results on a one-dimensional example.
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f1 − g3

f3 − g3

f3 − g1

f3 − g2

f1 − g2

f2 − g2

f2 − g3

(a) The function F on the xy plane. Dotted lines mark the boundaries of affine regions. The
annotation fi− gj means that F = fi− gj on the corresponding affine region. Solid lines indicate
the zero set, and the shaded region contains arguments for which F is positive.

◦
4, f1

◦
−2, f2

◦
−1, f3

×
0, g1

×
2, g2

×2, g3

(b) Positions of P ∪ N in the dual space.
The first number indicates the z-coordinate.
Dashed lines are projections of edges (1-
cells) of the upper convex hull. The point
R−1(g1) is fully below the hull.

4, f1 − g1

6, f1 − g2

6, f1 − g3

−2, f2 − g1

0, f2 − g2

0, f2 − g3

−1, f3 − g1

1, f3 − g2

1, f3 − g3

(c) Projection of the faces of U(P ⊕N) on the xy-plane.
The first number indicates the z-coordinate; fi − gj is a
shorthand for the dual point R−1(fi) +R−1(gj). Two
points lie fully below the hull.

Figure 10: Illustration of the results on a two-dimensional example.
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