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Abstract

We describe a simple two-party protocol in which
each party contributes a set as input. The output of
the protocol is an estimate of the cardinality of the
intersection of the two input sets. We show that our
protocol is efficient and secure. We show that the
space complexity and communication complexity
are constant, the time complexity for each party
is proportional to the size of their input set, and
that our protocol is differentially private. We also
analyze the distribution of the output of the proto-
col, deriving both its asymptotic distribution and
finite-sample bounds on its tail probabilities. These
analyses show that, when the input sets are large,
our protocol produces accurate set intersection car-
dinality estimates. We claim that our protocol is an
attractive alternative to traditional private set inter-
section cardinality (PSI-CA) protocols when the
input sets are large, exact precision is not required,
and differential privacy on its own can provide suf-
ficient protection to the underlying sensitive data.

1 INTRODUCTION

Secure multiparty computation (SMC) protocols allow mul-
tiple parties, each of whom holds some input to a given
function, to jointly evaluate that function without sharing
their inputs with one another [Goldreich, 1998]. Unfortu-
nately, SMC protocols are expensive [Damgård et al., 2010]
and do not provide any protection for sensitive information
that may be revealed by their output.

For example, suppose that the nature of some business is
such that its customers would prefer that their association
with that business be kept confidential. Further, suppose
that some other organization was allowed to use an SMC
protocol to find out how many customers the two business
have in common. Such a protocol is known as private set

intersection cardinality (PSI-CA) protocol. While a PSI-CA
protocol would protect any customers who were associated
with only one of the two parties, it would necessarily com-
promise the privacy of anyone associated with both parties.

Preventing this kind of privacy breach requires a different
notion of privacy. Traditional SMC protocols can be prob-
lematic because their outputs are exact. Attackers are able
to use such protocols to make inferences about the data with
extremely high confidence [Dinur and Nissim, 2003]. If the
output of an SMC protocol was inexact, perhaps because
the exact output was perturbed with some kind of noise,
then an attacker would necessarily be less confident in any
inferences that they made based on those outputs. This is the
idea that underpins the concept of differential privacy (DP)
[Dwork et al., 2006]. DP ensures that the output of a func-
tion will not reveal whether a record was used to compute
that output and provides a degree of plausible deniability to
entities that contribute sensitive data to a data set.

In this paper, we will describe the Split, Count, and Share
protocol, a differentially private alternative to PSI-CA. Our
protocol relies on differential privacy to protect all elements
of both parties’ sets. By doing so, we sacrifice precision;
our protocol only produces accurate cardinality estimates
when the input sets are large.

Also, our protocol provides only a differential privacy guar-
antee. It does not provide any security guarantee whatsoever
in the sense of traditional SMC protocols [Cramer et al.,
2015, Evans et al., 2018, Lindell, 2020]. In exchange, how-
ever, we are able to dramatically reduce the time, space, and
communiation complexity of our protocol compared with
PSI-CA protocols.

We will describe our protocol in detail, derive parameter
values sufficient to guarantee (ε, δ)-differential privacy, and
prove rigorous bounds on the difference between the esti-
mates produced by our protocol and the actual cardinality
of the intersection of the two input sets. We will conclude
with a discussion that shows that our protocol is practically
useful when both parties have large input sets.
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2 RELATED WORK

Traditionally, private set intersection (PSI) has been a topic
of interest primarily in the field of secure multiparty com-
puting. As such, much of the literature concerning PSI ad-
dresses questions of what can be achieved by mutually dis-
trustful parties who are unwilling to reveal any information
about their inputs to one another. More precisely, an SMC
protocol is considered secure if the participants learn no
more than what they could learn in an ideal world, where a
trusted curator is present to ensure all participants’ inputs
are kept secret from each other and a correctly computed
output is returned to the participants [Goldreich, 1998].

Despite the fact that Split, Count, and Share provides no
security guarantee in the sense of traditional SMC protocols,
it nevertheless occupies a similar niche to existing PSI and
PSI-CA protocols. So, we will focus our survey of related
work on existing SMC protocols and emphasize the fact
that because we provide a different kind of security guaran-
tee, it is difficult to make direct comparisons between the
performance of our protocol and the performance of those
mentioned below.

2.1 EXACT PSI

A wide variety of cryptographic primitives have been pro-
posed as components on which private set intersection (PSI)
protocols can be built. Among these, Diffie-Hellman (DH)
key exchange and oblivious transfer (OT) extension are the
most common. Generally, DH-based protocols have lower
communication complexity but greater time complexity than
OT-extension based protocols, which dominate the field for
larger sets. But the unique characteristics of DH-based pro-
tocols seem to increase speed for small sets PSI as shown in
a recent work by Rosulek and Trieu [2021].

The state-of-the-art OT-extension based PSI protocols in
the semi-honest setting are the computation time optimized
protocol by Kolesnikov et al. [2016], communication time
optimized protocol by Pinkas et al. [2019a] and an efficient
balanced protocol by Chase and Miao [2020]. Although
beyond scope of this work, Pinkas et al. [2020], Rindal and
Schoppmann [2021] and Garimella et al. [2021] describe
some recent efficient PSI developments in the malicious
model. Some of these protocols, when analyzed under the
semi-honest model, are almost as efficient as those men-
tioned above. Furthermore, the authors have done some
thorough theoretical and experimental comparisons with
selected state-of-the-art protocols to demonstrate the effi-
ciency of their protocols.

PSI-CA protocols compute only the size of the intersection
of the input sets rather than the intersection itself. Many such
protocols have been proposed, including those that work by
modifying an underlying PSI protocol [Freedman et al.,

2004, 2016] and those that work by post-processing the
output of a circuit-based PSI protocol [Pinkas et al., 2019b].
In either case, the most efficient PSI-CA protocols to date
[Cristofaro et al., 2012, Freedman et al., 2016, Ion et al.,
2020, Debnath et al., 2021, Trieu et al., 2022] have linear
computation and communication costs in the input set sizes.
There are also some recently developed efficient application-
driven PSI-CA protocols [Dittmer et al., 2020, Duong et al.,
2020, Trieu et al., 2020] and efficient multiparty private set
intersection protocols [Chandran et al., 2021].

2.2 APPROXIMATE PSI

Dramatic efficiency gains can be had by approximating the
cardinality of the intersection of two input sets rather than
computing it exactly. Doing so, however, inevitably comes
at the cost of decreased precision. Some early works of PSI-
CA approximation are Freedman et al. [2004] and Egert
et al. [2015]. Recently, several works including Dong and
Loukides [2018], Sparka et al. [2018], and Hu et al. [2021]
have proposed using sketches to compute intersection cardi-
nality estimates in less than linear time.

The most efficient PSI-CA approximation protocol that we
are aware of [Dong and Loukides, 2018] realizes logarithmic
computation and communication time complexity in the
largest possible cardinality value. Moreover, the protocol’s
approximation error can be tuned to adjust the accuracy and
efficiency tradeoff. To illustrate the superior efficiency of
this protocol for large sets, the authors compared it with an
efficient exact PSI-CA protocol [Cristofaro et al., 2012] and
an early approximation protocol [Egert et al., 2015]. The
experimental results show that for set size 106, Cristofaro
et al. [2012] and Egert et al. [2015] (at 1% error rate) have
computation time 3507.38 and 488.48 seconds respectively,
whilst the FM sketch based protocol (at 1% error rate) has
computation time only 2.97 seconds. For more experimental
results, see Dong and Loukides [2018].

2.3 DP PSI

As a popular privacy-enhancing technique that addresses
data contributors’ membership privacy concerns, differential
privacy (DP) [Dwork et al., 2006] has a long history of
application in SMC protocols. The early work of Beimel
et al. [2008] studied the feasibility of using DP to increase
the efficiency of secure function evaluation protocols. More
recent work by Groce et al. [2019] also demonstrated the
effectiveness of DP in reducing standard PSI running costs.
The use of DP in this work is to replace bin padding, which
plays a significant role in hiding the actual sizes of the bins
that contain hashed elements.

Another recent combination of DP and PSI is described in
Kacsmar et al. [2020], which proposed differentially pri-
vate mechanisms for both PSI and PSI-CA, for the imbal-
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anced database setting, where the server holds a much larger
database than the client. By using homomorphic encryption,
the proposed mechanisms provide a stronger protection to
the data, in the sense that the server learns nothing about the
client’s data due to encryption and the client learns DP guar-
anteed set intersection (cardinality). The communication
complexity of the proposed mechanisms is at optimal O(m)
because of the help of homomorphic encryption, where
m is the smaller database size. The computation time is
O(m+ n), which does not take into account ciphertext size
expansion due to encryption.

3 SPLIT, COUNT, AND SHARE

Suppose Alice holds the set A ⊂ S and Bob holds the set
B ⊂ S. Alice would like to estimate |A∩B|, Bob is willing
to work with Alice to help her do so, but neither party is
willing to reveal the elements of their set to the other. To
simplify the subsequent analysis, we will assume that Alice
and Bob are willing to share the cardinality of their sets.

Also, suppose that for 1 ≤ i ≤ r Alice and Bob can ran-
domly partition their sets into two subsets Ai,0, Ai,1 ⊂ A
and Bi,0, Bi,1 ⊂ B in such a way that if x ∈ A ∩ B then
Alice and Bob will put x into the same set; i.e. Alice puts
x in Ai,j if and only if Bob puts x in Bi,j . We will call
each such partitioning a round and assume that the splitting
decisions in each round are independent of all other rounds.

Finally, after each round both parties count how many of
their set elements were put into each subset. That is, for all i
Alice computes Vi = |Ai,1| and Bob computes Wi = |Bi,1|.
Recall that Alice and Bob make the same splitting decisions
for all x ∈ |A∩B|. If |A∩B| is large relative to |A| and |B|
then Vi and Wi will be strongly correlated. Conversely, if
|A ∩B| is small relative to |A| and |B| then Vi and Wi will
be weakly correlated. So, the sample correlation between Vi
and Wi can be used to estimate |A ∩B|.

Notice that if Bob publishes his vector of counts, then Alice
could use that information to make inferences about Bob’s
set. If Bob uses a differentially private release mechanism to
perturb his vector of counts, he could publish the perturbed
counts without revealing which elements comprise his set
B. Alice could then compute the correlation between her
vector of counts and Bob’s perturbed vector of counts to
derive an estimate of |A ∩B|.

In principle, Bob could use any differentially private mecha-
nism to perturb his counts. The binomial mechanism (see
Appendix A), however, is a particularly appealing choice for
this application. Notice that Bob’s unperturbed counts will
be binomially distributed. If Bob uses the binomial mech-
anism to perturb his vector of counts, then his perturbed
counts will be binomially distributed as well. Furthermore,
Bob can generate his perturbed counts by simply augment-
ing his set with an appropriate number of dummy elements.

3.1 DESCRIPTION

A more precise description of the Split, Count, and Share
protocol is as follows (see Section 3.5 for a derivation of the
value of nε,δ(r)):

(Negotiate) Alice and Bob agree on:

1. a number of rounds to perform r ∈ N,
2. differential privacy parameters (ε, δ),
3. r independent random oracles {Ei}ri=1 where we

have Ei : Z→ {0, 1} for all 1 ≤ i ≤ r.

Split Alice and Bob use independent random oracles to
partition their sets.

1. For 1 ≤ i ≤ r and j ∈ {0, 1}, Alice computes

Ai,j = {x ∈ A : Ei(x) = j}.

2. For 1 ≤ i ≤ r and j ∈ {0, 1}, Bob computes

Bi,j = {x ∈ B : Ei(x) = j}.

Count Alice and Bob count the number of elements in each
of their split-sets.

1. For 1 ≤ i ≤ r, Alice computes

Vi = |Ai,1|.

2. For 1 ≤ i ≤ r, Bob computes

Wi = |Bi,1|+ Binomial(nε,δ(r), 1/2).

Share Bob shares his (perturbed) counts with Alice.

1. Bob sends {Wi}ri=1 to Alice.

(Estimate) Alice estimates |A ∩B|.
1. Alice computes

̂|A ∩B| = 4

r

r∑
i=1

(Vi − µV ) (Wi − µW ) , (1)

where µV = |A|/2 and µW = (|B|+nε,δ(r))/2.

Crucially, Bob receives no output from the protocol. Alice
should not share ̂|A ∩B| with Bob. Because Bob knows the
values of his perturbed counts that Alice used to compute
̂|A ∩B|, he could use the value of Alice’s estimate to make

inferences about her set.

If Bob wants to estimate |A ∩ B|, then Alice should in-
stead use the differentially private mechanism to perturb
her counts and send those perturbed counts to Bob. Bob
can then use his (unperturbed) vector of counts and Alice’s
perturbed vector of counts to compute his estimate. This
is conceptually equivalent to Alice and Bob running the
protocol a second time, but with their roles reversed.
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3.2 MOTIVATION

To motivate our choice of estimator as described by Equa-
tion (1), we first need to establish some notation. Notice that
for 1 ≤ i ≤ r we have

Vi = Xi + Zi

Wi = Yi + Zi +Ni

where Xi, Yi, Zi, and Ni are independent bino-
mial random variables with Xi ∼ B(|A| − |A ∩B|, 1/2),
Yi ∼ B(|B| − |A ∩B|, 1/2), Zi ∼ B(|A ∩B|, 1/2), and
Ni ∼ B(nε,δ(r), 1/2).

So, if µV = E[Vi] and µW = E[Wi] then

µV = |A|/2
µW = (|B|+ nε,δ(r)) /2.

Similarly, if σ2
V = Var(Vi) and σ2

W = Var(Wi) then

σ2
V = |A|/4

σ2
W = (|B|+ nε,δ(r)) /4.

Notice that µV , µW , σ2
V , and σ2

W are defined in terms of
the known quantities |A|, |B|, and nε,δ(r).

If we let σVW = Cov(Vi,Wi), then we have

σVW = |A ∩B|/4. (2)

Because σVW depends on the unknown quantity |A ∩ B|,
we cannot use it directly. We can, however, estimate σVW
via the sample covariance σ̂VW where

σ̂VW =
1

r

r∑
i=1

(Vi − µV )(Wi − µW ). (3)

Together, (2) and (3) suggest that 4σ̂VW is a reasonable
estimator of |A ∩B|.

3.3 ADDITIONAL NOTATION

In what follows, it will be convenient to work with the
correlations rather than covariances. Observe that if we let
ρε,δ(r) be the correlation between Vi and Wi, then we have

ρε,δ(r) =
σVW
σV σW

=
|A ∩B|√

|A| (|B|+ nε,δ(r))
.

Because ρε,δ(r) depends on the unknown quantity |A ∩B|,
we cannot use it directly. We can, however, estimate ρε,δ(r)
via the sample correlation ρ̂. If we let Ṽi = (Vi − µV )/σV
and W̃i = (Wi − µW )/σW then we have

E
[
ṼiW̃i

]
= ρε,δ(r),

Var
(
ṼiW̃i

)
= 1 +

|A ∩B|2 − 2|A ∩B|
|A| (|B|+ nε,δ(r))

.

and

ρ̂ =
σ̂VW
σV σW

=
1

r

r∑
i=1

ṼiW̃i. (4)

3.4 COMPLEXITY

To carry out the Split, Count, and Share protocol, Bob must
compute Ei(b) for all 1 ≤ i ≤ r and b ∈ B. He must
then generate r binomial random variables to perturb each
element in his count vector. So, the total time complexity of
the protocol for Bob is O(r|B|). Alice must compute Ei(a)
for all 1 ≤ i ≤ r and a ∈ A. She must then compute the
correlation between the two vectors of counts. So, the time
complexity of the protocol for Alice is O(r|A|).

Observe that the Split, Count, and Share protocol is a stream-
ing protocol. That is, Alice and Bob do not need to store
the outputs of Ei. Indeed, they do not even need to store
the elements of their sets. Instead, they can each main-
tain a set of r accumulators. Alice can take a single pass
through her set, incrementing her ith accumulator whenever
Ei(a) = 1. After she does so, Alice’s ith accumulator will
contain the value of |Ai,1|. Similarly, Bob can take a single
pass through his set, incrementing his ith accumulator when-
ever Ei(b) = 1. After he does so, Bob’s ith accumulator will
contain the value of |Bi,1|.

As such, the space complexity of the protocol is determined
by the space required to store the two vectors of counts. If
we assume that both parties will use a sixty-four bit inte-
ger to store each count, then the space complexity of the
protocol is O(r). If A or B is small, then this complex-
ity can be reduced by using fewer than sixty-four bits for
each counter. In this case, the complexity of the protocol is
O(r log2(|A|) + r log2(|B|)).

The communication complexity of the protocol is deter-
mined by the amount of data that Bob must send to Alice
when he sends her his vector of perturbed counts. As such,
the communication complexity of the protocol is O(r).

3.5 SECURITY

The security of the Split, Count, and Share protocol is en-
tirely dependent on the noise that Bob adds to his counts
before sharing them with Alice. As mentioned above, Bob
will use the binomial mechanism to perturb his vector of
counts. The binomial mechanism is characterized by two
parameters, n and p. We will restrict our attention to the
case where p = 1/2. We will let nε,δ(r) be the smallest
value of n that provides (ε, δ)-differential privacy for the
r-round version of the Split, Count, and Share protocol.

The privacy guarantees provided by many differentially pri-
vate release mechanisms depend on the sensitivity of the
input query. Precisely how this sensitivity is measured de-
pends on the release mechanism. As discussed in Agarwal
et al. [2018], the privacy guarantee provided by the bino-
mial mechanism depends on three sensitivity parameters,
∆1, ∆2, and ∆∞. The precise nature of this dependence is
described by the following Lemma.
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Lemma 1. If fr is the function that computes the vector
of counts for the r-round Split, Count, and Share protocol,
that is fr(B) = (|B1,1|, |B2,1|, . . . , |Br,1|), then ∆1fr = r,
∆2fr =

√
r, and ∆∞fr = 1.

Proof. We have fr = (fr,1, fr,2, . . . , fr,r) where the coor-
dinate functions {fr,i}ri=1 are independent counting queries.
Because fr,i is real valued, ∆pfr,i = ∆fr,i for all p. Fur-
thermore because fr,i is a counting query we have ∆fr,i = 1
for all 1 ≤ i ≤ r. Therefore

∆1fr =

r∑
i=1

|∆fr,i| = r,

∆2fr =

(
r∑
i=1

(∆fr,i)
2

)1/2

=
√
r,

∆∞fr = max
1≤i≤r

|∆fr| = 1.

Armed with the values of the relevant sensitivity parameters,
we can use the following theorem to determine the value of
nε,δ(r) required to ensure that the binomial mechanism is
(ε, δ)-differentially private.

Theorem 2. Suppose that fr is the function that computes
counts for r rounds of the Split, Count, and Share protocol
and that δ > 0. Let

φδ(r) =

√
8r log

(
1.25

δ

)
ψδ,1(r) =

4r

3(1− δ/10)

ψδ,2(r) =
10
√
r log (10/δ)

(1− δ/10)

ψδ,∞(r) =
8

3

(
log

(
1.25

δ

)
+ log

(
20r

δ

)
log

(
10

δ

))
.

Furthermore let ψδ(r) = ψδ,1(r) + ψδ,2(r) + ψδ,∞(r) and

n′ε,δ(r) =

(
φδ(r) +

√
φδ(r)2 + 4ψδ(r)ε

2ε

)2

.

If we have

nε,δ(r) ≥ max

(
n′ε,δ(r), 92 log

(
10r

δ

)
, 8

)
(5)

then the mechanism used to compute Bob’s counts for
the r-round Split, Count, and Share protocol, that is
M(B, fr(·);nε,δ(r)), is (ε, δ)-differentially private.

Proof. If ∆1fr, ∆2fr, and ∆∞fr are as in Lemma 1, then
Corollary 12 (see Appendix A) implies the result.

Observe that the value of nε,δ(r) grows with r. That is, as
the number of rounds r increases, so too does the amount of
noise required to ensure a given level of differential privacy.
Conceptually, this is because during each round, the noisy
count that Bob shares with Alice reveals some information
about his set. Increasing the amount of noise that Bob adds
during each round ensures that the total amount of infor-
mation that he reveals to Alice is limited. The following
theorem describes the growth rate of nε,δ(r).

Theorem 3. If δ, φδ(r), ψδ(r) are as in Theorem 2 and
nε,δ(r) is the smallest value that satisfies (5), then for all
ε > 0 we have

lim
r→∞

nε,δ(r)

r
= Cε,δ

where

Cε,δ =

φδ(1) +
√
φδ(1)2 + 16ε

3(1−δ/10)

2ε

2

.

Proof. Notice that we have

lim
r→∞

φδ(r)√
r

=

√
8 log

(
1.25

δ

)
lim
r→∞

ψδ(r)

r
=

4

3(1− δ/10)
.

Therefore the result follows from Theorem 2.

3.6 UTILITY

Having determined the amount of noise that Bob needs to
introduce to ensure that the r-round Split, Count, and Share
protocol is (ε, δ)-differentially private, it is natural to ask
how accurately Alice can estimate |A ∩B| using only her
vector of counts and Bob’s vector of perturbed counts. This
will depend on a variety of factors including: the values of ε
and δ, the number of rounds performed r, the size of Alice’s
set |A|, and the size of Bob’s set |B|.

Broadly speaking, Alice’s accuracy improves as r, ε, and δ
increase. Crucially, while increasing |A| and |B| worsens
Alice’s absolute accuracy (i.e. doing so increases the abso-
lute magnitude of her approximation errors), it improves
her relative accuracy. So, if Alice is interested in the rela-
tive magnitude of her approximation errors, then the Split,
Count, and Share protocol will provide better utility as the
input sets A and B get larger.

At first glance, Equation (4) appears to suggests that we
can simply invoke the Strong Law of Large Numbers to
analyze the performance of ρ̂ as an estimator of ρε,δ(r).
Unfortunately, because nε,δ(r) = O(r) (see Theorem 3),
we have limr→∞ ρε,δ(r) = 0. So, the situation is a bit more
complicated and will require more careful analysis.
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In what follows we will prove bounds on the probability
that ̂|A ∩B| differs from |A ∩ B| by arbitrary threshold
values. To do so, we will first characterize how well the sam-
ple correlation ρ̂ approximates the true correlation ρε,δ(r).
Because we have ̂|A ∩B| = ρ̂

√
|A|(|B|+ nε,δ(r)) and

|A ∩ B| = ρ
√
|A|(|B|+ nε,δ(r)), we can “lift” those

bounds to describe how well ̂|A ∩B| approximates |A∩B|.
Our first result shows that the distribution of Alice’s errors
is approximately normally distributed with mean zero and
variance νε,δ(r)/r.

Theorem 4. Let Φ be the cumulative distribution func-
tion (CDF) of a standard normal random variable, that
is Φ(x) = P{N (0, 1) ≤ x}. For all t ≥ 0 we have

lim
r→∞

P

{
|ρ̂− ρε,δ(r)| ≥ t

√
νε,δ(r)

r

}
= 2Φ(−t),

where

νε,δ(r) = 1 +
|A ∩B|2 − 2|A ∩B|
|A|(|B|+ nε,δ(r))

.

Proof. Notice that if Sr =
∑r
i=1 ṼiW̃i, then we have

P

{
|ρ̂− ρε,δ(r)| ≥ t

√
νε,δ(r)

r

}

= P

{∣∣∣∣∣Sr − rρε,δ(r)√
rνε,δ(r)

∣∣∣∣∣ ≥ t
}
.

Recall, E
[
ṼiW̃i

]
= ρε,δ(r) and Var

(
ṼiW̃i

)
= νε,δ(r).

Therefore, because Ṽi and W̃i are bounded, we have

E

[∣∣∣ṼiW̃i − ρε,δ(r)
∣∣∣3] < ∞ and the result follows from

the Berry-Esseen Theorem (Theorem 13).

Notice that the deviations described by Theorem 4 are ab-
solute errors rather than relative errors. This is significant
because limr→∞ ρε,δ(r) = 0. So, when we multiply by√
|A|(|B|+ nε,δ(r)), we will find that the accuracy of Al-

ice’s cardinality estimates will depend on |A| and |B|.

Corollary 5. Let ̂|A ∩B| = 4σ̂VW . For all t ≥ 0 we have

lim
r→∞

P

{∣∣∣ ̂|A ∩B| − |A ∩B|∣∣∣ ≥ t√|A|Cε,δ} = 2Φ(−t),

where Φ(x) = P{N (0, 1) ≤ x} is the cumulative distribu-
tion function of a standard normal random variable.

Proof. Observe that

|ρ̂− ρε,δ(r)| =
∣∣∣∣4σ̂VW − |A ∩B|4σV σW

∣∣∣∣ .

So, we have

P

{
|ρ̂− ρε,δ(r)| ≥ t

√
νε,δ(r)

r

}

= P

{∣∣∣∣∣ ̂|A ∩B| − |A ∩B|
4σV σW

∣∣∣∣∣ ≥ t
√
νε,δ(r)

r

}
.

Furthermore, because limr→∞ νε,δ(r) = 1, Theorem 3 im-
plies that

lim
r→∞

4tσV σW

√
νε,δ(r)

r
= t
√
|A|Cε,δ.

Therefore, Theorem 4 implies the result.

Corollary 5 shows that for large r, Alice’s absolute errors
will generally be on the order of the square root of the size
of her set A. As such, the larger A is, the smaller relative er-
rors will be. This fact is the basis for our claim that the Split,
Count, and Share protocol is particularly well suited for set-
tings where both Alice and Bob’s input sets are large. Notice
also that Corollary 5 implies that there is a law of diminish-
ing returns as r increases. As we approach the asymptotic
regime, the marginal cost for increasing r remains constant
while the marginal utility gain for doing so steadily decays.

Our last result is a concentration inequality that shows that
the sample correlation will be close to the true correlation
with high probability. This result is a finite-sample bound.
That is, it is a statement that applies for all values of r rather
than a statement that applies only in the limit as r diverges.

Theorem 6. For all t ≥ 0 we have

P {|ρ̂− ρε,δ(r)| ≥ t} ≤ 2 exp

(
−rt2

6 + 4t

)
.

Proof. This follows from Bernstein’s Inequality, Khint-
chine’s Inequality, and the Legendre duplication formula.
See Appendix B for details. In particular, this result is a
direct consequence of Theorem 14.

As with Theorem 4, we can “lift” Theorem 6 to make pre-
cise statements about the accuracy of Alice’s cardinality
estimates. Because this operation is so similar to that demon-
strated in the preceding discussion, and because the formu-
lae involved are significantly more complicated, we state
the following result without proof.

Corollary 7. For all γ ≥ 0 we have

lim
r→∞

P
{∣∣ ̂|A ∩B| − |A ∩B|∣∣ ≥ γ√|A|} ≤ Uε,δ(γ),

where

Uε,δ(γ) = 2 exp

(
−γ2

6Cε,δ

)
.
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4 DISCUSSION

To use the Split, Count, and Share protocol in practice, Alice
and Bob must agree on a suitable set of parameter values.
We can subdivide these parameters into two types. The
first describe how Alice and Bob will make their splitting
decisions in each round of the protocol. The second describe
the privacy guarantees that the protocol will provide.

To reason about the first type of parameter, recall that Alice
and Bob need to agree on a collection of r independent ran-
dom oracles to use as splitting functions. Cryptographically
secure hash functions are a natural class of functions to use
to implement these random oracles in practice. Furthermore,
if E is a hash function with a digest length of r bits, then
Alice and Bob can compute all of the splitting decisions for
a given input with a single function evaluation. So, setting
E = SHA3-512 and r = 512 may be reasonable defaults.

To reason about the second type of parameters, recall that
only Alice will receive the output of the protocol. So, Bob
is more concerned with privacy than utility. He needs the
values of the privacy parameters (ε, δ) to be small enough
to guarantee sufficient protection for his data. Alice is more
concerned with utility than privacy. She needs the values of
the privacy parameters (ε, δ) to be large enough to guarantee
that her estimates will be sufficiently accurate.

As a general rule [McSherry, 2017], δ should be chosen to
be negligible relative to 1/|B|. As such, a cryptographically
small value such as δ = 2−128 may be a reasonable default.
It is less clear what a reasonable default value for ε might
be. Appropriate values for ε depend on how much privacy
loss Bob is willing to tolerate and how often he expects to
participate in the protocol. Because the utility guarantees
for the protocol are given in terms of the relative standard
error of Alice’s estimates, the choice of ε also depends on
the size of her set.

Figure 1 depicts the relationship between the value of ε
and the approximate standard error of Alice’s cardinality
estimates. Here, we let r = 512, δ = 2−128, |A| = |B|,
and |A ∩ B| = |A|/2. Each curve in the graph describes
this relationship for a different value of |A|. Observe that
the standard error decreases as ε and |A| increase. Further-
more, notice that we have lim|A|→∞ 4σV σW /|A| = 1 and
lim|A|→∞ νε,δ(r) ≈ 1.25. So, as |A| increases, the relative
standard error converges to

√
1.25/512 ≈ 0.05.

So, we see that if both of their sets are large, then Alice
and Bob can use the Split, Count, and Share protocol to
compute fairly accurate estimates of how many elements
their sets have in common. For relatively small values of ε,
say ε = 0.05, Alice can compute cardinality estimates that
are accurate to within 0.1 · |A| approximately 96% of the
time. Doing so requires only that both parties hash their set
elements and then update each of r = 512 counters after
computing each hash.

Figure 1: Standard Error Curves.

4.1 DISCRETE GAUSSIAN NOISE

One idiosyncrasy of the Split, Count, and Share protocol
as described above is the distribution of the noise that Bob
uses to ensure differential privacy. As described, Bob uses
the binomial mechanism to perturb his counts. This allowed
us to compute rigorous finite-sample tail bounds on the
estimate errors that the protocol will produce. This, in turn,
allows us to make strong statements about the kinds of utility
guarantees the protocol can provide. There are, however,
alternative noise distributions that Bob could use.

In particular, he could use the discrete Gaussian mechanism
Canonne et al. [2020]. That is, Bob could use a release
mechanism that perturbs his counts with noise drawn from
a discrete Gaussian distribution. This is appealing because
the discrete Gaussian mechanism has been shown to outper-
form the binomial mechanism. In this case, by “outperform”
we mean that if parameters are chosen such that the two
mechanisms provide equivalent privacy guarantees, then the
variance of the noise produced by the discrete mechanism
is smaller than that produced by the binomial mechanism.

Indeed, Figure 2 depicts the performance of two versions
of the Split, Count, and Share mechanism, one using the
discrete Gaussian mechanism and one using the binomial
mechanism. As in Figure 1, we let r = 512, δ = 2−128,
|A| = |B|, and |A ∩ B| = |A|/2. Each curve in the graph
depicts the absolute difference, averaged over one thousand
experiments, between the set cardinality estimate produced
by the protocol and the true value of |A∩B|. For each value
of |A| we have a curve describing the performance of the
binomial mechanism, depicted with a solid line, and a curve
describing the performance of the discrete Gaussian mecha-
nism, depicted with a dashed line. In all cases we see that
the discrete Gaussian mechanism outperforms the binomial
mechanism. This difference is fairly small, however, and
both versions exhibit similar qualitative behavior.
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Figure 2: Binomial vs Discrete Gaussian Noise.

Unfortunately, the output distribution of Bob’s perturbed
counts when he uses the discrete Gaussian mechanism is
complicated. As such, the utility guarantees that we pro-
vide above no longer apply. Given the empirical evidence
presented here, however, it might be reasonable to assume
that these utility guarantees are conservative. So, if Alice
and Bob are interested in maximizing utility subject to some
preexisting privacy constraints, then they may be best served
by using the version of the protocol in which Bob uses the
discrete Gaussian mechanism to perturb his counts.

5 FUTURE WORK

The results described above suggest several natural avenues
for future research. Most obvious among these is to explore
alternative protocols that could provide better utility than
the Split, Count, and Share protocol. The naïve approach
of combining a traditional SMC protocol to compute the
exact set intersection cardinality and a simple differentially
private release mechanism is one such alternative that is
optimal with respect to the utility that it provides. Unfortu-
nately, traditional PSI-CA protocols are expensive and thus
impractical to use when Alice and Bob’s sets are large. So,
any alternative protocols must be efficient in terms of time
and space complexity to accommodate large inputs.

Notice that the cosine of the angle between the characteristic
vectors of the sets A and B is equal to the correlation be-
tween Alice and Bob’s vectors of counts in the Split, Count,
and Share protocol. Furthermore, in Charikar [2002], the
author describes how SimHash can be used to estimate the
size of the intersection of two sets by estimating the angle
between their characteristic vectors. So, SimHash could be
used as an explicit basis for other differentially private set
intersection cardinality estimation protocols. Perhaps other
set similarity estimation algorithms, e.g. MinHash [Broder,
1997], could be used in similar ways as well.

A DIFFERENTIAL PRIVACY

Definition 8 (Dwork et al. [2006]). A randomized algorithm
M with domain N|χ| is (ε, δ)-differentially private if for all
S ⊂ Range(M) and for all x, y ∈ N|χ| with ‖x− y‖1 ≤ 1
we have

P{M(x) ∈ S} ≤ eε P{M(y) ∈ S}+ δ.

If δ = 0 we say thatM is ε-differentially private.

Definition 9 (Dwork et al. [2006]). Let f : N|χ| → Rd be
an arbitrary d-dimensional function. The `p sensitivity of f
is ∆pf = max{‖f(x)− f(y)‖p : x, y ∈ N|χ|, ‖x− y‖1}.
Definition 10 (Agarwal et al. [2018]). Suppose that we
have f : N|χ| → Zr. The binomial mechanism, denoted
MB(x, f(·);n), adds noise Ni ∼ Binomial(n, 1/2) to
each of the r components of the output of f . That is,

MB(x, f(·);n) = f(x) + (N1, N2, . . . , Nr),

where {Ni}ri=1 are independent random variables.

Theorem 11 (Agarwal et al. [2018]). Let f : N|χ| → Zr
and δ > 0. Let ∆i = ∆if for i ∈ {1, 2,∞} and let

φ = ∆2 ·

√
8 log

(
1.25

δ

)
ψ1 = ∆1 ·

4

3(1− δ/10)

ψ2 = ∆2 ·
10
√

log (10/δ)

(1− δ/10)

ψ∞ = ∆∞ ·
8

3

(
log

(
1.25

δ

)
+ log

(
20r

δ

)
log

(
10

δ

))
.

Finally, let ψ = ψ1 + ψ2 + ψ∞.

If n ≥ max(92 log(10r/δ), 8∆∞) then the binomial mech-
anismMB(x, f(·);n) is (ε, δ)-differentially private for

ε ≥ φ√
n

+
ψ

n
.

Proof. See Appendix B of Agarwal et al. [2018].

Corollary 12 (Agarwal et al. [2018]). Suppose that f , δ, φ,
and ψ are as in Theorem 11 and ε > 0. If

n′ =

(
φ+

√
φ2 + 4ψε

2ε

)2

then for every

n ≥ max

(
n′, 92 log

(
10r

δ

)
, 8∆∞(f)

)
(6)

the binomial mechanism MB(x, f(·);n) is (ε, δ)-
differentially private.

Proof. This follows from an application of the quadratic
formula to determine the smallest value of n required to
ensure that (6) holds.
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B CONCENTRATION INEQUALITIES

Theorem 13 (Berry-Esseen Theorem). Let {Xi}ri=1 be a
sequence of independent and identically distributed ran-
dom variables with E[Xi] = 0, Var(Xi) = 1, and
E[|X|3] = β3 < ∞. Let Sr =

∑r
i=1Xi and let Fr de-

note the cumulative distribution function of Sr/
√
r. That

is Fr(x) = P{Sr ≤ x
√
r}. Let Φ denote the cumulative

distribution function of a standard normal random variable.
That is, Φ(x) = P{N (0, 1) ≤ x}. Then there exists a finite
positive absolute constant C0 such that

sup
x∈R
|Fr(x)− Φ(x)| ≤ C0β3√

r
.

Proof. See Berry [1941], Shevtsova [2011].

Theorem 14. Suppose that {(Xi, Yi)}ni=1 are indepen-
dent random vectors with Xi ∼ Binomial(nX , 1/2) and
Yi ∼ Binomial(nY , 1/2) for all 1 ≤ i ≤ n. If we let
X̃i = (Xi − µX)/σX and Ỹi = (Yi − µY )/σY then

P

{
1

n

∣∣∣∣∣
n∑
i=1

X̃iỸi −E[X̃iỸi]

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
−nt2

6 + 4t

)
.

Proof. Bernstein’s Inequality implies that it suffices to show
that for all p ≥ 2 we have

E
[∣∣X̃iỸi

∣∣p] ≤ 3

2
p!2p−2.

To that end, observe that for all 1 ≤ i ≤ n, if p ≥ 2 we have

E
[∣∣X̃iỸi

∣∣p] ≤√E
[
X̃2p
i

]√
E
[
Ỹ 2p
i

]
(7)

≤ 2p√
π

Γ (p+ 1/2) (8)

=
2p√
π

(√
πΓ(2p+ 1)

22pΓ(p+ 1)

)
(9)

=
(2p)!

2pp!
,

where (7) is an application of the Cauchy-Schwartz inequal-
ity, (8) is an application of Khintchine’s inequality, and (9)
is an application of the Legendre duplication formula.

It remains to show that for all p ≥ 2 we have

(2p)!

2pp!
≤ 3

2
p!2p−2.

Let f(p) = (2p)!
2pp! and g(p) = 3

2p!2
p−2 and observe that

we have f(p + 1) = (2p + 1)f(p) < (2p + 2)f(p) and
g(p + 1) = (2p + 2)g(p). Notice that f(2) = g(2) = 3.
Therefore, if f(q) ≤ g(q) for all q ∈ {2, 3, . . . , p}, then
f(p+1) ≤ g(p+1) and the result follows by induction.
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and Tanmay Choudhury. Secure and efficient multiparty
private set intersection cardinality. Advances in Mathe-
matics of Communications, 15(2):365, 2021.

Irit Dinur and Kobbi Nissim. Revealing information while
preserving privacy. In Proceedings of the twenty-second
ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, pages 202–210, 2003.

Samuel Dittmer, Yuval Ishai, Steve Lu, Rafail Ostrovsky,
Mohamed Elsabagh, Nikolaos Kiourtis, Brian Schulte,
and Angelos Stavrou. Function secret sharing for psi-
ca: With applications to private contact tracing. arXiv
preprint arXiv:2012.13053, 2020.

Changyu Dong and Grigorios Loukides. Approximating
private set union/intersection cardinality with logarithmic
complexity. IACR Cryptol. ePrint Arch., 2018:495, 2018.

Thai Duong, Duong Hieu Phan, and Ni Trieu. Catalic: dele-
gated PSI cardinality with applications to contact tracing.
In International Conference on the Theory and Appli-
cation of Cryptology and Information Security, pages
870–899. Springer, 2020.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. Calibrating noise to sensitivity in private data
analysis. In Theory of Cryptography: Third Theory of
Cryptography Conference, TCC 2006, New York, NY,
USA, March 4-7, 2006. Proceedings 3, pages 265–284.
Springer, 2006.

Rolf Egert, Marc Fischlin, David Gens, Sven Jacob,
Matthias Senker, and Jörn Tillmanns. Privately comput-
ing set-union and set-intersection cardinality via bloom
filters. In Australasian Conference on Information Secu-
rity and Privacy, pages 413–430. Springer, 2015.

David Evans, Vladimir Kolesnikov, Mike Rosulek, et al. A
pragmatic introduction to secure multi-party computation.
Foundations and Trends® in Privacy and Security, 2(2-3):
70–246, 2018.

Michael J Freedman, Kobbi Nissim, and Benny Pinkas. Ef-
ficient private matching and set intersection. In Inter-
national conference on the theory and applications of
cryptographic techniques, pages 1–19. Springer, 2004.

Michael J Freedman, Carmit Hazay, Kobbi Nissim, and
Benny Pinkas. Efficient set intersection with simulation-
based security. Journal of Cryptology, 29(1):115–155,
2016.

Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu,
and Avishay Yanai. Oblivious key-value stores and am-
plification for private set intersection. In Annual Interna-
tional Cryptology Conference, pages 395–425. Springer,
2021.

Oded Goldreich. Secure multi-party computation.
Manuscript. Preliminary version, 78(110), 1998.

Adam Groce, Peter Rindal, and Mike Rosulek. Cheaper
private set intersection via differentially private leakage.
Proceedings on Privacy Enhancing Technologies, 2019
(3), 2019.

Changhui Hu, Jin Li, Zheli Liu, Xiaojie Guo, Yu Wei, Xuan
Guang, Grigorios Loukides, and Changyu Dong. How to
make private distributed cardinality estimation practical,
and get differential privacy for free. In 30th USENIX
Security Symposium (USENIX Security 21), pages 965–
982, 2021.

Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Pa-
tel, Shobhit Saxena, Karn Seth, Mariana Raykova, David
Shanahan, and Moti Yung. On deploying secure comput-
ing: Private intersection-sum-with-cardinality. In 2020
IEEE European Symposium on Security and Privacy (Eu-
roS&P), pages 370–389. IEEE, 2020.

Bailey Kacsmar, Basit Khurram, Nils Lukas, Alexander Nor-
ton, Masoumeh Shafieinejad, Zhiwei Shang, Yaser Baseri,
Maryam Sepehri, Simon Oya, and Florian Kerschbaum.
Differentially private two-party set operations. In 2020
IEEE European Symposium on Security and Privacy (Eu-
roS&P), pages 390–404. IEEE, 2020.

Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and
Ni Trieu. Efficient batched oblivious PRF with applica-
tions to private set intersection. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 818–829, 2016.

Yehuda Lindell. Secure multiparty computation (mpc).
Cryptology ePrint Archive, 2020.

Frank McSherry. How many secrets do you have?
https://github.com/frankmcsherry/
blog/blob/master/posts/2017-02-08.md,
February 2017. Blog Post.

1693

https://github.com/frankmcsherry/blog/blob/master/posts/2017-02-08.md
https://github.com/frankmcsherry/blog/blob/master/posts/2017-02-08.md


Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.
Spot-light: Lightweight private set intersection from
sparse ot extension. In Annual International Cryptology
Conference, pages 401–431. Springer, 2019a.

Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko,
and Avishay Yanai. Efficient circuit-based psi with lin-
ear communication. In Annual International Conference
on the Theory and Applications of Cryptographic Tech-
niques, pages 122–153. Springer, 2019b.

Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.
PSI from PaXoS: fast, malicious private set intersection.
In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 739–
767. Springer, 2020.

Peter Rindal and Phillipp Schoppmann. VOLE-PSI: fast
OPRF and circuit-psi from vector-ole. In Annual In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, pages 901–930. Springer,
2021.

Mike Rosulek and Ni Trieu. Compact and malicious pri-
vate set intersection for small sets. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 1166–1181, 2021.

Irina Shevtsova. On the absolute constants in the berry-
esseen type inequalities for identically distributed sum-
mands. arXiv preprint arXiv:1111.6554, 2011.

Hagen Sparka, Florian Tschorsch, and Björn Scheuermann.
P2kmv: A privacy-preserving counting sketch for effi-
cient and accurate set intersection cardinality estimations.
Cryptology ePrint Archive, 2018.

Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri,
and Dawn Song. Epione: Lightweight contact tracing
with strong privacy. arXiv preprint arXiv:2004.13293,
2020.

Ni Trieu, Avishay Yanai, and Jiahui Gao. Multiparty private
set intersection cardinality and its applications. Cryptol-
ogy ePrint Archive, 2022.

1694


	Introduction
	Related Work
	Exact PSI
	Approximate PSI
	DP PSI

	Split, Count, and Share
	Description
	Motivation
	Additional Notation
	Complexity
	Security
	Utility

	Discussion
	Discrete Gaussian Noise

	Future Work
	Differential Privacy
	Concentration Inequalities

