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A SEMIDEFINITE RELAXATION OF THE BOUND OPTIMIZATION IN EQ. (4)

Let the discrepancy measures in Eq. (4) in Sec. 3.2 be given by MMD (maximum mean discrepancy) with kernels kc→c
′′

and kc
′→c, respectively. When representing the distributions via samples, we have (see [Gretton et al., 2012]):
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and where ed := (1, . . . , 1)> ∈ Rd denotes the d-dimensional all-1’s vector, so that ed
d is the uniform probability vector on

d elements. Similarly, at the input of component c we have
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where by a slight abuse of notation we define the input kernel matrices as(
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Taken together, we can write (4) in Sec. 3.2 – or rather its square – as the following quadratic optimization problem:
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where the vector constraint α ≥ 0 is understood entry-wise.

Unfortunately, the optimization problem (5–8) is not a convex optimization problem because the objective is to maximize a
convex function. While heuristic solvers are available, such as the package qcqp [Park and Boyd, 2017], we avoid those
heuristic methods, as they do not guarantee a valid upper bound and can be inefficient in computation.

Instead we follow approaches more tailored to the problem, and relax the original problem (5–8) to obtain an efficiently
solvable semidefinite program (SDP), a type of convex optimization problem. We follow the “tightened semidefinite
relaxations" from Park and Boyd [2017][Secs. 3.3, 3.4].

For this, we introduce the (symmetric) matrix variable A := αα> and rewrite the quadratic terms in (5) and (6) via the
matrix traces α>KV V

c→c′′α = Tr[KV V
c→c′′A] and α>KV V

c′→cα = Tr[KV V
c′→cA], so that they are now linear in the variable A.

Due to (8), A = αα> is entry-wise nonnegative, which we write as A < 0; furthermore, it holds that e>VcAeVc = 1 due to
(7). Also due to (7), we can even recover α from A = αα> via α = AeVc . Therefore, we will omit our original variable α in
favor of the matrix variable A and simply define the expression α := AeVc . Rewriting (5–8) in terms of A and additionally
adding the constraints A = αα>, e>VcAeVc = 1 and A < 0 gives the same optimum as (5–8). The resulting (rewritten)
problem is convex except for the equality constraint A = αα>. We finally relax this constraint to the matrix inequality
A ≥ αα> (where the inequality is understood w.r.t. the positive semidefinite order), which is convex. Writing this matrix
inequality in the manifestly convex way (12) as a semidefinite constraint [Park and Boyd, 2017], we therefore obtain:

Lemma 1 (Tightened SDP relaxation of (5–8)). Define the tightened SDP relaxation of (5–8) as the following semidefinite
optimization problem (SDP) with symmetric matrix variable A = A> ∈ RV c×V c and the abbreviation α := AeVc :
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A < 0 (entry-wise; above the diagonal suffices due to constraint (12) and A = A>). (14)

Then its optimal value satisfies (Bc→c
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SDR-tightened)2 is an upper bound on the optimum
of the non-convex problem (5–8), which itself is (the square of) an upper bound on the (unknown) MMD discrepancy
D(p|c→c′′ , q|c→c′′) (cf. Eq. (4) in Sec. 3.2).

To solve the relaxed semidefinite programs from Lemma 1, we use the library CVXPY [Diamond and Boyd, 2016]. Note
that due to the relaxation, the value (Bc→c

′′

SDR-tightened)2 of the relaxed optimization from Lemma 1 is in general different
(larger, i.e. worse) than the (Bc→c

′′
)2 from the original optimization (5); this can happen if the found optimum Â of

the relaxed problem in Lemma 1 cannot be expressed as Â = α̂α̂> (i.e. the optimal Â is not of rank 1). To detect such
a relaxation gap, one can plug the found vector α̂ := ÂeVc into (5) and compare its value Optorig(α̂) to the optimal
value Optrelax(Â) = (Bc→c
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Empirically we find in this way that the relaxation in Lemma 1 is basically tight in most problem instances, i.e. it returns
(almost) the correct optimum of (5–8). See App. E.4 for an empirical evaluation.



With this relaxation, the number of optimization variables increases from dim(α) = V c in (5–8) to dim(A = A>) =
V c(V c + 1)/2 ∼ (V c)2/2 in (10–14), i.e. it grows quadratically with the number of validation points V c for component c;
the number of optimization constraints also increases like ∼ C + (V c)2. This results in a computational limitation which
restricts the number of validation inputs to roughly V c . 103 with standard convex solvers on standard computing hardware.
If one would like to apply our general validation method with more validation points V c, one would have to to find another
way to efficiently upper-bound the optimization problem (5–8), instead of our tightened SDP relaxation (Lemma 1).

To run the whole validation method in Algorithm 1, the number of bound optimizations (5–8) or (10–14) to perform equals
the number of connections c→ c′′ between components of the system (where 1 ≤ c < c′′ ≤ C + 1, see Sec. 3.1), i.e. the
number of such bound computation lies between C (for the linear chain) and C(C + 1)/2 (for the “fully connected” system).
See App. E.5 for actual runtimes of our method.

B DETAILS ON THE FAILURE PROBABILITY OPTIMIZATION IN EQ. (5)

Similar to (5–8), we can formulate a sample-based optimization for the optimization problem in Eq. (5) in Sec. 3.2 in
the case of using MMD as the discrepancy measure, to compute an upper bound Fmax on the system failure probability
pfail. More precisely, assuming that this MMD measure on the TPI output yC has kernel ky ≡ kC→C+1, we can write
this problem (optionally with the monotonicity and Lipschitz conditions mentioned below Eq. (5) in Sec. 3.2 with the
optimization variable α ∈ RV :
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where we defined kernel matrices on the TPI grid-points gv and simulation outputs yMn :

(KV V
y )v,v′ = ky (gv, gv′) ,

(KVM
y )v,n′ = ky

(
gv, y

M
n′

)
,

(KMM
y )n,n′ = ky

(
yMn , y

M
n′

)
.

The optimization problem (16–20) has a linear objective and linear constraints except for the quadratic MMD constraint
(17). It is thus a convex optimization problem that can be solved efficiently and exactly, without relaxations (unlike required
for the bound optimization (4) in Sec. 3.2, see App. A).

The above formulation depends on a set of grid-points gv and a Lipschitz constant Λmax. Ideally, the Λmax should be a tight
upper bound on the Lipschitz constant of the system’s TPI output density py . As we do not know this density py , we use a
heuristic estimator of Λmax computed from histograms of the simulation output distribution qy as a proxy (see experimental
details in App. D). In order for the solution of (16–20) to be close to its true value (5) in Sec. 3.2, the grid-points need to be
sufficiently dense in order to reveal differences as measured by the MMD constraint (17) (see also App. C). As the MMD
measure D(py, qy) with kernel ky can also be interpreted as the L2-distance between the corresponding kernel density
estimators of the samples from py and qy [Gretton et al., 2012], we choose the grid-spacing relative to the lengthscale `
of the kernel ky; more precisely, in our experiments we require that gv+1 − gv ≤ `

5 . Additionally, the grid-points should
cover the range where the support of both py and qy lies (although py is not known). For our experiments, we chose the grid
range [g1, gV ] such that it contains all data-points from qy , as well as a significantly large region around the threshold τ (see
App. D). Even though the system’s TPI output distribution py is not known, in many applications the plausible (or even the
potential) range of TPI values yC will typically be known from domain knowledge; in this case, the grid endpoints should
be chosen to cover this range.

Note, that the optimization for the failure probability in Eq. (5) in Sec. 3.2 or in Eqs. (16–20) is also possible for higher-
dimensional TPI quantities yC . In this case, a specification yC ∈ T PI fail of the critical region is required (replacing the



specification yC > τ in (16)). Even if this specification is non-linear, the optimization objective will remain linear and the
constraints quadratic, again by choosing a grid on the TPI space as in the one-dimensional case.

By construction, the final solution Fmax (computed via (4),(5 in Sec. 3.2), or more concretely via (10–14),(16–20)) is an
upper bound on the system’s true failure probability Fmax ≥ pfail =

∫
1y>τdpy(y) =

∫
1S(x)>τdS(x)dpx(x) (see Prop.

1 in Sec. 3.2 and also App. C); as a result it can be used for virtual system validation. This bound Fmax remains valid for
any discrepancy measure, choice of kernels or lengthscales. For example, when choosing MMD with a very large kernel
lengthscale as discrepancy measure, its discriminative power is minimal, resulting in very small discrepancy values and
hence small corresponding bounds Bc→c

′′
. However, for such a measure, it is also difficult to distinguish pα from the given

q|c→c′′ in a later bound propagation step, counteracting the small obtained Bc→c
′′

and potentially resulting in a larger
final Fmax. We, therefore, use the final Fmax as the minimization objective in a Bayesian Optimization scheme [Fröhlich
et al., 2020] to select the kernel parameters, see also App. D. Another option to select good kernel parameters would be
gradient-based minimization of Fmax w.r.t. to the kernel parameters, which is possible in our framework as the convex
programs from Apps. A and B can be (automatically) differentiated [Agrawal et al., 2019].

C PROOF AND EXTENSIONS OF PROP. 1 (SEC. 3.2)

Proof of Prop. 1. Under the assumptions (i) and (ii) that the set of validation inputs {xcv}v contains all actually occurring
input points into Sc and that pα =

∑
v αvδxcvS

c(xcv) is built with the correct outputs Sc(xcv), this set of distributions pα
over which we optimize in (4) (see Sec. 3.2) contains the joint real-world distribution of in- and outputs of Sc (i.e. the
marginal of the real-world distribution p capturing the joint in- and outputs of Sc). Thus, if the input bound values Bc

′→c

were true upper bounds on the actual D(p|c′→c, q|c′→c), then Bc→c
′′

from (4) in Sec. 3.2 is also a true upper bound on
the actual D(p|c→c′′ , q|c→c′′). By induction on c = 1, 2, . . . , C we can thus conclude that By ≡ BC→C+1 is a true upper
bound on the real-world discrepancy D(py, qy) ≡ D(p|C→C+1, q|C→C+1) if only the initial bound values B0→c were true
upper bounds on the actual initial discrepancies D(p|0→c, q|0→c); we assume this last statement about the initial bound
values B0→c to be true since they are supposed to be given in that way (alternatively, the same statement can be concluded
with high confidence ≥ 1− δ if the B0→c were computed via samples from px [Gretton et al., 2012]; see end of Sec. 3.1).
Finally, by the same reasoning, under the assumption (iii) that the set {gv}v of grid-points contains all occurring real-world
TPI values, the optimization (5) from Sec. 3.2 translates the true upper bound By into a true upper bound Fmax on the
real-world failure probability pfail.

Note that further upper-bounding the optimizations (4),(5) from Sec. 3.2 by relaxations as in App. A leads to valid upper
bounds Fmax as well, by the same reasoning as in the above proof.

The assumptions (i) and (ii) of Prop. 1 are so strong that one basically knows all system maps Sc explicitly, at least on all
those inputs points that occur in the real world. If one would, in addition, know the real-world input distribution px (e.g. in a
sample-based way), one could (in theory) simulate the system map S on all those samples and compute (or at least estimate)
the real-world TPI distribution py by Monte-Carlo sampling; thus determine the desired pfail arbitrarily well. However, we
do not need the input distribution px to be known explicitly for our proposed method to be applicable; and we apply our
method even when the strong knowledge about the Sc implied by (i) and (ii) is not available.

Remark 1 (Upper bounds in the limit). Beyond the strong assumptions of Prop. 1, the upper bounds obtained by our
method (4),(5) (see Sec. 3.2) can be proven to be valid under weaker, more realistic assumptions. This appears possible,
for example, in the following scenario, as the numbers V c ≡ V of available validation data points grow: (a) The set of
validation inputs {xcv}Vv=1 covers the input space Scin ⊂ Rdcin of Sc increasingly densely as V →∞, e.g. in the sense that
maxx∈Scin minv∈{1,...,V } ‖x− xcv‖ −→ 0 as V →∞; with an analogous condition for the set of grid-points {gv}Vv=1 used
in (5) from Sec. 3.2. (b) As discrepancy measures Dc′→c we use MMD distances w.r.t. continuous and bounded kernel
functions kc

′→c. This is satisfied by all kernels used here, such as the squared-exponential and IMQ kernels, even when
applied after a data embedding [Gretton et al., 2012]. (c) The real-world subsystem maps Sc : xc 7→ Sc(xc) (which are not
known explicitly, and whose output is a probability distribution in general) are continuous w.r.t. the discrepancy measures
Dc→c′′ at their output. This condition would be implied by continuity w.r.t. the Wasserstein or the total variation distances
and might in some cases be argued from physical considerations. For deterministic components Sc, this requirement simply
means that the deterministic mapping is continuous. (d) For each validation input xcv we have measured a sufficient number
W of i.i.d. samples ycv,w ∼ Sc(xcv) (w = 1, . . . ,W ) from the true but unknown output distribution Sc(xcv) and we use
the sample-based pα :=

∑V
v=1

∑W
w=1

αv
W δxcvδycv,w in the optimization (4) from Sec. 3.2. We need W = W (V ) to be

large enough that the empirical estimate (1/W )
∑W
w=1 δycv,w is sufficiently close to Sc(xcv) in the kernel mean embedding



[Muandet et al., 2017], instead of the exact equality required by Prop. 1. (e) The initial B0→c must either be true upper
bounds on the actual D(p|0→c, q|0→c), or must be computed empirically from an increasing number of i.i.d. samples
{xv}Vv=1 coming from the real-world distribution px [Gretton et al., 2012] (see end of Sec. 3.1).

Even under such more realistic circumstances, one may still obtain a provably valid upper bound Fmax on the real-world
failure probability pfail via our method in the limit V → ∞ of sufficiently many validation points, at least almost surely
over the sampling of ycv,w (and xv in the case where B0→c are estimated from those samples) and up to any additive ε > 0
chosen beforehand. This can be shown by following the steps of the proof of Prop. 1, replacing each valid upper bound or
exact equality by an approximation or limiting argument, using the above assumptions. Even more, when e.g. the kernels
kc

′→c as well as Lipschitz constants of the maps Sc are known, then more effective statements can be obtained, in the sense
that V can then be related to ε and to the confidence in the final Fmax being a valid bound.

However, even such more realistic convergence statements would still not be practical in all cases, since e.g. the assumption
(a) generally requires a number of validation inputs V & (1/δ)d

c
in exponential in the dimensions of the input spaces of the

Sc (where δ = maxx∈Scin minv∈{1,...,V } ‖x− xcv‖ denotes the desired set approximation accuracy). We, therefore, take a
pragmatic viewpoint, in that we apply our method (4),(5) (Sec. 3.2; see also Algorithm 1) even in those cases where we only
have a limited amount of validation data available. We evalute this empirically in Sec. 4.2.

Remark 2 (Arbitrary simulation). For the justification of our method – either heuristically or rigorously as above – it is
not necessary that the “simulation distribution” q be in any sense close to the true system behavior or that the simulations
M c need to be faithful approximations of the actual system components Sc. Rather, it suffices that each of the distributions
q|c̃→ĉ (i.e. one distribution for each pair (c̃, ĉ) with 0 ≤ c̃ < ĉ ≤ C + 1) has the same value in each of the optimizations (4)
and (5) (Sec. 3.2); each of these distributions q|c̃→ĉ simply acts as an “anchor” with respect to which the (unknown) real
world distribution p|c̃→ĉ is assessed – and these anchors need to remain fixed. This means that e.g. the full joint distribution
q could have been generated by starting from an arbitrarily chosen qx and arbitrarily “bad” models M c, and that the resulting
Fmax should remain an upper bound on pfail regardless. In practice we nevertheless desire the simulations M c to be close to
Sc as we intuitively believe that such closeness should lead to stronger statements about the system via the simulations, i.e.
that the upper bound Fmax be as good (i.e. small or tight) as possible. We investigate this dependency in the experiments
(Sec. 4) via the comparison of Perfect Model vs. Misfit Model.

D DETAILS ON EXPERIMENTS (SEC. 4)

This section will provide all experiment details to reproduce the result shown in Sec. 4.2. It will contain the description
of the reliability benchmark problems, the (input) data generation process, the per-channel/signal kernels and their length
scales, the construction of the bias input (i.e. Biased Input), the misfit model (i.e. Misfit Model) and hyper-parameters of the
failure probability computation. Most settings are kept fix across all benchmark problems (described in Sec. D.1) and only
the biased input construction and kernel parameters vary for each problem (described in Sec. D.2).

D.1 FIXED SETTINGS

Across all experiments, the following settings are kept fixed in order to be able to compare the validation performances.

Data: For all subsystems Sc and sub-modelsM c (c = 1, 2, ..., C) we fix the number of samples to Vc = 100 and nM = 500,
respectively. All data is generated by a fixed base seed of 2349.
Trials: All experiments report the mean and standard deviation across 5 independent trials where all settings are kept
identical except the base seed; this is incremented by the 0-index id of each trial.
Failure probability threshold: The threshold for each validation problem is set such that the ground truth failure probability
of the (TPI) output of the last subsystem SC is at approximately 1%; 1 million samples are used to determine the threshold.
The goal of all validation methods across all benchmark problems is to achieve a failure probability as close to 1.0% as
possible. It should be noted that in a real-world system, the ground truth failure probability is not available or is poorly
approximated through limited samples.
Failure probability grid: The grid of the failure probability optimization is based on the (TPI) output of the last sub-model
MC . It is chosen to cover the entire support of the model output distribution and a significantly large grid region after the
threshold τ .
Failure probability Lipschitz constant: Ideally, the Lipschitz-constant should be set according to the smoothness (or
Lipschitz constant) of the system’s TPI distribution. As this is not available, we used the empirical histogram distribution of
simulated TPI outputs as a proxy. More precisely, for each problem a histogram with 100 bins is constructed to compute the



resulting empirical Lipschitz-constant.
Model misfit – Gaussian process: For the cases where we artificially introduce a model misfit in sub-models M c (c =
1, 2, ..., C) (i.e. “Model Misfit” in main Tab. 1) we learn a Gaussian process (GP) for each sub-model M c to model the
input-output mapping of the corresponding subsystem Sc. The goal is to introduce a misfit in a controllable fashion which
reflects realistic misfits between real-world systems and simulations. We generate 100 independent training samples for
learning the GP (i.e. the training data is not used to solve the validation problem). We use exact GP inference in GPyTorch
[Gardner et al., 2018] with Radial basis function (RBF) kernels. The LBFGS-scipy optimizer is used with a learning rate
of 1.0e−3 for 2000 iterations and 10 restarts with different initializations. All misfit models use the exact same GP settings,
therefore the amount of misfit varies across benchmark problems and their individual components.
Biased input: In order to test the limits of the system and validation methods, we specifically use a biased (model) input
qbiased−x for each benchmark problem. This bias was constructed such that the TPI model output distribution is shifted
farther away from the threshold. Such a bias distribution exploits the weakness of some validation methods (e.g. MCCP
and SurrModel) which do not take the input discrepancy between px and qx into account. As a result, using the bias input
distribution qx for the model input yields overly optimistic estimates with a severe underestimation the failure probability
(i.e. Fmax < FGT = 1.0).
Kernels: All experiments either use a radial basis function (RBF) (squared-exponential) kernel or inverse multiquadratic
(IMQ) (also known as rational quadratic) kernel [Gorham and Mackey, 2017]. Both kernels use a jitter of 1e−10, and the
IMQ kernel has a fixed α = −0.5. The length scales for both kernels differ for each benchmark problem and channel/signal
dimension.
Length scale search: For a given benchmark problem, all length scales across all channels (including each dimension)
are optimized to minimize the failure probability Fmax. It should be note that as Fmax is a probability, its interpretation is
independent of the kernel length scales. As a result, one can perform a kernel length scale search with the objective of
minimizing Fmax. For all problems, we performed a Bayesian optimization search [Fröhlich et al., 2020] where the search
space of all parameters are kept large ([1.0e−8, 5.0e3]), except the length scale of the last TPI kernel which depends on the
output range of each problem. Furthermore, we only perform the length scale search for the setting "Perfect Input" and
"Perfect Model" (i.e. top left quadrant in main Tab. 1). The found length scales are kept fixed for all other settings.

D.2 RELIABILITY BENCHMARK PROBLEMS

The following subsections provide all details for each reliability benchmark problem/dataset used in main Tab. 1.

D.2.1 Controlled Solvers [Sanson et al., 2019]

Components: This problem has 4 components (i.e. solvers): the Sobol function, Ishigami function, and the remaining two
are products of polynomial functions and trigonometric functions.

f1 : (x1:5) 7→
5∏
k=1

|4xk − 2|+ ak
1 + ak

=: x6 (21)

f2 : (x6:8) 7→ sinx6 + 0.7 sin2 x7 + 0.1x48 sinx6 =: x9 (22)

f3 : (x9:14) 7→ x210 arctan 1− x14 + x11x12x
3
13 + 3x9 =: x15 (23)

f4 : (x15:19) 7→ sinx19x18 + x15x16 + x17, (24)

where a = (12, 2, 3, 4, 45), the x6 = f1(x1:5), x9 = f2(x6:8), and x15 = f3(x9:14). This problem is also defined in more
detail in Sec. 5.5. “Test Case 3” in Sanson et al. [2019] with Fig. 14 depicting the causal graph.
Perfect Input: 16-dimensional input (x{1,2,...,19}\{6,9,15}) sampled from U[0.0,1.0].
Biased Input: Input signal x18 sampled from U[0.0,0.8] and the remaining inputs (x{1,2,...,19}\{6,9,15}) from U[0.0,1.0].
Model Misfit: A GP is learned for each component M c (c = 1, 2, ..., C).
Failure probability: The grid range is fixed to [gmin = −5.0, gmax = 60.0] with the threshold at τ = 14.51. A (decreasing)
monotonicity constraint is enforced for the range [τ − 1.5 ∗ grid-spacing, gmax. The Lipschitz constant is set to 0.28.
Kernels: All channels use a RBF kernel with the following length scales:
[1.0e−6, 5.0e01, 1.0e−6, 5.0e1, 1.0e−6, 1.0e−6, 1.0e−6, 6.397] for the channels [x1:5, x6:7, f1(·), x8:12, f2(·), x13:16, f3(·), f4(·)],
respectively.



D.2.2 Chained Solvers [Sanson et al., 2019]

Components: This problem has 2 components (i.e. solvers) forming a composition of two univariate functions f1 and f2:

f1 : x 7→ e
√
x sinx+ 6e−(x−2)

2

+
5

2
e−3(x−1)

2

(25)

f2 : x 7→ sinx+ 0.3x sin 3.4x+ 0.5, (26)

where the global output is f = f1 ◦ f2. This problem is also defined in more detail in Sec. “5.1. Test Case 1” in [Sanson
et al., 2019] with Fig. 4 plotting the signals.
Perfect Input: Univariate input sampled from U[0.0,6.0].
Biased Input: Univariate input sampled from a mixture distribution αU[0.0,6.0] + (1− α)U[4.0,6.0] with α = 0.90. The α
controls the trade-off between the biasedness and correctness of the support of the resulting distribution.
Model Misfit: A GP is learned for each component M c (c = 1, 2, ..., C).
Failure probability: The grid range is fixed to [gmin = −8.0, gmax = 5.0] with the threshold at τ = 1.459. A (decreasing)
monotonicity constraint is enforced for the range [τ − 1.5 ∗ grid-spacing, gmax. The Lipschitz constant is set to 99.0.
Kernels: The 2 single-dimensional input channels and the TPI channel use a RBF and IMQ kernel, respectively, with length
scales [1e−8, 1e−8, 1.218].

D.2.3 Borehole [Surjanovic and Bingham, 2023]

Components:

This problem has a single component which models water flow through a borehole:

f : (rw, r, Tu, Hu, Tl, Hl, L,Kw) 7→ 2πTi(Hu −Hl)

ln(r/rw)(1 + 2LTu
ln(r/rw)r2wKw

+ Tu
Tl

)
(27)

This problem is also defined in more detail at https://www.sfu.ca/~ssurjano/borehole.html. We construct
two variants of this problem: single_borehole and compositional_borehole. The former considers only the
function f above, whereas the latter breaks the function up into multiple (5) smaller components:

f1 : (Tu, Hu, Hl) 7→ 2πTi(Hu −Hl) (28)

f2 : (rw, r, Tu, L,Kw) 7→ (
2LTu

ln(r/rw)r2wKw
(29)

f3 : (Tu, Tl) 7→
Tu
Tl

(30)

f4 : (rw, r, y2, y3) 7→ ln(
r

rw
(1 + y2 + y3)) (31)

f5 : (y1, y4) 7→ y1
y2
, (32)

where y1 = f1(·), y2 = f2(·), y3 = f3(·), and y4 = f4(·).
Perfect Input: The 8 inputs are sampled from distributions described in detail at https://www.sfu.ca/~ssurjano/
borehole.html. The description also includes the range of all signals in the system.
Biased Input: The sampling range of the Hu signal is modified from [990, 1110] to [990, 1010].
Model Misfit: A GP is learned for each component M c (c = 1, 2, ..., C).
Failure probability: The grid range is fixed to [gmin = −35.0, gmax = 600.0] with the threshold at τ = 157.1. A (decreas-
ing) monotonicity constraint is enforced for the range [τ − 1.5 ∗ grid-spacing, gmax. The Lipschitz constant is set to 0.0006.
Kernels: For the single_borehole, the RBF kernel is used for both input and output kernels with the fol-
lowing length scales: [[10.599, 6.587, 24.609, 32.369, 46.431, 23.046, 12.943, 2.734], 23.578], respectively. The first ker-
nel has a multi-dimensional length scale; one for each input dimension. For the compositional_borehole,
the RBF kernel is used for all 8 input channels and a IMQ kernel for the TPI output kernel with length scales:
[5.0e+3, 1.e−1, 3.198e+3, 5.0e+3, 1.0e−1, 5.0e+3, 5.0e+3, 1.0e−1, 5.0e+3, 2.634], respectively.

https://www.sfu.ca/~ssurjano/borehole.html
https://www.sfu.ca/~ssurjano/borehole.html
https://www.sfu.ca/~ssurjano/borehole.html


D.2.4 Branin [Surjanovic and Bingham, 2023]

Components: This problem has a single component:

f : x1:2 7→ fmax − a(x2 − bx21 + cx1 − r)2 + s(1− t) cosx1 + s, (33)

where we the recommended parameters are used: a = 1, b = 5.1/(4π2), c = 5/π, r = 6, s = 10 and t = 1/(8π). In order
to map the minimization problem to our maximization setting, we modify the branin function by adding fmax = 312.0
and subtracted the original formulation thereof. This problem is also defined in more detail at https://www.sfu.ca/
~ssurjano/branin.html
We construct two variants of this problem: single_branin and compositional_branin. The former considers
only the function f above, whereas the latter breaks the function up into multiple (3) smaller components:

f1 : x1:2 7→ (x2 − bx21 + cx1 − r)2 (34)
f2 : x1:2 7→ (1− t) cosx1 (35)
f3 : x3:4 7→ fmax − ax3 + sx4 + s, (36)

where x3 = f1(·) and x4 = f2(·).
Perfect Input: The 2 inputs are sampled from U[−5.0,10.0] and U[0.0,15.0], respectively.
Biased Input: The 2 inputs are sampled from a mixture distribution αU[−5.0,10.0] + (1 − α)U[8.0,10.0] and αU[0.0,15.0] +
(1 − α)U[12.0,15.0] with α = 0.10, respectively. The α controls the trade-off between the biasness and correctness of the
support of the resulting distribution.
Model Misfit: A GP is learned for each component M c (c = 1, 2, ..., C).
Failure probability: The grid range is fixed to [gmin = −35.0, gmax = 700.0] with the threshold at τ = 330.82. A
(decreasing) monotonicity constraint is enforced for the range [τ − 1.5 ∗ grid-spacing, gmax. The Lipschitz constant is set to
0.005.
Kernels: For the single_branin, the RBF kernel is used for both input and output kernels with the following length
scales: [0.003, 21.161], respectively. For the compositional_branin, the IMQ kernel is used for all channels with
length scales: [1e−8, 1e−8, 500.0, 1e−8, 26.064].

D.2.5 Four Branch [UQWorld, 2019]

Components: This problem has 4 independent components which form four branches and the final global output takes the
minimum of the four component outputs:

f1 : x1:2 7→ 3 + 0.1(x1 − x2)2 − x1 + x2√
2

(37)

f2 : x1:2 7→ 3 + 0.1(x1 − x2)2 +
x1 + x2√

2
(38)

f3 : x1:2 7→ (x1 − x2) +
p√
2

(39)

f4 : x1:2 7→ (x1 − x2)− p√
2

(40)

f5 : x1:2 7→ min{f1(x1:2), f2(x1:2), f3(x1:2), f4(x1:2)}+ 10, (41)

where p = 6.0. This problem is also defined in more detail in UQWorld [2019], where Fig. 1 shows the sur-
face plot of the four branch function. We construct two variants of this problem: single_four_branch and
compositional_four_branch. The former considers only the function f4 above, whereas the latter breaks the
function up into multiple (4) smaller components.
Perfect Input: The 2 inputs are sampled from two normal distributions described as in detail at UQWorld [2019].
Biased Input: The 2 inputs are sampled from a mixture distribution αN (0.0, 1.0)+(1−α)N (0.0, 0.90) and αN (0.0, 1.0)+
(1− α)N (0.0, 0.9) with α = 0.80, respectively. The α controls the trade-off between the biasness and correctness of the
support of the resulting distribution.
Model Misfit: A GP is learned for each component M c (c = 1, 2, ..., C).

https://www.sfu.ca/~ssurjano/branin.html
https://www.sfu.ca/~ssurjano/branin.html
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Figure 1: Illustration of DPBound (see also Fig. 3 in the main text) and SurrModel for a linear mapping between Gaussian
signals. (a) Model and system are different S 6= M , whereas the input distributions are identical px = qx. (b) The model M
is the perfect model, i.e. S = M , but input distributions are different. Computed weights αv (see Eq. (3) in Sec. 3.2) are
indicated by the size of markers for S(x) and the worst-case distributions w.r.t. the failure probability are indicated in red.
The inputs and outputs of the surrogate model SurrModel are shown in pink.

Failure probability: The grid range is fixed to [gmin = 0.0, gmax = 30.0] with the threshold at τ = 9.693. A (decreasing)
monotonicity constraint is enforced for the range [τ − 1.5 ∗ grid-spacing, gmax. The Lipschitz constant is set to 0.005.
Kernels: For the single_four_branch, the RBF kernel is used for both input and output kernels with the following
length scales: [[0.201, 0.198], 10.0], respectively. For the compositional_four_branch, the RBF kernel is used for
all channels with length scales: [[2.018, 1.983], 2.472, 2.374, 2.077, 2.077, 10.0].

E ILLUSTRATIONS OF THE METHODS & FURTHER EXPERIMENTS (SEC. 4)

E.1 SURROGATE MODEL SURRMODEL IN THE TOY SETTING (SEC. 4.1)

In Sec. 4.1, an illustrative example was used to visualize the two configurations considered in the experimental setup.
Here, we additionally analyze the performance of the surrogate model (i.e. the SurrModel method from Sec. 3.3) for this
single-component linear example under the two configurations.

We illustrated and discussed in Sec. 4.1 how DPBound can handle biases in the input distribution, as well as mismatches
between the models S and M . On the other hand, the explicit uncertainty estimation with surrogate models fails to handle or
detect mismatches in the input distribution, because the estimate of the output distribution arises from surrogate models
(albeit learned on the validation data from S) run on the input distribution of M , thereby completely ignoring the real-world
input distribution px of S. To see this, note that the resulting output distribution (pink crosses) of the surrogate model in
Suppl. Fig. 1(a) lies on top of the system output distribution S(·) (which is different from M(·)), whereas in Suppl. Fig. 1(b)
it basically coincides with the model output distribution M(·) (so that no difference is detected). Consequently, surrogate
models can detect differences due to modeling mismatches M 6= S, but not between input distributions qx 6= px.

E.2 ILLUSTRATION OF SIGNAL AND ERROR PROPAGATION (FOR THE “CHAINED SOLVERS”
USECASE, SEC. 4.2)

To illustrate the propagation of signals through the chain of subsystems, Suppl. Fig. 2 shows the propagation of signals
through the system (top row), the model chain (middle row), and the surrogate model chain (bottom row, for the SurrModel
method from Sec. 3.3). This is shown for the “Chained Solvers” use-case in the setting of “Biased Input–Misfit Model” (see
Sec. 4.2 and lower right quadrant of the main Tab. 1); we picked this “Chained Solvers” use-case for visualization purposes
as it has one-dimensional signals. The mismatches (errors) between those three signals are illustrated in Suppl. Fig. 3.

Suppl. Fig. 3 illustrates the propagation of errors (residuals) between system/model and surrogate model through the
components, in the same setting as Suppl. Fig. 2 (described in the previous paragraph). As the SurrModel method (Sec.
3.3), starts from the simulation inputs (bottom row of Suppl. Fig. 3), which may be biased w.r.t. the real-world input



Figure 2: Figure showing the input/output signal distributions for the “Chained Solvers” use-case in the setting “Biased
Input–Misfit Model” (cf. main Tab. 1; we chose this use-case for illustration purposes, as its signals are one-dimensional).
Top row: ground-truth signals (from the system S). Middle row: simulation signals (from the model M ). Bottom row:
surrogate model signals (from the model M ′ in the SurrModel method, see Sec. 3.3). Left column: input distributions.
Middle column: output distributions after first component. Right column: final TPI distributions.

Figure 3: Figure showing the propagation of errors (residuals) of the surrogate model for the “Chained Solvers” use-case in
the setting “Biased Input–Misfit Model” (cf. main Tab. 1); see Fig. 2 for the actual signals. Left column: real-world input
distribution (top) and simulation input distribution (bottom; note that the simulation input distribution is biased). Top row
(2nd and 3rd column): histograms over residuals (errors) between real system and surrogate model (both starting from the
real-world input distribution). Bottom row (2nd and 3rd column): histograms over residuals (errors) between simulation
model and surrogate model (both starting from the simulation input distribution), akin to what the SurrModel method
uses (see Eq. (6) in Sec. 3.3).



distribution (top tow), the residuals from Eq. (6) in Sec. 3.3 used by SurrModel may be too small (compare lower-right vs.
upper-right panel in Suppl. Fig. 3), finally leading to an underestimate of the failure probability by SurrModel in Eq. (7)
(Sec. 3.3). This failure of the SurrModel method is observed in the actual experiments (main Tab. 1 in the main text),
especially for the “biased-input” settings.

E.3 DEPENDENCE OF MCCP ON ITS CONFIDENCE LEVEL PARAMETER

In Suppl. Tab. 1 we corroborate our conclusions from the experiments in Sec. 4.2 regarding the (in)validness of the MCCP
method.

Table 1: Ratio of invalid bounds (i.e. bounds below 1%) produced by the MCCP-method run with a confidence (CL) parameter
of 99% in each of the four simulations configurations, compared (in parentheses) to the ratio for MCCP at 95% CL parameter
from main Tab. 1. While the ratio of invalid bounds does decrease with the higher CL parameter of 99%, the ratio does
not decrease in a proportionate way down to one fifth of the ratio at 95%-CL, especially not for the Biased Input settings.
The invalidness ratio stays clearly above its 1% validity promise (except in the easy case of Perfect Input–Perfect Model).
This indicates that MCCP’s CL parameter is not the main reason for its (high) level of invalidity. The main reason is rather
MCCP’s ignorance of the system input distribution and of the model misfits (see Sec. 4.2).

MCCP at 99% CL (95% CL) Perfect Model Misfit Model
Perfect Input 0% (0%) 5% (22.5%)
Biased Input 47.5% (67.5%) 42.5% (67.5%)

E.4 TIGHTNESS OF THE SDP RELAXATION (LEMMA 1)

Here we investigate experimentally how tight our convex (SDP) relaxation of the nonconvex bound optimization in Eq. (4)
from Sec. 3.2 is (see also App. A). For this, we evaluate the minimum approximation ratio γ̂ ∈ [0, 1] of the SDP relaxation,
as defined below Lemma 1 in App. A, for each of the 440 SDP optimizations required to produce our main results table
(Tab. 1 in Sec. 3, which summarizes 8 · 4 · 5 = 160 validation runs). Note that γ̂ = 1 would be proof of a perfectly tight
relaxation, while for example γ̂ = 0.99 guarantees that the relaxation was tight up to at most 1%. These tightness results are
summarized in Suppl. Tab. 2.

Table 2: Frequency of minimum approximation ratios γ̂ of the SDP relaxations (defined below Lemma 1 in App. A) for the
440 SDP relaxations required to produce Tab. 1 in Sec. 3. Note that the true but unknown approximation ratio γ of each SDP
relaxation satisfies γ̂ ≤ γ ≤ 1. Thus, over all 160 validation tasks from the main Tab. 1, 87.3% of the 440 required SDP
bound optimizations are guaranteed to be at least 99%-tight.

minimum approximation ratio γ̂ # of SDP optimizations % of SDP optimizations
0.99 ≤ γ̂ ≤ 1.0 384 87.3%
0.9 ≤ γ̂ < 0.99 15 3.4%
0.1 ≤ γ̂ < 0.9 29 6.6%
0.0 ≤ γ̂ < 0.1 12 2.7%
total # of SDP optimizations 440 100%

E.5 COMPUTATIONAL COST & RUNTIME

The computational complexity of the method in terms of the validation data set size(s) and the number of components is
discussed at the end of App. A (see also below Eq. (4) in the main text).

Empirically, the runtime required for the 160 validation runs of DPBound to produce Tab. 1 on our desktop machine is
2 hours; this runtime is dominated by the semidefinite optimization steps (where we use Eqs. (10–14) in place of Eq. (4),
and use the concrete form Eqs. (16–20) in place of Eq. (5)). On those same 160 validation problems, the MCCP method
takes 2min (as MCCP must only propagate model inputs through the given model chain, with no optimizations to do), while
SurrModel takes 25min (mainly spent on fitting the surrogate Gaussian Process models).
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