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Abstract

Assessing the validity of a real-world system with
respect to given quality criteria is a common yet
costly task in industrial applications due to the
vast number of required real-world tests. Validat-
ing such systems by means of simulation offers a
promising and less expensive alternative, but re-
quires an assessment of the simulation accuracy
and therefore end-to-end measurements. Addition-
ally, covariate shifts between simulations and ac-
tual usage can cause difficulties for estimating the
reliability of such systems. In this work, we present
a validation method that propagates bounds on dis-
tributional discrepancy measures through a com-
posite system, thereby allowing us to derive an up-
per bound on the failure probability of the real sys-
tem from potentially inaccurate simulations. Each
propagation step entails an optimization problem,
where – for measures such as maximum mean dis-
crepancy (MMD) – we develop tight convex relax-
ations based on semidefinite programs. We demon-
strate that our propagation method yields valid and
useful bounds for composite systems exhibiting a
variety of realistic effects. In particular, we show
that the proposed method can successfully account
for data shifts within the experimental design as
well as model inaccuracies within the simulation.

1 INTRODUCTION

Industrial products cannot be released without a priori en-
suring their validity, i.e. the product must be validated to
work according to its specifications with high probability.
Such validation is essential for safety-critical systems (e.g.
autonomous cars, airplanes, medical machines) or systems
with legal requirements (e.g. limits on output emissions or
power consumption of new vehicle types), see e.g. [Kalra

and Paddock, 2016, Koopman and Wagner, 2016, Belcastro
and Belcastro, 2003]. When relying on real-world testing
alone to validate system-wide requirements, one must per-
form enough test runs to guarantee an acceptable failure rate,
e.g. at least ∼ 106 runs for a guarantee below 10−6. This is
costly not only in terms of money but also in terms of time-
to-release, especially when a failed system test necessitates
further design iterations.

System validation is particularly difficult for complex sys-
tems which typically consist of multiple components, often
developed and tested by different teams under varying oper-
ating conditions. For example, an advanced driver-assistance
system is built from several sensors and controllers, which
come from different suppliers but together must guarantee to
keep the vehicle safely on the lane. Similarly, the powertrain
system of a vehicle consists of the engine or battery, a con-
troller and various catalysts or auxiliary components, but is
legally required to produce low output emissions of various
gases or energy consumption per distance as a whole. In
both these examples, the validation of the system can also
be viewed as the validation of its control component, when
the other subsystems are considered fixed. To reduce the
costs of real-world testing including system assembly and
release delays, one can employ simulations of the composite
system by combining models of the components, to perform
virtual validation of the system [Wong et al., 2020].

However, it is difficult to assess how much such a composite
virtual validation can be trusted, because the component
models may be inaccurate w.r.t. the real-world components
(simulation model misfits) or the simulation inputs may dif-
fer from the distribution of real-world inputs (data-shift).
Incorporating these inaccuracies within the virtual valida-
tion analysis is particularly important for reliability analyses
[Bect et al., 2012, Dubourg et al., 2013, Wang et al., 2016]
in industrial applications with safety or legal relevance as
those described above, where falsely judging a system to
be reliable is much more expensive than false negatives.
For this reason, we desire – if not an accurate estimate –
then at least an upper bound on its true failure probability.
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Figure 1: Illustration of our validation task: A real, composite system of interest (top) is modeled with corresponding
simulation models (bottom). Measurements of the real system are available only for the individual components, while
end-to-end simulation data can be generated from the models. The task of the virtual validation method is to estimate the real
system performance S based on the simulations M , incorporating simulation model misfits w.r.t. the real-world components
as well as any data-shift between the simulation input distribution and the field usage to be expected in the real system.

Existing validation methods are especially lacking the com-
posite (multi-component) aspect, where measurement data
are available only for each individual component (Sec. 2).

To state the problem mathematically, the goal of this work
is to estimate an upper bound Fmax on the failure probability
Pr
[
S(x) > τ

]
of a system over real-world inputs x ∼ p(x):

Fmax ≥ Pr
x,S

[
S(x) > τ

]
=

∫
1S(x)>τdS(x)dp(x), (1)

where S(x) measures the system performance upon input
x, and τ is a critical performance threshold indicating a
system failure. In the virtual validation setup, we assume
that no end-to-end measurements from the full composite
system S are available, and thus the upper bound Fmax is
to be estimated from the simulation M composed of mod-
els M1,M2, . . ., which are assumed to be given. This esti-
mate must take into account model misfits and data-shift in
the simulation input distribution (see Fig. 1). To assess the
model misfits, we assume validation measurements from
the individual components S1, S2, . . . to be given, e.g. from
component-wise development (for details see Sec. 3.1).

In this paper, we develop a method to estimate Fmax from
simulation runs by propagating bounds on distributional
distances between simulation models and real-world com-
ponents through the composite system. This propagation
method incorporates model misfits and data-shifts in a pes-
simistic fashion by iteratively maximizing for the worst-
case output distribution that is consistent with previously
computed constraints on the input. Importantly, our method
requires models and validation data from the individual
components only, not from the full system.

Our main contributions can be summarized as follows:

1. We propose a novel, distribution-free bound on the

distance between simulation-based and real-world dis-
tributions, without the need to have end-to-end mea-
surements from the real world (Sec. 3.2).

2. We justify the method theoretically (Prop. 1) and show
its practicality in reliability benchmarks (Sec. 4.2).

3. We demonstrate that – in contrast to alternative meth-
ods – the proposed method can account for data-shifts
as well as model inaccuracies (Sec. 4).

2 RELATED WORK

Estimating the failure probability of a system is a core task
in reliability engineering. In the reliability literature, one fo-
cus is on making this estimation more efficient compared to
naive Monte Carlo sampling by reducing the variance on the
estimator of the failure probability. Such classical methods
include importance sampling [Rubinstein and Kroese, 2004],
subset sampling [Au and Beck, 2001], line sampling [Pradl-
warter et al., 2007], and first-order [Hohenbichler et al.,
1987, Du and Hu, 2012, Zhang et al., 2015] or second-order
[Kiureghian and Stefano, 1991, Lee et al., 2012] Taylor ex-
pansions. While being more efficient, they still require a
large number of end-to-end function evaluations and cannot
incorporate more detailed simulations.

Another line of research investigates how to reduce real-
world function evaluations through virtualization of this
performance estimation task [Xu and Saleh, 2021]. The
failure probability is estimated based on a surrogate model
and hence cannot account for mismatches between the sys-
tem and its surrogate. Dubourg et al. [2013] proposed a
hybrid approach, where the proposal distribution of the im-
portance sampling depends on the learned surrogate model.
While this approach accounts, to some extent, for model mis-
matches, the proposal distribution might still be biased by a
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poor surrogate model. In summary, none of the approaches
that are based on surrogate models provide a reliable bound
on the true failure probability. Furthermore, all these ap-
proaches require end-to-end measurements from the real
system, ignoring the composite structure of the system.

In practice, however, the system output S(·) in Eq. (1) refers
to a complex system that often has a composite structure.
That is, global inputs x propagate through an arrangement,
oftentimes termed a function network, of subsystems or com-
ponents, see Fig. 1. Exploiting such a structure is expected
to have a notable impact on the target task, be it experi-
mental design [Marque-Pucheu et al., 2019], calibration and
optimization [Astudillo and Frazier, 2019, 2021, Kusakawa
et al., 2022, Xiao et al., 2022], uncertainty quantification
[Sanson et al., 2019], or system validation as presented here.

In the context of Bayesian Optimization (BO), for exam-
ple, Astudillo and Frazier [2021] construct a surrogate sys-
tem of Gaussian Processes (GP) that mirrors the composi-
tional structure of the system. Similarly, Sanson et al. [2019]
discuss similarities of such structured surrogate models to
Deep GPs [Damianou and Lawrence, 2013], and extend this
framework to local evaluations of constituent components.
However, learning (probabilistic) models of inaccuracies
[Sanson et al., 2019, Riedmaier et al., 2021] introduces
further modeling assumptions and cannot account for data-
shifts. Instead, we aim at model-free worst-case statements.

Marque-Pucheu et al. [2019] showed that a composite func-
tion can be efficiently modeled from local evaluations of
constituent components in a sequential design approach.
Friedman et al. [2021] extend this framework to cyclic struc-
tures of composite systems for adaptive experimental design.
They derive bounds on the simulation error in composite sys-
tems, although assuming knowledge of Lipschitz constants
as well as uniformly bounded component-wise errors.

Stitching different datasets covering the different parts of a
larger mechanism without loosing the causal relation was
analyzed by Chau et al. [2021] and corresponding models
were constructed, but the quality with which statements
about the real mechanism can be made was not analyzed.

Bounding the test error of models under input-datashift was
analyzed empirically in Jiang et al. [2022] by investigating
the disagreement between different models. Although they
find a correlation between disagreement and test error, the
authors do not provide a bound on the test error (Sec. 3.3)

3 METHOD

3.1 SETUP: COMPOSITE SYSTEM VALIDATION

We consider a (real) system or system under test S that is
composed of subsystems Sc (c = 1, 2, . . . , C), over which
we have only limited information. The validation task is to

determine whether S conforms to a given specification, such
as whether the system output y = S(x) stays below a given
threshold τ for typical inputs x – or whether the system’s
probability of failure, defined as violating the threshold, is
sufficiently low, see Eq. (1). Our approach to this task is
built on a model M (typically a simulation, with no analytic
form) of S that is similarly composed of corresponding sub-
models M c. The main challenge in assessing the system’s
failure probability lies in determining how closely M ap-
proximates S, in the case where the system data originate
from disparate component measurements, which cannot be
combined to consistent end-to-end data.

Components and signals. Mathematically, each component
of S – and similarly for M – is a (potentially stochastic)
map Sc, which upon input of a signal xc produces an output
signal (sample) yc ∼ Sc(·|xc) according to the conditional
distribution Sc. The stochasticity allows for aleatoric sys-
tem behavior or unmodeled influences. We consider the case
where all signals are tuples xc = (xc1, . . . , x

c
dcin

), such as
real vectors. The allowed “compositions” of the subsystems
Sc must be such that upon input of any signal (stimulus) x,
an output sample y ∼ S(·|x) can be produced by iterating
through the components Sc in order c = 1, 2, . . . , C. More
precisely, we assume that the input signal xc into Sc is a con-
catenation of some entries x|0→c of the overall input tuple
x and entries yc

′ |c′→c of some preceding outputs yc
′

(with
c′ = 1, . . . , c−1); thus, Sc is ready to be queried right after
Sc−1. We assume the overall system output y = yC ∈ R to
be real-valued as multiple technical performance indicators
(TPIs) could be considered separately or concatenated by
weighted mean, etc. The simplest example of such a com-
posite system is a linear chain S = SC ◦. . .◦S2◦S1, where
x ≡ x1 is the input into S1 and the output of each compo-
nent is fed into the next, i.e. xc+1 ≡ yc. Another example is
shown in Fig. 1, where x3 is concatenated from both outputs
y1 and y2. We assume the identical compositional structure
for the model M with components M c.

Validation data. An essential characteristic of our setup is
that neither S nor the subsystem maps Sc are known explic-
itly, and that “end-to-end” measurements (x, y) from the full
system S are unavailable (see Sec. 1). Rather, we assume
that validation data are available only for every subsystem
Sc, i.e. pairs (xcv, y

c
v) of inputs xcv and corresponding output

samples ycv ∼ Sc(·|xcv) (v = 1, . . . , V c). Such validation
data may have been obtained by measuring subsystem Sc

in isolation on some inputs xcv, without needing the full
system S; note, the inputs xcv do not necessarily follow the
distribution from previous components. In the same spirit,
the modelsM c may also have been trained from such “local”
system data; we assume M c, M to be given from the start.

Probability distributions.We aim at probabilistic valida-
tion statements, namely that the system fails or violates its
requirements only with low probability. For this, we assume
that S is repeatedly operated in a situation where its inputs
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come from a distribution x ∼ px, in an i.i.d. fashion. For
the example where S is a car, the input x might be a route
that typical drivers take in a given city. Importantly, we do
not assume much knowledge about px: merely a number of
samples xv ∼ px may be given, or alternatively its distance
to the simulation input distribution qx = 1

nM

∑nM
n=1 δxMn ;

here, δxMn are point measures on the input signals xMn on
which M is being simulated. The input distribution x ∼ px
will induce a (joint) distribution p of all intermediate sig-
nals xc, yc of the composite system S and importantly the
TPI output y = yC ∼ S(x). Similarly, M generates a
joint model distribution q by starting from qx and sam-
pling through all M c; via this simulation, we assume q
and all its marginals on intermediate signals xc, yc to be
available in sample-based form. The (true) failure prob-
ability is given by pfail =

∫
1S>τdS(x)dp(x), where in

this paper we identify a system failure as the TPI exceed-
ing the given threshold τ . The model failure probability
is qfail =

∫
1M>τdM(x)dq(x) ' 1

nM

∑
n 1yMn >τ , where

yMn denote sampled model TPI outputs for the inputs xMn .
It is often useful in our setting to think of a distribution as a
set of sample points, and vice versa.

Discrepancies. To track how far the simulation modelM di-
verges from the true system behavior S in our probabilistic
setting, we employ discrepancy measures D between proba-
bility distributions. Such a measure D maps two probability
distributions p, q over the same space to a real number, often
having some interpretation of distance. We consider MMD
distances D = MMDk [Gretton et al., 2012], defined as the
RKHS norm MMDk(p, q) = ‖p − q‖k =

[ ∫
x,x′

(p(x) −

q(x))k(x, x′)(p(x′) − q(x′))dxdx′
]1/2

w.r.t. a kernel k
on the underlying space (e.g. a squared-exponential or
IMQ kernel [Gorham and Mackey, 2017]). Further pos-
sibilities include the cosine similarity COSk(p, q) =
〈p, q〉k/‖p‖k‖q‖k w.r.t. a kernel k, a Wasserstein distance
D = Wp w.r.t. a metric on the space, and the total variation
normD = TV [Sriperumbudur et al., 2009, 2010]; however,
the latter cannot be estimated reliably from samples.

Specifically, we assume a discrepancy measure Dc′→c to
be given1 for those pairs 0 ≤ c′ < c ≤ C + 1 for which (a
sub-tuple of) the output signal yc

′
is fed into the input xc

(cf. the compositional structure above, and where we define
yc
′=0 ≡ x and xc=C+1 ≡ y := yC). This Dc′→c acts on

probability distributions over the space of such sub-tuples
like yc

′ |c′→c (or synonymously, xc|c′→c), which is defined
as the signal entries running from yc

′
to xc. We denote the

marginal of p on these signal entries by p|c′→c, and similar
q|c′→c for q. In the simplest case of a linear chain, Dc′→c

with c′ = c − 1 acts on probability distributions such as
p|c′→c over the space of the (full) vectors yc

′
= xc. We

omit superscripts Dc′→c ≡ D when clear from the context.

1We will later address how to choose D from a parameterized
family D`, e.g. with different lengthscales `.

Our method requires (upper bounds on) the discrepan-
cies D(p|0→c, q|0→c) between marginals of the system and
model input distributions px, qx; specifically between the
marginal distributions p|0→c and q|0→c over those sub-
tuples x|0→c which are input to subsequent components
c. These discrepancies can either be estimated from samples
xv, x

M
n of px, qx, see the biased and unbiased estimates for

MMD in Gretton et al. [2012][App. A.2, A.3], which are ac-
curate up to at most ∼

√
(1/nmin) log(1/δ) at confidence

level 1− δ (where nmin denotes the size of the smaller of
both sample sets); alternatively, these discrepancies may be
directly given or upper bounded. These upper bounds are
the quantities B0→c below in Eq. (2). No further knowledge
of the real-world input distribution px is required.

3.2 DISCREPANCY PROPAGATION METHOD

We now describe the key step in our method to quantify
how closely the model’s TPI output distribution, which we
denote by qy ≡ q|C→C+1, approximates the actual (but un-
known) system output distribution py ≡ p|C→C+1. We do
this by iteratively propagating worst-case discrepancy val-
ues through the (directed and acyclic) graph of components
Sc/M c, using only the available information, in particular
the given validation data (xcv, y

c
v) on a per-subsystem basis.

Discrepancy bound propagation. The basic idea is to
go through the components c = 1, 2, . . . , C one-by-one.
At each step Sc, we consider the “input discrepancies”
D(p|c′→c, q|c′→c) (for c′ < c), about which we already
have information, and propagate this to gain information
about the “output discrepancies” D(pc→c′′ , q|c→c′′) (for
c′′ > c). Here, we consider “information” in the form
of inequalities D(p|c′→c, q|c′→c) ≤ Bc

′→c, i.e. the infor-
mation is the value of the (upper) bound Bc

′→c. Given
bounds Bc

′→c on the input signal of Sc, an upper bound
on D(p|c→c′′ , q|c→c′′) for each fixed c′′ > c can be found
by maximizing the latter discrepancy over all (unknown)
distributions p that satisfy all the input discrepancy bounds:

Bc→c
′′

= maximizep D(p|c→c′′ , q|c→c′′) (2)

subject to D(p|c′→c, q|c′→c) ≤ Bc
′→c ∀c′ < c.

Note that the (sample-based) model distribution q and its
marginals in (2) are known and fixed after the simulation
M has been run on the input samples xMn which constitute
qx (see above). In contrast, as the actual p is not known,
we maximize over all possible system distributions p in (2)
according to the bounds from the previous components c′.

It remains to optimize over all possible sets of marginals
p|c→c′′ , p|c′→c (for all c′ < c) occurring in (2). Ideally, one
would consider all distributions p(xc) over input signals xc,
apply Sc to each xc to obtain all possible joint distributions
p(xc, yc) = p(xc)Sc(yc|xc) of in- and outputs, and com-
pute from this all possible sets of marginals p|c→c′′ , p|c′→c.
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Figure 2: Illustration of the (marginals of the) joint input-
output distribution pα (3), parameterized by weights αv.
Corresponding in-/outputs xv, yv have the same weight αv .

However, this is impossible as we do not know the action
of Sc on every possible input xc. Rather, we merely know
about the action of Sc on the validation inputs xcv, namely
that ycv ∼ Sc(xcv) is a corresponding output sample. We
thus consider only the joint distributions p(xc, yc) = pα
that can be formed from the given validation data (Fig. 2)2:

pα =

V c∑
v=1

αvδxcvδycv , (3)

such that the optimization variable becomes now a proba-
bility vector α ∈ RV c , i.e. with nonnegative entries αv ≥ 0
summing to

∑
v αv = 1. By restricting to this (potentially

skewed) set of joint distributions pα, the exact boundBc→c
′′

turns into an estimate; for further discussion see Prop. 1,
which also proposes another possible parametrization pα.

Using ansatz (3), the exact bound propagation (2) becomes:

Bc→c
′′

= maxα D(pα|c→c′′ , q|c→c′′) (4)

s.t. D(pα|c′→c, q|c′→c) ≤ Bc
′→c ∀c′ < c,

α ≥ 0,
∑
v

αv = 1.

Note that for sample-based distributions like pα in (3) or q,
the marginals in this optimization have a similar form, e.g.
pα|c→c′′ =

∑
v αvδycv|c→c′′ or pα|c′→c =

∑
v αvδxcv|c′→c .

As the discrepancy measures D in (4) are usually convex,
this optimization problem is “almost” convex: All its con-
straints are convex, however, we aim to maximize a convex
objective. For MMD measures we derive convex (semidefi-
nite) relaxations of (4) by rewriting it with squared MMDs
D(pα, q)

2, which are quadratic in α and thus linear in a
new matrix variable A = ααT ; this last equality is then
relaxed to the semidefinite inequality A ≥ ααT (App. A).
While the relaxation is tight in most instances (App. E.4),
the number of variables increases from V c to ∼ (V c)2/2,
restricting the method to V c . 103 validation samples per
component. In our implementation, we solve these SDPs
using the CVXPY package [Diamond and Boyd, 2016].

2δz0 denotes a Dirac point mass at z = z0.

Bounding the failure probability. The final step of the
preceding bound propagation yields an upper bound By :=
BC→C+1 on the discrepancy D(py, qy) between the (un-
known) system TPI output distribution py and its model
counterpart qy , which is given by samples yMn . We now ap-
ply an idea similar to (3) to obtain (a bound on) the system
failure probability pfail :=

∫
y>τ

py(y)dy: Rather than maxi-
mizing pfail over all distributions py on R 3 y subject to the
constraint By , we make the optimization finite-dimensional
by selecting grid-points g1 < g2 < . . . < gV ∈ R
and parameterizing py ≡ pα =

∑V
v=1 αvδgv , such that

pfail =
∑
v:gv>τ

αv. In practice, we choose an equally-
spaced grid in an interval [gmin, gmax] ⊂ R that covers the
“interesting” or “plausible” TPI range, such as the support of
qy as well as sufficient ranges below and above the threshold
τ . The size of the optimization problem corresponds to the
number of grid-points V , so V '103 is easily possible here.

With this, our final upper bound pfail ≤ Fmax on the failure
probability becomes the following convex program:

Fmax = maxα
∑

v:gv>τ

αv (5)

s.t. D(pα, qy) ≤ By, α ≥ 0,
∑
v

αv = 1.

One can obtain better (i.e. smaller) bounds Fmax by re-
stricting pα further by plausible assumptions: (a) Mono-
tonicity: When bounding a tail probability, i.e. pfail is ex-
pected to be small, it may be reasonable to assume that
py is monotonically decreasing beyond some tail thresh-
old τ ′. For an equally-spaced grid this adds constraints
αv ≤ αv−1 for all v with gv ≥ τ ′ to (5); we always as-
sume this with τ ′ := τ . (b) Lipschitz condition: To avoid
that pα becomes too “spiky”, we pose a Lipschitz condi-
tion |αv+1 − αv| ≤ Λmax|gv+1 − gv| with a constant Λmax
estimated from the set of outputs yMn . See also App. B.

Note that our final bound Fmax is a probability, whose inter-
pretation is independent of the chosen discrepancy measures,
kernels, or lengthscales. We can thus select these “parame-
ters” by minimizing the finally obtained Fmax over them. We
do this using Bayesian optimization [Fröhlich et al., 2020].

We summarize our full discrepancy propagation method to
obtain a bound Fmax on the system’s failure probability in
Algorithm 1, which we refer to as DPBound.

Upper bound property. We replaced the optimization over
all possible system distributions p in (2) by the distributions
pα from (3) due to the limited system validation data and to
make the optimization tractable. This restricted and possibly
skewed pα can potentially causeBc→c

′′
and ultimately Fmax

from (4),(5) to not be true upper bounds on D or even the
system’s (unknown) failure probability pfail, although the
worst-case tendency of the maximizations alleviates the
issue. We investigate this in the experiments (Sec. 4.2), and
in the following proposition we state conditions under which
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Algorithm 1 DPBound
1: Input: compositional structure of S; composite simula-

tion modelM ; discrepancy measuresD; validation data
(xcv, y

c
v); simulation input samples {xMn } ≡ qx; either

(a) upper bounds B0→c on input discrepancies or (b)
samples xv ∼ px from the real-world input distribution.

2: Run M on all xMn ; collect all intermediate signals
xcn, y

c
n to build the sample-based marginals q|c′→c of q.

3: In case (b), estimate B0→c from px ' {xv} and qx.
4: for c = 1, . . . , C do
5: for every c′′ = c+ 1, . . . , C + 1 connected to c do
6: Compute Bc→c

′′
via Eq. (4) (or via App. A).

7: Using the thus obtained By := BC→C+1, compute the
final bound Fmax via Eq. (5) (or via App. B).

(4),(5) are upper bounds:

Proposition 1. Suppose that for each component c =
1, . . . , C: (i) the validation inputs xcv cover the space of
occurring inputs into Sc; (ii) (necessary only for compo-
nents Sc having stochastic output) the δycv in the defining
equation of pα (Eq. (3)) is replaced by the system output dis-
tribution Sc(xcv) (represented e.g. by samples or its kernel-
mean embedding); (iii) the grid {gv} covers the occurring
TPI values (e.g. discrete and bounded). Then pfail ≤ Fmax,
where Fmax is defined by the computations in Eqs. (4) and
(5) (or alternatively, by the convex relaxations and forms in
Apps. A and B).

App. C gives a proof as well as an additional limit statement
about the Bc→c

′′
and Fmax in the more realistic setting of

increasingly dense inputs xcv and approximations of Sc(xcv).

3.3 FAILURE BOUND VIA SURROGATE MODEL

As an alternative, more heuristic but simpler, baseline
method to estimate an upper bound Fmax on the failure prob-
ability pfail, we introduce a sampling-based method that also
operates on the available data only. The underlying concept
in quantifying model accuracy is similar to the one from
[Jiang et al., 2022] and can also be thought of one particular
form of error modeling [Riedmaier et al., 2021].

The general idea is to train an additional “surrogate” model
M ′c for each system component Sc, and employ the result-
ing composite M ′ to estimate how far M deviates from the
real S in terms of TPI outputs. This is possible because for
training M ′c we use the available validation data (xcv, y

c
v)

measured from Sc. We take Gaussian processes (GPs) for
M ′c, but other probabilistic models like normalizing flows
or deterministic ones like neural networks are possible as
well. Choosing M ′c from a different model class than M c

will generally lead to a more conservative estimate Fmax.

After training theM ′c, we run the resulting composite surro-

gate model M ′ on the simulation input samples xMn (which
make up qx) to obtain TPI output samples y′Mn,i (with k repe-
titions i = 1, . . . , k), in the same way the given model M
can generate outputs yMn,i from given xMn . By comparing the
y′Mn,i to the yMn,i we obtain a heuristic estimate of the error
of M in simulating the actual TPI of system S, see [Jiang
et al., 2022]. Concretely in this paper, we use the averaged
outputs yMn := (1/k)

∑
i y
M
n,i and similarly y′Mn , taking as

the simulation error ∆ a high quantile (here, 95%) of the
(signed or absolute) deviations:

∆ = quantile0.95[{y′Mn − yMn }]. (6)

The 100%-quantile maxn(y′Mn − yMn ) would lead to more
conservative bounds Fmax. For an illustration see App. E.2.

Finally, we estimate an upper bound on pfail by including a
safety margin ∆ before the threshold τ :

Fmax :=

∫ ∞
τ−∆

q(y)dy =
1

nM · k
∑
n,i

1yMn,i>τ−∆. (7)

Note that this method cannot account for discrepancies
between the (unknown) system input distribution px w.r.t.
which we would like to bound the failure probability pfail,
and the given simulation inputs xMn that make up qx, see
Sec. 4. Rather, the method can be expected to work well
only when the sample-based qx is close to the actual px.
Furthermore, if simulation model and surrogate model share
unjustified modeling assumptions, an agreement between
the two models might mask differences to the actual system.

4 EXPERIMENTS

We evaluate the proposed method on 8 benchmark systems
in Sec. 4.2.3 For each system, we create 4 configurations
where the simulation models and/or the simulation input
distributions differ. These configurations are illustrated on
an artificial example in Sec. 4.1.

4.1 ILLUSTRATION: GAUSSIAN MODELS

As an exemplary validation problem, consider the following
one-component, one-dimensional setup: For a linear system
S : R → R with S(x) = wSx + bS , we want to assess
the failure probability in (1) by means of a linear model
M(x) = wMx + bM . Both S and M are stimulated with
samples from Gaussian distributions px = N (µp, σ

2
p) and

qx = N (µq, σ
2
q ), respectively. We can control the accuracy

of M and its input distribution qx separately, thereby inves-
tigating their impacts on the estimated failure probability.

3Our organization is carbon neutral. Therefore, all its activities
including research activities (e.g., compute clusters) no longer
leave a carbon footprint.
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Figure 3: Illustration of DPBound for a linear mapping be-
tween (samples from) Gaussian signals. (a) There is model
mismatch M 6= S, but the input distribution qx = px is
perfect. (b) M = S is a perfect model, but the model input
distribution qx 6= px is biased w.r.t. the real world. The
computed weights αv from Eqs. (3),(4) are depicted by the
size of the blue S(x)-markers (α is uniform in case (a)).

Specifically, we analyze the following two configurations:
(a) M and S differ in bM 6= bS , but they receive identical
inputs qx = px (Misfit Model & Perfect Input); and (b) the
modelM is identical to S, but their respective input distribu-
tions qx 6= px differ (Perfect Model & Biased Input). Under
these two configurations, DPBound is illustrated for a sin-
gle propagation step in Fig. 3, where the marginal output
distributions of M and S differ (top row marginals in brown
resp. blue). However, the output discrepancy bound B1→2

from Eq. (4) originates differently in the two configurations:
In Fig. 3(a), the input discrepancy B0→1 vanishes due to
identical inputs px = qx. The output bound (4) thus directly
reflects the difference between the output marginals S(qx)
and M(qx), without optimization since the constraint forces
the weights α to be uniform so that pα = qx (here, we
assumed as validation inputs the qx-samples for simplicity).

In Fig. 3(b), however, the bound on the output discrep-
ancy stems solely from the non-zero input discrepancy
B0→1 = MMD(px, qx) > 0, rather than from any dif-
ference between M and S: DPBound finds in Eq. (4) the
worst-case weighted output distribution pα consistent with
the input discrepancy B0→1. The output bound is then the
nonzero difference between this pα andM(qx), even though
both pα and M(qx) were built with outputs from S = M .

In this way, our method DPBound can account for both
model misfits and biased inputs. The latter is not true of
the SurrModel method from Sec. 3.3, as it ignores the
real-world distribution px and can thus fail for biased inputs
qx 6= px. For further details and illustrations, see App. E.

4.2 RELIABILITY BENCHMARK EVALUATION

We now demonstrate the feasibility of our discrepancy prop-
agation method in a reliability benchmark.

Compared benchmark systems. The performance of
DPBound is evaluated on 3 single-component and 5 multi-
component problems from the reliability and uncertainty
propagation literature. These problems are briefly summa-
rized in Tab. 2 below (see App. D for more details).

For the evaluation, we set the threshold τ on the scalar
output for each of those problems such that the ground-truth
failure probability Prx∼px [S(x) > τ ] = 1% (see Eq. (1)).

We evaluate each system under four different simulation
configurations (cf. Sec. 4.1): As simulation models, we take
either Perfect Models M c = Sc or GP-based Misfit Models
M c 6= Sc; as simulation input distribution, we take either
Perfect Input qx = px or Biased Input qx 6= px (App. D).

Compared virtual validation methods. We compare our
failure probability bound with two alternative methods:
DPBound (ours): Failure bound Fmax calculated by propa-
gating MMD-based bounds according to Algorithm 1.
MCCP: 95%-confidence Clopper-Pearson bound on the fail-
ure probability, calculated on binary Monte-Carlo samples
obtained by thresholding the output of the simulation model.
SurrModel: Bound from Eq. (7), obtained by accounting
for the difference between the simulation and a GP-based
surrogate model learned on the validation data (Sec. 3.3).

Experimental results. The obtained results are summarized
in Tab. 1. We first focus on the validity of the methods (bold
numbers in Tab. 1): In this regard one can see that, in the
“Perfect Input–Perfect Model” setting the methods produce
generally valid bounds, with at most 17.5% invalidness for
SurrModel. In the more challenging and realistic settings
with misfit and/or input bias, however, the invalidness ratios
for MCCP and SurrModel increase beyond acceptable
levels, especially for Biased Input reaching invalidness up
to 75%. DPBound on the other hand remains perfectly valid
under both Misfit Model and Biased Input (as in Sec. 4.1).

To understand why MCCP and SurrModel have challenges
with the Biased Input setting, notice that these methods dis-
regard the actual system inputs px, instead relying solely on
the simulation inputs qx without any means of dealing with a
potential discrepancy between both distributions. When the
simulation input distribution is biased towards significantly
lower simulated TPI values, the delivered bounds can then
be invalid (for an illustration see App. E.2). DPBound on
the other hand natively accounts for this input discrepancy
through the initial bounds B0→c, which in our experiments
are estimated via samples from px, qx (see end of Sec. 3.1).
In addition to this shortcoming of ignoring input discrepan-
cies, MCCP remains unaware of any potential Misfit Model,
as it completely ignores the system S and its validation data.
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Table 1: Bounds on the failure probability (in %, with standard deviations from 5 repetitions) delivered by the three compared
methods for each benchmark problem under the four simulation configurations Perfect vs. Misfit Model and Perfect vs.
Biased Input. Each problem has been normalized such that the ground-truth failure probability is 1%. Also shown (in bold)
is the ratio of invalid bounds (i.e. bounds below 1%) delivered by each method among the 40 runs per configuration.

Perfect Model Misfit Model
Problem DPBound MCCP SurrModel DPBound MCCP SurrModel

Single Component

Pe
rf

ec
tI

np
ut

Borehole 1.10 ± 0.2 1.87 ± 0.3 3.04 ± 1.3 1.75 ± 1.7 1.06 ± 0.4 3.48 ± 1.6
Branin 19.98 ± 3.3 2.86 ± 0.6 1.84 ± 0.5 18.87 ± 2.8 2.76 ± 0.8 1.80 ± 0.7
Four Branch 23.1 ± 1.0 2.08 ± 0.4 1.48 ± 0.6 22.07 ± 0.7 1.07 ± 0.2 0.84 ± 0.6

Multiple Components
Chained Solvers 14.92 ± 2.7 2.08 ± 0.4 1.28 ± 0.6 15.21 ± 2.2 2.18 ± 0.6 1.60 ± 0.4
Borehole 8.94 ± 6.1 2.03 ± 0.5 3.12 ± 1.9 7.51 ± 2.6 2.06 ± 0.9 3.52 ± 1.6
Branin 17.91 ± 6.8 2.71 ± 0.5 1.56 ± 0.4 16.6 ± 6.3 2.82 ± 0.2 1.88 ± 0.4
Four Branch 36.4 ± 3.1 2.18 ± 0.8 1.52 ± 0.7 35.82 ± 3.2 0.81 ± 0.2 0.56 ± 0.3
Controlled Solvers 10.39 ± 4.6 1.97 ± 0.7 0.92 ± 0.5 11.01 ± 4.3 1.91 ± 0.7 0.88 ± 0.5
% Invalid Bounds 5.0 0.0 17.5 0.0 22.5 27.5

B
ia

se
d

In
pu

t

Single Component
Borehole 16.57 ± 8.3 0.80 ± 0.3 0.88 ± 0.8 15.19 ± 10.5 0.60 ± 0.0 0.76 ± 0.8
Branin 92.7 ± 3.3 0.73 ± 0.3 0.08 ± 0.2 93.35 ± 2.9 2.01 ± 0.8 1.00 ± 0.6
Four Branch 22.69 ± 0.9 1.98 ± 0.5 1.28 ± 0.5 21.96 ± 1.0 0.88 ± 0.2 0.60 ± 0.3

Multiple Components
Chained Solvers 26.39 ± 1.7 0.74 ± 0.2 0.08 ± 0.1 26.7 ± 1.7 1.39 ± 0.7 0.56 ± 0.5
Borehole 20.96 ± 9.0 0.93 ± 0.4 0.76 ± 0.8 15.89 ± 7.5 0.60 ± 0.0 0.44 ± 0.3
Branin 89.52 ± 6.1 0.81 ± 0.2 0.12 ± 0.1 89.52 ± 6.1 0.91 ± 0.5 0.24 ± 0.3
Four Branch 35.83 ± 3.2 1.96 ± 0.9 1.28 ± 0.7 35.42 ± 2.9 0.74 ± 0.2 0.44 ± 0.2
Controlled Solvers 13.36 ± 4.1 0.60 ± 0.0 0.00 ± 0.0 13.51 ± 5.9 0.67 ± 0.2 0.04 ± 0.1
% Invalid Bounds 0.0 67.5 70.0 0.0 67.5 75.0

This explains the jump in invalidness from 0.0% to 22.5%
when isolating this effect in the Perfect Input setting. Note,
while MCCP is not expected to produce upper bounds in
100% of cases due to its 95%-confidence specification, it
stays significantly below the 95% promise (App. E.3).

Although DPBound provides valid upper bounds Fmax in
almost all cases, it can sometimes still underestimate, as
happened in two validation runs for Borehole(Single) under
Perfect Input–Perfect Model with bounds close to the 1%
ground-truth. To explain how this can happen, note that only
under dense sampling conditions is DPBound expected
to be perfectly valid (Prop. 1 and App. C). In any case,
DPBound shows high validity overall, while the two com-
peting methods’ likelihood for falsely positive validation is
certainly too high for trustable statements.

Summarizing these validity results, of the three compared
methods, only DPBound should be further considered to
be viable at all as a reliable validation method.

Despite its high validity, DPBound delivers bounds Fmax
that are mostly far from trivial (i.e. much below 100%),
also in the challenging misfit and/or biased settings. These
bounds in conjunction with their high validity thus yield

useful information, which can serve as a basis for extended
validation approaches (see Conclusion). The fact that MCCP
and SurrModel often produce much smaller or “tighter”4

bounds is no advantage per se, as these bounds are often
invalid and thus misleading in validation (see above). We
did not focus on the thightness evaluation because our main
evaluation criterion was the rate of falsely positive valida-
tions, which already excluded both competing methods in
safety-relevant situations.

While it remains for future work to combine DPBound’s
non-trivial and reliable bounds with other validation ap-
proaches, our investigation here constitutes the first one into
the validity of validation methods in the component-wise
setting, establishing DPBound as a viable candidate.

5 CONCLUSION

Validating complex composite systems is a notoriously diffi-
cult task, e.g. validating the performance of autonomously
driving vehicles. Instead of expensively testing the system

4Note, the “tightness” of the bounds can be read off from Tab. 1
by subtracting from each bound the ground-truth value of 1%.
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Table 2: Compared benchmark systems.

Benchmark System Input Dim. Components
Controlled Solvers [Sanson et al., 2019] 16 4
Chained Solvers [Sanson et al., 2019] 1 2
Borehole [Surjanovic and Bingham, 2023] 8 1 / 5
Branin [Surjanovic and Bingham, 2023] 2 1 / 3
Four Branch [UQWorld, 2019] 2 1 / 4

in the real world, simulations can reduce the validation ef-
fort [Wong et al., 2020]. However, it is hard to assess the
effect of simulation model inaccuracies or input data shifts
on the validation target, especially for composite systems.
We have developed a method to estimate an upper bound
on the system failure probability, as underestimation of fail-
ure rates is typically much more costly than overestimation.
Our method assumes that a simulation model as well as
measurement data for each subsystem are available. Our
evaluations show that the obtained bounds are useful and
valid in general, with theoretical guarantees in the large-data
limit (Prop. 1).

Due to its individual-component nature, our method is es-
pecially fit to use when only one component in an already
deployed system changes, e.g. a sensor or the software con-
troller in an autonomous driving system. Although the val-
ues computed for the bounds by our propagation method
are larger than what would typically be required for safety-
relevant applications, they still yield useful information, for
example by acting as a safe-guard before entering an ex-
pensive real-world testing phase. Continuing the proposed
avenue of research may ultimately spawn validation with im-
mensely reduced number of real-world test runs. For the fu-
ture, it remains to explore the method in higher-dimensional
situations, possibly by extending our parameterization of
the joint distribution pα. While the presented method was
derived for static signals, it can be extended to dynamic
systems and models by replacing the static signals with
embeddings of time-series signals [Morrill et al., 2020]. Ex-
ploring the proposed method in these regimes, which often
include feedback loops, is subject to future research.
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