
Inference for Probabilistic Dependency Graphs (Supplementary material)

Oliver E. Richardson1 Joseph Y. Halpern1 Christopher De Sa1

1Deparment of Computer Science, Cornell University, Ithaca NY 14853

A PROOFS

Proposition 1. If (µ,u) is a solution to (5), then µ ∈ [[M]]∗0, and
∑

(a,s,t)∈VA βaua,s,t = ⟨⟨M⟩⟩0.

Proof. Suppose that (µ,u) is a solution to (5). The exponential cone constraints ensure that, for every (a, s, t) ∈ VA,

ua,s,t ≥ µ(s, t) log
µ(s, t)

Pa(t|s)µ(s)
where µ(s, t) and µ(s), as usual, are shorthand for µ(Sa=s, Ta=t) and µ(Sa=s), respectively.

Suppose, for contradiction, that one of these inequalities is strict at some an index (a′, s′, t′) ∈ VA for which βa′ > 0.
Explicitly, this means

ua′,s′,t′ > µ(s0, t0) log
µ(s′, t′)

Pa′(t′|s′)µ(s′)
.

In that case, we can define a vector u′ = [u′a,s,t](a,s,t)∈VA which is identical to u, except that at (a′, s′, t′), it is
halfway between the two quantities described as different above. More precisely:

u′a′,s′,t′ =
1

2
ua′,s′,t′ +

1

2
logµ(s′, t′) log

µ(s′, t′)

Pa(t′|s′)µ(s′)
.

Note that u′a′,s′,t′ < ua′,s′,t′ , and also that, by construction, (µ,u′) also satisfies the constraints of (5). In more detail:
for (a′, s′, t′) it doesn’t violate the associated exponential cone constraint, as(

formally: u′a′,s′,t′ =
1

2
ua′,s′,t′ +

1

2
logµ(s′, t′) log

µ(s′, t′)

Pa′(t′|s′)µ(s′)
> µ(s′, t′) log

µ(s′, t′)

Pa′(t′|s′)µ(s′)

)
,

and u′ remains unchanged at the other indices, and so satisfies the constraints at those indices, becasuse u does. But
now, because u′a′,s′,t′ < ua′,s′,t′ , and βa′ > 0, we also have∑

(a,s,t)∈VA

βau
′
a,s,t >

∑
(a,s,t)∈VA

βau
′
a,s,t.

Thus the objective value at (µ,u′) is strictly smaller than the one at (µ,u), both of which are feasible points. This
contradicts the assumption that (µ,u) is optimal. We therefore conclude that none of these inequalities can be strict
at points where βa > 0. This can be compactly written as:

∀(a, s, t) ∈ VA. βaua,s,t = βaµ(s, t) log
µ(s, t)

Pa(t|s)µ(s)

=⇒
∑

(a,s,t)∈VA

βaua,s,t =
∑

(a,s,t)∈VA

βaµ(s, t) log
µ(s, t)

Pa(t|s)µ(s)
= OIncM(µ).

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

In other words, the objective of problem (5) at (µ,u) is equal to the observational incompatibility OIncM(µ) of µ
with M. And, because (µ,u) minimizes this value among all joint distributions, µ must be a minimum of OIncM.

More formally: assume for contradiciton that µ is not a minimizer of OIncM. Then there would be some other
distribution µ′ for which OIncM(µ′) < OIncM(µ). Let u′′ := [µ′(s, t) log µ′(s,t)

Pa(t|s)µ′(s)](a,s,t)∈VA. Clearly (µ′,u′′)
satisfies the constraints of the problem, and moreover,∑

(a,s,t)∈VA

βaua,s,t = OIncM(µ) > OIncM(µ′) =
∑

(a,s,t)∈VA

βau
′
a,s,t,

contradicting the assumption that the (µ,u) is optimal for problem (5). Thus, µ is a minimizer of OIncM, and the
objective value is infµOIncM(µ) = ⟨⟨M⟩⟩0, as desired.

Proposition 2. If (µ,u,v) is a solution to (7), and β ≥ γα, then µ is the unique element of [[M]]∗γ , and ⟨⟨M⟩⟩γ equals the
objective of (7) evaluated at (µ,u,v).

For convenience, we repeat problem (7) (left) and an equivalent variant of it that we implement (right) below.

minimize
µ,u,v

∑
(a,s,t)∈VA

(βa− αaγ)ua,s,t + γ
∑
w∈VX

vw (7)

−
∑
(a,s,t)∈VA+

αaγ µ(Sa=s, Ta=t) logPa(t|s)

subject to µ ∈ ∆VX , (−v, µ,1) ∈ KVX
exp,

∀a ∈ A.
(
− ua, µ(Ta, Sa),Pa(Ta|Sa)µ(Sa)

)
∈ KVa

exp,

∀(a, s, t) ∈ VA0. µ(Sa=s, Ta= t) = 0;

minimize
µ,u,v

∑
(a,s,t)∈VA

(βa− αaγ)ua,s,t + γ
∑
w∈VX

vw (7b)

−
∑
(a,s,t)∈VA+

βa µ(Sa=s, Ta=t) logPa(t|s)

subject to µ ∈ ∆VX , (−v, µ,1) ∈ KVX
exp,

∀a ∈ A.
(
− ua, µ(Ta, Sa),

[
µ(Sa = s)

]
(s,t)∈Va

)
∈ KVa

exp,

∀(a, s, t) ∈ VA0. µ(Sa=s, Ta= t) = 0.

Proof. We start with the problem on the left, which is (7) from the main text. Suppose that (µ,u,v) is a solution to
(7). The exponential constraints ensure that

∀(a, s, t) ∈ VA. ua,s,t ≥ µ(s, t) log
µ(t|s)
Pa(t|s)

and ∀w ∈ VX . vw ≥ µ(w) logµ(w).

As in the previous proof, we claim that these must hold with equality (except possibly for ua,s,t at indices satisfying
βa = γαa, when it doesn’t matter). This is because otherwise one could reduce the value of a component of u or v
while still satisfying all of the constraints, to obtain a strictly smaller objective, contradicing the assumption that
(µ,u,v) minimizes it.

Thus, v is a function of µ, as is every value of u that affects the objective value of (7), meaning that this objective

value can be written as a function of µ alone:∑
(a,s,t)∈VA

(βa− αaγ)ua,s,t + γ
∑
w∈VX

vw −
∑
(a,s,t)∈VA+

αaγ µ(s, t) logPa(t|s)

=
∑
(a,s,t)∈VA

(βa− αaγ)
(
µ(s, t) log

µ(t|s)
Pa(t|s)

)
+ γ

∑
w∈VX

µ(w) logµ(w) −
∑
(a,s,t)∈VA+

αaγ µ(s, t) logPa(t|s)

=
∑
a∈A

(βa− αaγ)
∑

(s,t)∈Va

(
µ(s, t) log

µ(t|s)
Pa(t|s)

)
− γH(µ)−

∑
a∈A

αaγ
∑

(s,t)∈VA

µ(s, t) logPa(t|s)

=
∑
a∈A

(βa− αaγ)
∑

(s,t)∈Va

µ(s, t)

(
log

1

Pa(t|s)
− log

1

µ(t|s)

)
− γH(µ)−

∑
a∈A

αaγ E
µ
[logPa(Ta|Sa)]

=
∑
a∈A

(βa−αaγ)E
µ
[− logPa(Ta|Sa)]−

∑
a∈A

(βa−αaγ)Hµ(Ta|Sa)− γH(µ)−
∑
a∈A

αaγ E
µ
[logPa(Ta|Sa)]

=
∑
a∈A

(
− αaγ − (βa−αaγ)

)
E
µ
[logPa(Ta|Sa)] +

∑
a∈A

(αaγ−βa)Hµ(Ta|Sa)− γH(µ)

= −
∑
a∈A

βa E
µ
[logPa(Ta|Sa)] +

∑
a∈A

(αaγ−βa)Hµ(Ta|Sa)− γH(µ).

(In the third step, we were able to convert VA+ to VA because, as usual in when dealing with information-therotic
quantities, we interpret 0 log 1

0 as equal to zero, which is its limit.)

The algebra, for the right side variant (7b) is slightly simpler. In this case the middle conic constraint is almost the
same, except for that Pa(t|s) has been replaced with 1, and so it ensures that ua,s,t = µ(s, t) logµ(t | s) (i.e., the
same as before, but without the probability in the denomiator). So,∑

(a,s,t)∈VA

(βa− αaγ)ua,s,t + γ
∑
w∈VX

vw −
∑
(a,s,t)∈VA+

βa µ(s, t) logPa(t|s)

=
∑
(a,s,t)∈VA

(βa− αaγ)µ(s, t) logµ(t|s) + γ
∑
w∈VX

µ(w) logµ(w) −
∑
(a,s,t)∈VA+

βa µ(s, t) logPa(t|s)

=
∑
a∈A

(βa− αaγ)
∑
(s,t)∈Va

µ(s, t) logµ(t|s)− γH(µ)−
∑
a∈A

βa
∑
(s,t)∈VA

µ(s, t) logPa(t|s)

=
∑
a∈A

(αaγ−βa)Hµ(Ta|Sa)− γH(µ)−
∑
a∈A

βa E
µ
[logPa(Ta|Sa)].

In either case, the objective value is equal to [[M]]γ(µ), by (6). Because (µ,u,v) is optimal for this problem, we
know that µ is a minimizer of [[M]]γ(µ), and that the objective value equals ⟨⟨M⟩⟩γ .

Lemma 1. The gradient and Hessian of the conditional relative entropy are given by

[
∇µID(µ(X,Y) ∥ µ(X)p(Y |X))

]
u
= log

µ(Yu|Xu)
p(Yu|Xu)[

∇2
µID(µ(X,Y) ∥ µ(X)p(Y |X))

]
u,v

=
1[Xu=Xv ∧ Yu=Yv]

µ(Yu,Xu)
− 1[Xv = Xu]

µ(Xu)
.

Proof. Represent µ as a vector [µw]w∈VX . We will make repeated use of the following facts:

∂

∂µu

[
µ(X=x)

]
=

∂

∂µu

[
µ(x)

]
=
∑
w

∂

∂µu

[
µw

]
1[Xw=x] = 1[Xu=x]; and

∂

∂µu

[
µ(y|x)

]
=

∂

∂µu

[
µ(x, y)

µ(x)

]
= −µ(x, y) ∂

∂µu

[
1

µ(x)

]
+

1

µ(x)

∂

∂µu

[
µ(x, y)

]
= −µ(x, y)

µ(x)2
1[Xu = x] +

1

µ(x)
1[XY (u)=xy]

=
1[Xu = x]

µ(x)

(
1[Yu = y]− µ(y|x)

)
.

We now apply this to the (conditional) relative entropy:

∂

∂µu

[
ID(µ(X,Y) ∥ µ(X)p(Y |X))

]
=

∂

∂µu

[∑
w

µw log
µ(Yw|Xw)
p(Yw|Xw)

]

=
∑
w

1[u=w] log
µ(Yw|Xw)
p(Yw|Xw)

+
∑
w

µw
∂

∂µu

[
log

µ(Yw|Xw)
p(Yw|Xw)

]
= log

µ(Yu|Xu)
p(Yu|Xu)

+
∑
w

µw
p(Yw|Xw)
µ(Yw|Xw)

∂

∂µu

[
µ(Yw|Xw)
p(Yw|Xw)

]
= log

µ(Yu|Xu)
p(Yu|Xu)

+
∑
w

µw
1

µ(Yw|Xw)
∂

∂µu

[
µ(Yw|Xw)

]
= log

µ(Yu|Xu)
p(Yu|Xu)

+
∑
w

µw
1

µ(Yw|Xw)
1[Xu = Xw]

µ(Xw)

(
1[Yu = Yw]− µ(Yw|Xw)

)
= log

µ(Yu|Xu)
p(Yu|Xu)

+
∑
w

µw
1[Xu=Xw ∧ Yu=Yw]

µ(Xw, Yw)
−
∑
w

µw
1[Xu = Xw]

µ(Xw)

= log
µ(Yu|Xu)
p(Yu|Xu)

+
1

µ(Xu, Yu)

∑
w

µw1[Xu=Xw ∧ Yu=Yw]−
1

µ(Xu)

∑
w

µw1[Xu = Xw]

= log
µ(Yu|Xu)
p(Yu|Xu)

+
µ(Xu, Yu)

µ(Xu, Yu)
− µ(Xu)

µ(Xu)

= log
µ(Yu|Xu)
p(Yu|Xu)

This allows us to compute the Hessian of the conditional relative entropy, whose components are

∂2

∂µu∂µv

[
ID(µ(XY) ∥ µ(X)p(Y |X))

]
=

∂

∂µv

[
log

µ(Yu|Xu)
p(Yu|Xu)

]
=
p(Yu|Xu)
µ(Yu|Xu)

1

p(Yu|Xu)
∂

∂µv

[
µ(Yu|Xu)

]
=

1

µ(Yu|Xu)
1[Xv=Xu]

µ(Xu)

(
1[Yv=Yu]− µ(Yu|Xu)

)
=
1[Xu=Xv ∧ Yu=Yv]

µ(Yu,Xu)
− 1[Xv = Xu]

µ(Xu)
.

Lemma 2. Let p(Y |X) be a cpd, and suppose µ0, µ1 ∈ ∆V(X,Y) are joint distributions that have different conditional
marginals on Y given X; that is, that there exist (x, y) ∈ V(X,Y) such that µ0(x, y)µ1(x) ̸= µ1(x, y)µ0(x). Then the

conditional relative entropy ID
(
µ(X,Y)

∥∥∥ µ(X)p(Y |X)
)

is strictly convex in µ along the line segment from µ0 to µ1.

More precisely, for t ∈ [0, 1], if we define µt := (1− t)µ0 + t µ1, then the function

t 7→ ID
(
µt(X,Y)

∥∥∥ µt(X)p(Y |X)
)

is strictly convex.

Proof. We can only have non-strict convexity if the direction δ lies in the null-space of the Hessian matrix H(µ) of
the relative entropy. By Lemma 1,

H(xy),(x′y′) =
1[x=x′ ∧ y=y′]

µ(x, y)
− 1[x=x′]

µ(x)
.

Consider a function δ : V(X,Y) → R that is not identically zero, which can be viewed as a vector δ =
[δ(x, y)](x,y)∈V(X,Y) ∈ RV(X,Y). We can also view δ as a (signed) measure on V(X,Y), that has marginals
in the usual sense. In particular, we use the analogous notation

δ(x) :=
∑
y∈VY

δ(x, y).

We then compute

(
H(µ) δ

)
x,y

=
∑
x′,y′

δ(x′, y′)

(
1[x=x′ ∧ y=y′]

µ(x, y)
− 1[x=x′]

µ(x)

)

=
δ(x, y)

µ(x, y)
− δ(x)

µ(x)
.

and also

δTH(µ) δ =
∑
x,y

δ(x, y)(H(µ) δ)x,y

=
∑
x,y

δ(x, y)

(
δ(x, y)

µ(x, y)
− δ(x)

µ(x)

)

=
∑
x,y

δ(x, y)2

µ(x, y)
−
∑
x

δ(x)

µ(x)

∑
y

δ(x, y)

=
∑
x,y

δ(x, y)2

µ(x, y)
−
∑
x

δ(x)2

µ(x)

=
∑
x

δ(x)2

µ(x)

(∑
y

δ(x, y)2

δ(x)2µ(y|x)
− 1

)
. (1)

Now, consider another discrete measure |δ|, whose value at each component is the absolute value of the value of
δ at that component, i.e., |δ|(x, y) := |δ(x, y)|. By construction, |δ| is now an unnormalized probability measure:
|δ| = kq(X,Y), where k =

∑
x,y |δ(x, y)| > 0 and q ∈ ∆V(X,Y).

Note also that |δ|(x)2 = (
∑
y |δ(x, y)|)2 ≥ (

∑
y δ(x, y))

2, and strictly so if there are y, y′ such that δ(x, y) < 0 <
δ(x, y′). In other words, the vector δx = [δ(x, y)]y∈VY is either non-negative or non-positive: δx ≥ 0 or δx ≤ 0 for

each x. Meanwhile, |δ|(x, y)2 = δ(x, y)2 is unchanged. Thus, for every x ∈ VX , we have:

∑
y

δ(x, y)2

δ(x)2µ(y|x)
− 1 ≥

∑
y

|δ|(x, y)2

|δ|(x)2µ(y|x)
− 1

=
∑
y

k2q(x, y)2

k2q(x)2µ(y|x)
− 1

=
∑
y

q(y|x)2

µ(y|x)
− 1

= χ2
(
q(Y |x)

∥∥∥µ(Y |x)) ≥ 0.

The final line depicts the χ2 divergence between the distributions q(Y |x) and µ(Y |x), both distributions over Y .
Since it is a divergence, this quantity is non-negative and equals zero if and only if q(Y |x) = µ(Y |x).

Picking up where we left off, we have:

δTH(µ)δ =
∑
x

δ(x)2

µ(x)

(∑
y

δ(x, y)2

δ(x)2µ(y|x)
− 1

)

≥
∑
x

δ(x)2

µ(x)

(∑
y

|δ|(x, y)2

|δ|(x)2µ(y|x)
− 1

)

=
∑
x

δ(x)2

µ(x)
χ2
(
q(Y |x)

∥∥∥µ(Y |x)) ≥ 0.

As a non-negatively weighted sum of non-negative numbers, this final quantity is non-negative, and equals zero if and
only if, for each x ∈ VX , we have either q(Y |x) = µ(Y |x), or δ(x) = 0. Furthermore, if δTH(µ)δ = 0, then both
inequalities hold with equality. Therefore, we know that if δ(x) ̸= 0, then δx ≥ 0 or δx ≤ 0. These two conditions
are also sufficient to show that δTH(µ)δ = 0. To summarize what we know so far:

δTH(µ)δ = 0 ⇐⇒ ∀x ∈ VX. either (δx ≥ 0 or δy ≤ 0) and |δ|(Y |x) = µ(Y |x)
or δ(x) = 0.

The second possibility, however, is somewhat of a fluke; we now return to the expression we had in (1) before
considering |δ|, We’ve already shown that the contribution to the sum at each value of x is non-negative, so if
δTH(µ)δ is to equal zero, each summand which depends on x must be zero as well. So if x is a value of X for which
δ(x) = 0, then

0 =
1

µ(x)

(∑
y

δ(x, y)2

µ(y|x)
− δ(x)2

)
=

1

µ(x)

∑
y

δ(x, y)2

µ(y|x)
=
∑
y

δ(x, y)2

µ(x, y)
,

which is only possible if δ(x, y) = 0 for all y. This allows us to compute, more simply, that

δTH(µ)δ = 0 ⇐⇒ (∀x. δx ≥ 0 or δx ≤ 0) and ∀(x, y) ∈ V(X,Y). δ(x, y)µ(x) = δ(x)µ(x, y)

Finally, we are in a position to prove the lemma. Suppose µ0, µ1 ∈ ∆V(X,Y) and (x∗, y∗) ∈ V(X,Y) are such
that µ0(x

∗, y∗)µ1(x
∗) ̸= µ1(x

∗, y∗)µ0(x
∗). So, the quantity

gap := µ1(x
∗, y∗)µ0(x

∗)− µ0(x
∗, y∗)µ1(x

∗) is nonzero.

Then for all t ∈ (0, 1) the intermediate point µt = (1− t)µ0 + t µ1 must have different conditional marginals from

both µ0 and µ1, as

µt(x
∗, y∗)µ0(x

∗)− µ0(x
∗, y∗)µt(x

∗)

=
(((((((((((
(1− t)µ0(x

∗, y∗)µ0(x
∗) + tµ1(x

∗, y∗)µ0(x
∗)−

(((((((((((
(1− t)µ0(x

∗, y∗)µ0(x
∗)− tµ0(x

∗, y∗)µ1(x
∗)

= t
(
µ1(x

∗, y∗)µ0(x
∗)− µ0(x

∗, y∗)µ1(x
∗)
)

= t · gap ̸= 0,

and analogously for µ1,

µt(x
∗, y∗)µ1(x

∗)− µ1(x
∗, y∗)µt(x

∗)

= (1− t)µ0(x
∗, y∗)µ1(x

∗) +((((((((
tµ1(x

∗, y∗)µ1(x
∗)− (1− t)µ1(x

∗, y∗)µ0(x
∗)−((((((((

tµ1(x
∗, y∗)µ1(x

∗)

= (1− t)(µ0(x
∗, y∗)µ1(x

∗)− µ1(x
∗, y∗)µ0(x

∗))

= −(1− t) · gap ̸= 0.

Then for any direction δ := k(µ0 − µ1) parallel to the segment between µ0 and µ1 (intuitively a tangent vector at µt,
although this fact doesn’t affect the computation), of nonzero length (k ̸= 0), we have:

µt(x
∗, y∗)δ(x∗)− δ(x∗, y∗)µt(x∗)

= k µt(x
∗, y∗)

(
µ0(x

∗)− µ1(x
∗)
)
− k

(
µ0(x

∗, y∗)− µ1(x
∗, y∗)

)
µt(x

∗)

= k
(
µt(x

∗, y∗)µ0(x
∗)− µt(x∗, y∗)µ1(x

∗)− µ0(x
∗, y∗)µt(x

∗) + µ1(x
∗, y∗)µt(x

∗)
)

= k
((
µt(x

∗, y∗)µ0(x
∗)− µ0(x

∗, y∗)µt(x
∗)
)
+
(
µ1(x

∗, y∗)µt(x
∗)− µt(x∗, y∗)µ1(x

∗)
))

= k
(
+t gap + (1− t) gap

)
= k gap ̸= 0.

So at every t, directions parallel to the segment are not in the null space of H(µt), meaning that δTH(µt)δ > 0 and
so our function is strictly convex along this segment.

Proposition 3. If M has arcs A and β ≥ 0, the minimizers of OIncM all have the same conditional marginals along A.
That is, for all µ1, µ2 ∈ [[M]]∗0 and all S a→T ∈ A with βa > 0, we have µ1(T, S)µ2(S) = µ2(T, S)µ1(S).

Proof. For contradiction, suppose that µ1, µ2 ∈ [[M]]∗0, but there is some (â, ŝ, t̂) ∈ VA such that βa > 0 and

µ1(Ta=t̂, Sa=ŝ)µ2(Sa=ŝ) ̸= µ2(Ta=t̂, Sa=ŝ)µ1(Saŝ).

For t ∈ [0, 1], let µt := (1− t)µ0 + t µ1 as before. Then define

F (t) := ID
(
µt(Sa, Ta)

∥∥∥ µt(Sa)Pa(Ta|Sa)).
Since µ0(Sa, Ta) and µ1(Sa, Ta) are joint distributions voer two variables, with different conditional marginals, as
above, Lemma 2 applies, and so F (t) is strictly convex.

Let
OIncM\â :=

∑
a̸=â

βaID(µ(Ta, Sa) ∥ Pa(Ta|Sa)µ(Sa))

be the observational incompatibility loss, but without the term corresponding to edge â. Since OIncM\â is convex
in its argument, it is in particular convex along the segment from µ0 to µ1; that is, for t ∈ [0, 1], the function
t 7→ OIncM\â(µt) is convex. Therefore, we know that the function

G(t) := OIncM(µt) = OIncM\a(µt) + βa F (t),

is strictly convex. But then this means µ1/2 satisfies

OIncM(µ1/2) < OIncM(µ0),

contradicting the premise that µ0 minimizes OIncM (i.e., µ0 ∈ [[M]]∗0). Therefore, it must be the case that all
distributions in [[M]]∗0 have the same conditional marginals, as promised.

Proposition 4. If µ ∈ [[M]]∗0 , then

SInc
M

(µ)=
∑
w∈VX

µ(w) log

(
µ(w)⧸∏

a∈A
ν
(
Ta(w)

∣∣Sa(w))αa
)
, (2)

where {ν(Ta|Sa)}a∈A are the marginals along the arcs A shared by all distributions in [[M]]∗0 (per Proposition 3), and
Sa(w), Ta(w) are the values of variables Sa and Ta in w.

Proof. This is mostly a simple algebraic manipulation. By definition:

SIncM(µ) = −H(µ) +
∑
a∈A

αaHµ(Ta|Sa)

= E
µ

[
− log

1

µ
+
∑
a∈A

αa log
1

µ(Ta|Sa)

]

=
∑
w∈VX

µ(w)

[
logµ(w) +

∑
a∈A

log
1

µ(Ta(w)|Sa(w))αa

]

=
∑
w∈VX

µ(w) log

(
µ(w)⧸∏

a∈A
µ(Ta(w)|Sa(w))αa

)

But, by Proposition 3, if we restrict µ ∈ [[M]]∗0, then the conditoinal marginals in the denominator do not depend on
the particular choice of µ; they’re shared among all ν ∈ [[M]]∗0.

Proposition 5. If ν ∈ [[M]]∗0 and (µ,u) solves the problem

minimize
µ,u

1Tu (3)

subject to (−u, µ,k) ∈ KVX
exp, µ ∈ ∆VX ,

∀S a→T ∈ A. µ(S, T) ν(S) = µ(S) ν(S, T),

then [[M]]∗0+ = {µ} and 1Tu = SIncM(µ).

Proof. Suppose (−u, µ,k) is a solution to problem (3). The second constraint, by Proposition 3, ensures that
µ ∈ [[M]]∗0. Then,

(−u, µ,k) ∈ KVX =⇒ ∀w ∈ VX . uw ≥ µ(w) log
µ(w)

kw

= µ(w) log

(
µ(w)⧸∏

a∈A
µ(Ta(w)|Sa(w))αa

)
.

The same logic as in the proofs of Propositions 1 and 2 shows that this inequality must be tight, or else (−u, µ,k)
would not be optimal for (3). So, u is a function of µ. Also, by Proposition 4, the problem objective satisfies

1Tu =
∑
w∈VX

uw = SIncM(µ).

Finally, because µ is optimal, it must be the unique distribution [[M]]∗, which among those distributions that minimize
OIncM, also minimizes SIncM, meaning µ = [[M]]∗.

Theorem 6. If M1 and M2 are PDGs over the sets of variables X1 and X2, respectively, then X1 and X2 are conditionally
independent given X1 ∩ X2 in every µ ∈ [[M1 +M2]]

∗
γ , for all γ > 0 and γ = 0+.

Or symbolically: M1 +M2 |= X1 ⊥⊥X2 | X1 ∩ X2.

Proof. Note that, save for the joint entropy, every summand the scoring function [[M1 +M2]]γ : ∆(VX1 × VX2), is
a function of the conditional marginal of µ along some edge. In particular, those terms that correspond to edges of
M1 can be computed from the marginal µ(X1), while those that correspond to edges of M2 can be computed from
the marginal µ(X2). Therefore, there are functions f and g such that:

[[M1 +M2]]γ(µ) = f(µ(X1)) + g(µ(X2))− γH(µ).

To make this next step extra clear, let X := X1 \ X2 and Z := X2 \ X1, be the variables unique to each PDG, and
S := X1 ∩ X2 be the set of variables they have in common, so that (X,S,Z) is a partition of all variables X1 ∪X2.
Now, define a new distribution µ′ ∈ ∆(VX1 × VX2) by

µ′(X,S,Z) := µ(S)µ(Z | S)µ(X | S)
(

= µ(X,S)µ(Z | S) = µ(Z,S)µ(X | S)
)
.

One can easily verify that X and Z are independent given S in µ′ (by construction), and the alternate forms on the
right make it easy to see that µ(X1) = µ′(X1) and µ(X2) = µ′(X2). Furthermore, for any ν′(X,S,Z), we can write

H(ν) = Hν(X,S,Z) = Hν(X,S) + Hν(Z | X,S)
= Hν(X,S) + Hν(Z | X,S)−Hν(Z | S) + Hν(Z | S)
= Hν(X,S) + Hν(Z | S)− Iν(Z;X|S),

where Iν(X;Z|S), the conditional mutual information between X and Z given S (in ν), is non-negative, and equal
to zero if and only if X and Z are conditionally independent given S [see, for instance, MacKay, 2003, §1]. So
Iµ′(X;Z|S) = 0, and Hµ′ = Hµ′(X,S) + Hµ′(Z|S). Because µ and µ′ share marginals on X1 and X2, while the
terms H(X,S) and H(Z|S) depend only on these marginals, respectively, we also know that Hµ(X,S) = Hµ′(X,S)
and Hµ(Z|S) = Hµ′(Z|S); thus we have

H(µ) = Hµ(X,S) + Hµ(Z | S)− Iµ(Z;X|S)
= H(µ′)− Iµ(Z;X|S).

Therefore,

[[M1 +M2]]γ(µ) = f(µ(X1)) + g(µ(X2))− γH(µ)

= f(µ′(X1)) + g(µ′(X2))− γH(µ′) + γ Iµ(Z;X|S)
= [[M1 +M2]]γ(µ

′) + γ Iµ(Z;X|S).

But conditional mutual information is non-negative, and by assumption, [[M+M2]]γ(µ) is minimal. Therefore, it
must be the case that

Iµ(Z;X|S) = Iµ(X1;X2 | X1 ∩ X2) = 0,

showing that X1 and X2 are conditionally independent given the varaibles that they have in common.
(The fact that Iµ(Z;X|S) = Iµ(X1;X2 | X1 ∩ X2) is both easy to show and an instance of a well-known identity;
see CIRV2 in Theorem 4.4.4 of Halpern [2017], for instance.)

Corollary 6.1. If M is a PDG with arcs A, (C, T) is a tree decomposition of A, γ > 0, and µ ∈ [[M]]∗γ , then there exists a
clique tree µ over (C, T) such that Prµ = µ.

Proof. The set of distributions that can be represented by a calibrated clique tree over (C, T) is the same as the set
of distributions that can represeted by a factor graph for which (C, T) is a tree decomposition. One direction holds
because any such product of factors “calibrated”, via message passing algorithms such as belief propogation, to form
a clique tree. The other direction holds because Prµ itself is a product of factors that decomposes over (C, T).

Alternatively, this same set of distributions that satisfy the independencies of the Markov Network obtained by
connecting every pair of variables that share a cluster. More formally, this network is the graph G := (X , E :=
{(X−Y) : ∃C ∈ C. {X,Y } ⊆ C}). Also, G happens to chordal as well, which we prove at the end.

Using only the PDG Markov property (Theorem 6), we now show that every independence described by G also holds
in every distribution µ ∈ [[M]]∗γ . Suppose that, for sets of variables X,Y,Z ⊆ X , I(X;Y|Z) is an independence
described by G. This means [Koller and Friedman, 2009, Defn 4.8] that if X ∈ X, Y ∈ Y, and π is a path in G
between them, then some node along π lies in Z.

Let T ′ be the graph that results from removing each edge (C−D) ∈ T that satisfies C ∩D ⊆ Z, which is a disjoint
union T ′ = T1 ⊔ . . . ⊔ Tn of subtrees that have no clusters in common. To parallel this notation, let C1, . . . ,Cn be
their respective vertex sets. Note that for every edge e = (C−D) ∈ T ′, there must by definiton be some variable
Ue ∈ (C ∩D) \ Z.

We claim that no subtree Ti can have both a cluster DX containing a variable X ∈ X \ Z and also a cluster DY

containing a variable Y ∈ Y \ Z. Suppose that it did. Then the (unique) path in T between DX and DY , which we
label

DX = D0 D1 · · · Dm−1 Dm = DY
e1 e2 em−1 em ,

would lie entirely within T⟩ ⊆ T ′. This gives rise to a corresponding path in G:

X Ue1 Ue2 · · · Uen−1
Uen Y

D0 D0 ∩D1 D1 ∩D2 Dn−2 ∩Dn−1 Dn−1 ∩Dn Dn

∈ ∈ ∈ ∈ ∈ ∈ ,

and moreover, this path is disjoint from Z. This contradicts our assumption that every path in G between a member
of X and a member of Y must intersect with Z, and so no subtree can have both a cluster containing a variable
X ∈ X \ Z and also one containing Y ∈ Y \ Z.

We can now partition the clusters as C = CX ⊔ C+
Y, where CX is the set of the clusters that belong to subtrees Ti

with a cluster containing some X ∈ X \ Z, and its C+
Y is its complement, which in particular contains those subrees

have some Y ∈ Y \ Z. Or, more formally, we define

CX :=
⋃

i∈{1,...,n}
(∪Ci)∩(X\Z) ̸=∅

Ci and C+
Y :=

⋃
i∈{1,...,n}

(∪Ci)∩(X\Z)=∅

Ci .

Let XX := ∪CX set of all variables appearing in the clusters CX; symmetrically, define X+
Y := ∪C+

Y.

We claim that XX ∩ X+
Y ⊂ Z. Choose any variable U ∈ XX ∩ X+

Y . From the definitions of XX and X+
Y , this means

U is a member of some cluster C ∈ CX, and also a member of a cluster D ∈ C+
Y. Recall that the clusters of each

disjoint subtree Ti either fall entirely within CX or entirely within C+
Y by construction. This means that C and D,

which are on opposite sides of the partition, must have come from distinct subtrees. So, some edge e = (C ′−D′) ∈ T
along the (unique) path from C to D must have been removed when forming T ′, which by the definition of T ′,
means that (C ′ ∩D′) ⊂ Z. But by the running intersection property (clique tree property 2), every cluster along the
path from C to D must contain C ∩D—in particular, this must be true of both C ′ and D′. Therefore,

U ∈ C ∩D ⊂ C ′ ∩D′ ⊂ Z.

So XX ∩ X+
Y ⊂ Z, as promised. We will rather use it in the equivalent form (XX ∩ X+

Y) ∪ Z = Z.

Next, since (C, T) is a tree decomposition of A, each hyperarc a ∈ A can be assigned to some cluster Ca that
contains all of its variables; this allows us to lift the cluster partition C = CX ⊔ C+

Y to a partition A = AX ⊔ A+
Y of

edges, and consequently, a partition of PDGs M = MX +M+
Y. Concretely: let MX be the sub-PDG of M induced

by restricting to the variables XX ⊆ X arcs AX = {a ∈ A : Ca ∈ CX} ⊆ A; define M+
Y symmetrically. (To be

explicit: the other data of MX and M+
Y are given by restricting each of {P,α,β} to AX and A+

Y, respectively.)

This partition of M allows us to use the PDG Markov property. Suppose for some γ > 0 that µ ∈ [[M]]∗γ =

[[MX +M2]]
∗
γ . We can then apply Theorem 6, to find that XX and X+

Y are independent given XX ∩ X+
Y . Then, we

use standard standard properties of random variable independence [CIRV1-5 of Halpern, 2017, Theorem 4.4.4] to
find that µ must satisfy:

XX ⊥⊥X+
Y | XX ∩ X+

Y

=⇒ (XX \ Z)⊥⊥ (X+
Y \ Z) | (XX ∩ X+

Y) ∪ Z
[

CIRV3
]

=⇒ (X \ Z)⊥⊥ (Y \ Z) | (XX ∩ X+
Y) ∪ Z

[
by CIRV2, as X ⊆ XX and Y ⊆ X+

Y

]
=⇒ (X \ Z)⊥⊥ (Y \ Z) | Z

[
since (XX ∩ X+

Y) ∪ Z = Z
]

⇐⇒ X⊥⊥Y | Z
[

standard; e.g., Exercise 4.18 of Halpern [2017]
]

Using only the PDG Markov property, we have now shown that every independence modeled by the Markov Network
G also holds in every distribution µ ∈ [[M]]∗γ . Moreover, G is chordal (as we will prove momentarily), and is
well-known that distributions that have the independencies of a chordal graph can be can be represented by clique
trees [Koller and Friedman, 2009, Theorem 4.12]. Therefore, there is a clique tree µ representing every µ ∈ [[M]]∗γ .

Claim 2.1. G is chordal.

Proof. Suppose that G contains a loop X−Y−Z−W−X . Suppose further, for contradiction, that neither X and Z
nor Y and W share a cluster. Given a variable V , it is easy to see that property (2) of the tree decomposition ensures
that the subtree T (V) ⊆ T induced by the clusters C ∈ C that contain V , is connected. By assumption, T (Y) and
T (W) must be disjoint. There is an edge between Y and Z, so some cluster must contain both variables, meaning
T (Y) ∩ T (Z) is non-empty. Similarly, T (Z) ∩ T (W) is non-empty because of the edge between Z and W . This
creates an (indirect) connection in T between T (Y) and T (W). Because T is a tree, and T (Y) ∩ T (W) = ∅, every
path from a cluster C1 ∈ T (Y) to a cluster C2 ∈ T (W) must pass through T (Z), which is not part of T (Y) or
T (W). Now, T (X) and T (Y) intersect as well, meaning that, for any C ∈ T (X), there is a (unique) path from C
to that point of intersection, then across edges of T (Y), then edges of T (Z), and finally connects to the clusters of
T (W). And also, since T is a tree, that path must be unique. The problem is that there is also an edge between X
and W , so there’s some cluster that contains X and W ; let’s call it C0. It’s distinct from the cluster D0 that contains
Z and W , since no cluster contains both X and Z by assumption. The unique path from C0 to D0 intersects with
T (Y). But now W ∈ C0 ∩D0, and by the running intersection property, every node along this unique path must
contain W as well. But this contradicts our assumption that W is disjoint from Y ! So G is chordal.

Proposition 7. If (µ,u) is a solution to (11), then

(a) µ is a calibrated, with Prµ ∈ [[M]]∗0, and
(b) the objective of (11) evaluated at u equals ⟨⟨M⟩⟩0.

Proof. The final constraints alone are enough to ensure that µ is calibrated. Much like before, the exponential conic
constraints tell us that

∀(a, s, t) ∈ VA. ua,s,t ≥ µCa
(s, t) log

µCa(s, t)

µCa
(s)Pa(t|s)

and they hold with equality (at least at those indices where βa > 0) because u is optimal. So∑
(a,s,t)∈VA

βaua,s,t =
∑

(a,s,t)∈VA

βaµCa
(s, t) log

µCa
(s, t)

µCa(s)Pa(t|s)

=
∑
a

βa
∑

(s,t)∈Va

µCa(s, t) log
µCa

(s, t)

µCa(s)Pa(t|s)

= OIncM(Prµ).

Because µ is optimal, it is the choice of calibrated clique tree that minimizes this quantity. By Corollary 6.1, the
distribution [[M]]∗ can be represented by such a clique tree, and by Richardson and Halpern [2021, Prop. 3.4],
this distribution minimizes OIncM. All this is to say that there exist clique trees of this form whose corresonding
distributions attain the minimum value OIncM(Prµ) = ⟨⟨M⟩⟩0. So µ must be one of them, as it minimizes OInc(Prµ)
among such clique trees by assumption. Thus Prµ ∈ [[M]]∗0 and the objective value of (11) equals ⟨⟨M⟩⟩0.

Proposition 8. If (µ,u,v) is a solution to (14), and β ≥ γα, then Prµ is the unique element of [[M]]∗γ , and the objective of
(14) at (µ,u,v) equals ⟨⟨M⟩⟩γ .

Proof. Suppose that (µ,u,v) is a solution to (14). The first and fourth lines of constraints ensures that µ is indeed a
calibrated clique tree. The second line of constraints, plays exactly the same role that it did in the previous problems,
most directly in the variant (11) for γ = 0. In particular, it tells says

∀(a, s, t) ∈ VA. ua,s,t ≥ µCa(s, t) log
µCa

(s, t)

µCa(s)Pa(t|s)

as before, this holds with equality (at least at those indices where βa > αaγ) because u is optimal. Because β ≥ γα
by assumption, either βa > γαa or the two are equal, for every a ∈ A. Either way, the argument used at this point in
the proof of Proposition 7 goes through, giving us:∑

(a,s,t)∈VA

(βa − αaγ)ua,s,t =
∑

(a,s,t)∈VA

((βa − αaγ)µCa(s, t) log
µCa(s, t)

µCa
(s)Pa(t|s)

=
∑
a

(βa − αaγ)
∑

(s,t)∈Va

µCa(s, t) log
µCa(s, t)

µCa
(s)Pa(t|s)

=
∑
a

(βa − αaγ) ID
(
µCa(Sa, Ta)

∥∥∥ µCa(Sa)Pa(Ta|Sa)
)

This time, though, that’s not the problem objective. In this regard, our problem (14) is more closely related to (14).

Before we get to that, we have to first bring in the final collection of exponential constraints, which show that

∀C ∈ C. ∀c ∈ V(C). vC,c ≥ µC(c) log
µC(c)

VCPC(c)
,

and yet again these constraints hold with equality, for otherwise v would not be optimal (since we assumed γ > 0).
Therefore, ∑

(C,c)∈VC

vC,c =
∑

(C,c)∈VC

µC(c) log
µC(c)

VCPC(c)
= −H(Prµ) by Equation (13).

Now, the objective of our problem (14) is essentially the same as that of (7), so the analysis in the proof of
Proposition 2 applies with only a handful of superficial modifications. Using that proof to take a shortcut, the

objective of (14) must equal∑
(a,s,t)∈VA

(βa− αaγ)ua,s,t + γ
∑

(C,c)∈VC

vC,c −
∑
(a,s,t)∈VA+

αaγ µCa
(s, t) logPa(t|s)

=
∑

(a,s,t)∈VA

(βa − αaγ)µCa
(s, t) log

µCa
(s, t)

µCa(s)Pa(t|s)
− γH(Prµ) −

∑
(a,s,t)∈VA+

αaγ µCa
(s, t) logPa(t|s)

=
∑
a∈A

βa E
µCa

[logPa(Ta|Sa)] +
∑
a∈A

(αaγ−βa)HPrµ(Ta|Sa)− γH(Pr
µ
)

= [[M]]γ(Prµ), .

Finally, since µ is such that this quantity is minimized, and because its unique minimizer can be represented as a
cluster tree (per Corollary 6.1), we conclude that µ must be the cluster tree representation of it. Therefore, Prµ is the
unique element of [[M]]∗γ , and the objective at (µ,u,v) equals ⟨⟨M⟩⟩γ , as promised.

Proposition 9. If (µ,u) is a solution to (15), then µ is a calibrated clique tree and [[M]]∗0+ = {Prµ}.

Proof. Suppose that (µ,u) is a solution to (15). The exponential cone constraints state that

∀C ∈ C. ∀c ∈ V(C). uC,c ≥ µC(c) log
µC(c)

kC,cVCPC(c)

= µC(c) log
µC(c)

VCPC(c)
− µC(c) log

∏
a∈AC

νC(Ta(c)|Sa(c))αa

= µC(c) log
µC(c)

VCPC(c)
− µC(c)

∑
a∈AC

αa log νC(Ta(c)|Sa(c)),

and once again this holds with equality, as each uC,c is minimal with this property. The third line of constraints

∀a ∈ A. µCa
(Sa, Ta)νCa

(Sa) = µCa
(Sa)νCa

(Sa, Ta)

and the assumption that Prν ∈ [[M]]∗0, suffice to ensure that Prµ ∈ [[M]]∗0 by Proposition 3. They also allow us
to replace each νCa(Ta(c)|Sa(c)) with νCa(Ta(c)|Sa(c)), in cases where Sa(c) ̸= 0. Therefore, we calculate the
objective to be:

1Tu =
∑
C∈C

∑
c∈V(C)

(
µC(c) log

µC(c)

VCPC(c)
− µC(c)

∑
a∈AC

αa log νC(Ta(c)|Sa(c))

)

=
∑
C∈C

∑
c∈V(C)

µC(c) log
µC(c)

VCPC(c)
−
∑
C∈C

∑
c∈V(C)

µC(c)
∑
a∈A

1[C = Ca]αa log νC(Ta(c)|Sa(c))

= −H(Prµ)−
∑
a∈A

αa
∑
C∈C

1[C = Ca]
∑

c∈V(C)

µC(c) log νC(Ta(c)|Sa(c))
[

by (13)
]

= −H(Prµ)−
∑
a∈A

αa
∑

c∈V(C)a

µCa(c) log νCa(Ta(c)|Sa(c))

= −H(Prµ)−
∑
a∈A

αa
∑

c∈V(C)a

µCa
(c) logµCa

(Ta(c)|Sa(c))
[

since µCa
(Sa(c)) > 0 whenever µCa

(c) > 0
]

= −H(Prµ) +
∑
a∈A

αaHPrµ(Ta|Sa)

= SIncM(Prµ).

To summarize: Prµ minimizes SIncM(Prµ) among calibrated clique trees with condtional marginals matching those
of ν. Since we know that there is a unique distribution that minimizes SIncM among the elements [[M]]∗0, and also

that this distribution can be represented by a clique tree (by Corollary 6.1), we conclude that µ must represent this
distribution. Thus, Prµ = [[M]]∗ as desired.

Lemma 3. Fix integers no, ne ∈ N, and let n := 3ne + no. Suppose that K = Rno

≥0 × Kne
exp ⊂ Rn is a product cone,

consisting of no copies of the non-negative orthant and ne copies of the exponential cone. If, for c ∈ [−1, 1]n, b ∈ [−1, 1]m,
and A ∈ [−1, 1]m×n, the exponential conic program

minimize
x∈K

cTx subject to Ax = b, (3)

is strictly feasible (i.e., if there exists x ∈ intK such that Ax = b) as is its dual problem

maximize
s∈K∗,y∈Rm

bTy subject to ATy + s = c,

(i.e, if there exists s ∈ intK∗ such that ATy + s = c), then both can be simultaneously solved to precision ϵ in
O(n(m+ n)ω log n+m

ϵ) time, where ω is the smallest exponent such that a linear system of k variables and equations can
be solved in O(kω) time. Furthermore, MOSEK solves this problem in O(n(m+ n)3 log n+m

ϵ) time.

Proof. For this, we begin by appealing to the algorithm and analysis of Badenbroek and Dahl [2021], threading
details through for this specific choice of cone K. To finish the proof, however, we will also need to supplement that
analysis with some other well-established results of Nesterov et al. [1999] that the authors were no doubt familiar
with, but did not bother referencing.

First, we’ll need some background material from convex optimization. A logarithmically homogeneous self-
concordant barrier with parameter ν (ν-LHSCB) for a cone K is a thrice differentiable strictly convex function
F : intK → R satisfying F (tx) = F (x)− ν log t for all t > 0 and x ∈ intK. In some sense, the point of such a
barrier function is to augment the optimization objective so that we remain within the cone during the optimization
process.

For the positive orthant cone R≥0, the function x 7→ − log x is a 1-LHSCB. We now fill in some background facts
about exponential cones. The dual the exponential cone is

K∗
exp :=

{
(s1, s2, s3) ∈ R3 : ∀(x1, x2, x3) ∈ Kexp. x1s1 + x2s2 + x3s3 ≥ 0

}
=
{
(s1, s2, s3) : −s1 log(−s1/s3) + s1 − s2 ≤ 0, s1 ≤ 0, s3 ≥ 0

}
.

Consider points x = (x1, x2, x3) ∈ Kexp. The function

Fexp(x) := − log
(
x2 log

x1
x2
− x3

)
− log x1x2 (4)

is a 3-LHSCB for Kexp, since

Fexp(tx) = − log
(
tx2 log

tx1
tx2
− tx3

)
− log(t2x1x2)

= − log
(
t
(
log

x1
x2
− x3

))
− log(x1x2)− 2 log t

= Fexp(x)− 3 log t

Such barrier functions can be combined to act on product cones by summation. Concretely, suppose that for
each i ∈ {1, . . . , k}, we have a νi-LHSCB Fi : intKi → R. Then, for x = (xi)

k
i=1 ∈

∏
iKi, the function

F (x) :=
∑k
i=1 Fi(xi) is a (

∑
i νi)-LHSCB for

∏
iKi, since

F (tx) =

k∑
i=1

Fi(txi) =

k∑
i=1

(F (xi)− νi log t) = F (x)−
k∑
i=1

νi.

In this way, our product cone K = Rno

≥0×Kne
exp admits a LHSCB F with parameter ν = no+3ne = n. Furthermore

can be evaluated in O(n) time, as can each component of its gradient F ′(x) and Hessian F ′′(x) ∈ Rn×n at x, all of
which can be expressed analytically. In addition, the convex conjugate of F also has a known analytic form.

Generally speaking, the idea behind primal-dual interior point methods [Nesterov and Nemirovskii, 1994] such
as the one behind MOSEK, is to maintain both a point x ∈ K and a dual point s ∈ K∗ (as well as y ∈ Rm) and
iteratively update them, as we slowly relax the barrier and approach a point on the boundary of the cone. The quantity
µ(z) := ⟨s,x⟩/ν ≥ 0, called the complementarity gap, is a measure of how close the process is to converging.

Because the initial points may not satisfy the constraints, instead the standard algorithms work with “extended points”
x̄ = (x, τ) and s̄ = (s, κ), for which the analogous complementarity gap is µe(x̄, s̄) := (⟨x, s⟩ + κτ)/(ν + 1).
Altogether, the data at each iteration may be summarized as a point z = (y, x, τ, s, κ) ∈ R×(K×R≥0)×(K∗×R≥0).
The primary object of interest is then something called the homogenous self-dual model. Originally due to Nesterov
et al. [1999] and also used by others [Skajaa and Ye, 2015], it can be defined as a linear operator:

G : Rm+2n+2 → Rn+m+1

G(y, x, τ, s, κ) :=

 0 A −b
−AT 0 c
bT −cT 0

yx
τ

−
0s
k

 .
The reason for our interest is that if z is such that G(z) = 0 and τ > 0, then (x/τ) is a solution to the primal problem,
and (y,s)/τ is a solution to the dual problem [Skajaa and Ye, 2015, Lemma 1], while if G(z) = 0 and κ > 0, then at
least one of the two problems is infeasible.

We now are in a better position to describe the algorithm. According to the MOSEK documentation [Dahl and
Andersen, 2022], for the exponential cone, begins with an initial point

v := (1.291, 0.805,−0.828) ∈ (Kexp ∩ K∗
exp)

for this particular cone K, the algorithm begins at the initial point

z0 := (y0, x0, τ0, s0, κ0) where x0 = s0 = (

no copies︷ ︸︸ ︷
1, . . . , 1,

ne copies︷ ︸︸ ︷
v, . . . ,v) ∈ (R≥0)

no × (Kexp ∩ K∗
exp)

ne ,

y0 = 0 ∈ Rm, τ0 = κ0 = 1.

At each iteration, the first step is to predict a direction for which Badenbroek and Dahl [2021] compute a scaling
matrix W . To describe it, we first need to define shadow iterates

x̃ := −F ′
∗(s) and s̃ := −F ′(x).

which are in a sense reflections of s and x across their barrier functions, and can be computed in in O(n) time. The
analogous notion of complementarity can then be defined as µ̃(z) := ⟨x̃,s̃⟩/ν. The scaling matrix, which we do not
interpret here, can then be calculated as:

W := µF ′′(x) +
ssT

νµ
− µs̃s̃T

ν
+

(s− µs̃)(s− µs̃)T

(s− µs̃)T(x− µx̃)
− µ[F ′′(x)x̃− µ̃s̃][F ′′(x)x̃− µ̃s̃]T

x̃TF ′′(x)x̃− νµ̃2
(5)

Doing so requires O(n2) steps (although it may be parallelized). The first four terms clearly require O(n2) steps,
since each one is an outer product resulting in a n×n matrix. The last term computes a matrix-vector product (which
requires O(n2) steps), and computes an outer product with the resulting vector, which takes O(n2) steps as well.

The next step involves finding a solution ∆zaff = (· · ·) to the system of equations

G(∆zaff) = −G(z) (6a)

τ∆κaff +∆τ aff = −τκ (6b)

W∆xaff +∆saff = −s (6c)

(6a-c) describe a system of (n+m+1)+1+ (n) = 2n+m+2 equations and equally many unknowns, and solved
in O((n+m)ω) steps. It may be possible to exploit the sparsity of G to do better.

The next step is to center that search direction so that it lies on the central path. This is done by finding a solution
∆zcen to

G(∆zcen) = G(z) (7a)
τ∆κcen + κ∆τ cen = µe (7b)
W∆xcen +∆scen = µes̃ (7c)

which again can be done inO((n+m)3) steps with Gaussian elimination, or with a fancier solver inO((n+m)2.332)
steps. The two updates are then applied to the current point z to obtain

z+ = (y+, x+, τ+, s+, κ+) := z + α(∆zaff + γ∆zcen).

Finally, a “correction step”, which is the primary innovation of Badenbroek and Dahl [2021] and used in MOSEK’s
algorithm, is a third direction ∆zcor

+ , which is found by solving the system of equations

G(∆zcor) = 0 (8a)
τ+∆κ

cor + κ+∆τ
cor = 0 (8b)

W+∆x+
cor +∆scen = µes̃ (8c)

where W+ is defined the same way that W is, except that it uses the components of z+ instead of z. After adding the
correction step ∆zcor

+ to z, we repeat the entire process. The full algorithm, then, is summarized as follows:
z ← (y0, x0, τ0, s0, κ0);
while do

Compute scaling matrix W as in (5);
Find the solution ∆zaff to (6a-c), and the solution ∆zcen to (7a-c);
z+ ← z + α(∆zaff + γ∆zcen);
Compute the saling matrix W+;
Find the solution ∆zcor

+ to (8a-c);
z ← z+ +∆zcor

+ ;
end while

We have verified that each iteration of this process can be done in O((n+m)ω)) time. Their main result [Badenbroek
and Dahl, 2021, Theorem 3], states that for every ϵ ∈ (0, 1), the algorithm results in a solution z satisfying

µe(z) ≤ ϵ and ∥G(z)∥ ≤ ϵ∥G(z0)∥

in O(n log(1/ϵ)) iterations, for a total cost of O(n(m+ n)3 log(1/ϵ)) time with Gaussian elimination, or O(n(m+
n)2.332 log(1/ϵ)) time using the linear solver with best known asymptotatic complexity as of 2022 Duan et al. [2022].

Verifying that the solution is approximately optimal. What we have at this point is not quite enough: simply
because the residual quantity G(z) is approximately zero (so that we have approximately solved the homogenous
model), does not mean that we’ve approximately solved the original problem. Specifically, it’s entirely possible on
the surface that the parameter τ goes to zero at the same rate as everything else, and the quantity (x/τ) does not
converge to a solution to the primal problem. To address this issue, we must also trace the analysis of the seminal
work of Nesterov et al. [1999], who use slightly different quantities, conflicting with the notation we have been using
thus far.

Following Nesterov et al. [1999, pg. 231], fix an initial point z0, and let shifted feasible set F := {z ∈ R×K ×
R≥0 ×K∗ × R≥0 : G(z) = G(z0)} be the collection of all points that have the same residual as z0. Nesterov, Todd,
and Ye also refer to a complementary gap by µ(z) and define it identically, but the meaning of this parameter is
different, because the setF on which it’s defined is quite distinct from (if closely related to) the iterates of Badenbroek
and Dahl’s algorithm. In the service of clarity, will call this quantity µN(zN), for zN = (yN, xN, τN, sN, κN) ∈ F .

Although we made a point of emphasizing that the two are distinct, the actual relationship between them is
straightforward. Let z = (y, x, τ, s, κ) be the final output of Badenbroek and Dahl [2021]. In proving their main

theorem, they also prove that G(z) = ϵG(z0), and µe = ϵ; because G is linear, we know that G(z/ϵ) = G(z0). This
means that zN := z/ϵ ∈ F . Therefore,

µN(zN) =
1

ν + 1

(〈s
ϵ
,
x

ϵ

〉
+
τ

ϵ

κ

ϵ

)
=

1

ϵ2
µe(z) =

1

ϵ
.

So, roughly speaking, µN and µe are reciprocals. Badenbroek and Dahl also prove that, every iterate z satisfies their
assumption (A2): for a fixed constant β (equal to 0.9 in their analysis), βµe(z) ≤ τκ. Consequently, it happens that
the same inequality holds with Nesterov’s notation:

τNκN =
τ

ϵ

κ

ϵ
=
τκ

ϵ2
≥ βϵ

ϵ2
=
β

ϵ
= βµN(zN).

This witnesses that zN = z
ϵ satisfies equation (81) of Nesterov et al., which allows us to apply one of their main

theorems, which addresses these issues. Supposing that the orignal problem is solvable, let (x∗, s∗) be any solution
to the primal and dual problems, and define the value ψ := 1 + ⟨s0, x∗⟩+ ⟨s∗, x0⟩ ≥ 1, which depends only on the
problem and the choice of initialization. Then Theroem 1, part 1 of Nesterov, Todd, and Ye, allows us to conclude
that

κ

ϵ
≤ ψ and

τ

ϵ
≥ β

ϵψ
⇐⇒ κ ≤ ϵψ and τ ≥ β

ψ
.

Finally, the original theorem guarantees that ∥G(x)∥ ≤ ϵ∥G(z0)∥, meaning that∥∥∥A(x
τ

)
− b
∥∥∥τ +

∥∥∥AT
(y
τ

)
− s

τ
− c
∥∥∥τ +

∥∥∥bT (y
τ

)
− cT

(x
τ

)
− κ

τ

∥∥∥τ ≤ ϵ∥G(z0)∥
Since the euclidean norm is an upper bound on the deviation in any component (∥v∥ :=

√∑
i v

2
i ≥

√
maxi v2i =

maxi vi =: ∥v∥∞), this means that in light of our bound on τ above, we have∥∥∥A(x
τ

)
− b
∥∥∥
∞

+
∥∥∥AT

(y
τ

)
+
s

τ
− c
∥∥∥
∞

+
∥∥∥bT (y

τ

)
− cT

(x
τ

)
− κ

τ

∥∥∥
∞
≤ ϵβ∥G(z0)∥

ψ
.

The first two components show that the total constraint violation (in the primal and dual problems, respectively) is
at most ϵβ/ψ∥G(z0)∥. Meanwhile, the final component shows that the duality gap gap = bT(yτ)− c

T(xτ), which is
positive and an upper bound on the difference between the objective at x/τ and the optimal objective value, satisfies

gap ≤ gap +
κ

τ
≤ ϵβ∥G(z0)∥

ψ
.

Thus x/τ is an (ϵ∥G(z0)∥)-approximate solution to the original exponential conic problem. Since also ψ ≥ 1, we
may freely drop it to get a looser bound. All that remains is to investigate ∥G(z0)∥, the residual norm of the initial
point chosen by the MOSEK solver, which equals:

∥G(z0)∥ = ∥Ax0 − b∥+ ∥ATy0 + s0 − c∥+ |cTx− bTy + 1|.

Making use of our assumption that every component of A, b, and c is at most one, we find that

∥Ax0 − b∥2 =
∑
j

(
∑
i

Aj,i(1.3)− bj)2 ≤ m(1.3n+ 1)2 ∈ O(mn2) ⊂ O((m+ n)3)

∥ATy0 + s0 − c∥2 =
∑
i

(
∑
j

(Aj,i) ≤ n(m+ 2)2 ∈ O(nm2) ⊂ O((m+ n)3)

|cTx− bTy + 1|2 ≤ (1.3n+m+ 1)2 ∈ O((n+m)2) ⊂ O((n+m)3).

Therefore, the residual of the initial point is G(z0) ∈ O((n+m)3/2).

To obtain a solution at most ϵ0 away from the true solution in any coordinate, we need to select ϵ small enough that
the final output of the algorithm z satisfies

ϵ∥G(z0)∥ ≤ ϵ0 ⇐⇒ 1

ϵ
≥ 1

ϵ0
∥G(z0)∥

It therefore suffices to choose 1
ϵ ∈ O(1

ϵ0
(n+m)3/2), leading to log 1

ϵ = O(log n+m
ϵ0

)) iterations.

Thus, we arrive at our total advertised asymptotic complexity of time

O
(
n(n+m)ω log

n+m

ϵ0

)
.

In particular, to attain machine precision, we can fix ϵ0 to be the smallest gap between numbers representable (say
with 64-bit floats, leading to ϵ0 = 10−78 in the worst case), and omit the dependance on ϵ0 for the price of relatively
small constant (78, for 64-bit floats).

Having combed through all of the details of the analysis of Badenbroek and Dahl [2021] and Nesterov et al. [1999] for
exponential conic programs as we have defined them, we are ready to show that this algorithm solves the problems presented
in Section 4 within polynomial time.

Lemma 4. Problem (11) can be solved to ϵ precision in time

O
(
(VA+ VC)1+ω(log |VA|+ |VC|

ϵ
+ log

βmax

βmin

)
⊂ Õ

(
(VA+ VC)4

)
,

where βmax := maxa∈A βa is the largest value of β, and βmin := mina∈A{βa : βa > 0} is the smallest positive one.

Proof. Problem (11) can translated via the DCP framework to the following exponential conic program, which has:

▶ variables x = (u,v,w,µ) ∈ KVA
exp × RVC

≥0 , where

• u,v,w ∈ RVA are all vectors over VA, that at index ι = (a, s, t) ∈ VA, have components uι, vι, and wι,
respectively;

• µ = [µC(C=c)]C∈C, c∈V(C) ∈ RVC is a vector representation of a clique tree over clusters C;

▶ constraints as follows:

• two linear constraints for every (a, s, t) ∈ VA to ensure that

va,s,t = µCa
(s, t)

(
=

∑
c̄∈V(Ca\{Sa,Ta})

µCa
(c̄, s, t)

)
and wa,s,t = µCa

(Sa=s)Pa(Ta=t | Sa=s)
(

= Pa(Ta=t | Sa=s)
∑

c̄∈V(Ca\{Sa})

µCa
(c̄, s)

)
• for every edge (C−D) ∈ T , and every value ω ∈ V(C ∩D) of the variables that clusters C and D have in

common, a linear constraint ∑
c̄∈V(C\D)

µC(c̄, ω) =
∑

d̄∈V(D\C)

µD(d̄, ω)

• and one constraint for each cluster C ∈ C to ensure that µC lies on the probability simplex, i.e.,∑
c∈V(C)

µC(c) = 1.

Altogether this means that we have an exponential conic program in the form of Lemma 3, with n = 3|VA|+ |VC|
variables, and m = 2|VA|+ |VT |+ |C| constraints, where VT = {(C−D,ω) : C−D ∈ T , ω ∈ V(C ∩D)}. Since
we can simply disregard variables whose value sets are singletons, we can assume V(C) > 1; summing over all
clusters yields VC > |C|. At the same time, since VT ≤ VC, we have

m,n, (m+ n) ∈ O(VA,+VC).

We now give the explicit construction of the data (A, b, c) of the exponential conic program that (11) compiles to.
The variables are indexed by tuples of the form i = (ℓ, a, s, t) for (a, s, t) ∈ VA and ℓ ∈ {u, v, w}, or by tuples of
the form (C, c), for c ∈ V(C) and C ∈ C, while the constraints are indexed by tuples of the form j = (ℓ, a, s, t) for
(a, s, t) ∈ VA and ℓ ∈ {v, w}, of the form (C−D,ω), for an edge (C−D) ∈ T and ω ∈ V(C ∩D), or simply by
(C), the name of a cluster C ∈ C. The problem data A = [Aj,i], b = [bj], c = [ci] of this program are zero, except
(possibly) for the components:

c(u,a,s,t) = βa

A(v,a,s,t),(C,c) = 1[C=Ca ∧ Sa(c)=s ∧ Ta(c)=t]

A(w,a,s,t),(C,c) = Pa(Ta=t | Sa=s)1[C=Ca ∧ Sa(c)=s]

A(w,a,s,t),(w,a,s,t) = −1
A(v,a,s,t),(v,a,s,t) = −1
A(C−D,ω),(C′,c) = 1[C=C ′]− 1[C ′=D]

A(C),(C,c) = 1

b(C) = 1,

where 1[φ] is equal to 1 if φ is true, and zero if φ is false. We note that we can equivalently divide each βa by
maxa βa without affecting the problem, although this could affect the approximation accuracy by the same factor.
Thus, we get another factor of

log(max{1} ∪ {βa : a ∈ A}) ⊆ O(log(1 + max
a

βa)).

Finally, to find a point that is ϵ-close (say, in 2-norm) to the limiting point µ∗ on the central path, as opposed to
simply one that for which the suboptimality gap is at most ϵ, we can appeal to strong concavity of the objective
function. Now, (conditional) relative entropy is 1-strongly convex, and each relative entropy term is scaled by βa.
Furthermore, we’re only considering marginal conditional entropy, so this convexity may not hold in all directions.
Still, if the next step direction δ is not far from the gradient, as is the case if the interior point method has nearly
converged, then in that direction, the objective will be at least (mina{βa : βa > 0})-strongly convex. Therefore, by
requiring an precision to an additional factor of mina{βa : βa > 0}, we can guarantee that our point is ϵ-close to µ∗,
and not just in complementarity gap.

To summarize, applying Lemma 3, we find that we can solve problem (11) in time

O
((
|VA|+ |VC|

)1+ω(
log
|VA|+ |VC|

ϵ
+ log

βmax

βmin

))
⊂ Õ

((
|VA|+ |VC|

)4)
.

We now quickly step through the analogous construction for problems (14) and (15), which solve the γ̂-inference problem,
and 0+-inference, respectively.

Lemma 5. Problem (14) is solved to precision ϵ in time

O

(
|VA+ VC|1+ω

(
log
|VA|+ |VC|

ϵ
+ log(1 + ∥β∥∞) + log log

1

p

))
⊂ Õ

(
(VA+ VC)4

)
where p is the smallest nonzero probability in the PDG.

Proof. Problem (14) has

▶ variables x = (u,y,w, v,µ, z) ∈ KVA
exp ×KVC

exp where

• u,y,w ∈ RVA are all vectors over VA that at index ι = (a, s, t) ∈ VA, have components uι, vι, and wι,
respectively;

• Meanwhile, v,µ, z ∈ RVC are all vectors over VC which at index (C, c), have components vC,c, µC(c),
and zC,c, respectively. Once again, µ = [µC(C=c)]C∈C, c∈V(C) ∈ RVC is intended to be a vector
representation of a clique tree.

▶ constraints as follows:

• two linear constraints for each (a, s, t) ∈ VA, to ensure that

ya,s,t = µCa
(s, t) and wa,s,t = µCa

(Sa=s)Pa(Ta=t | Sa=s),

• for every edge (C−D) ∈ T , and every value ω ∈ V(C ∩D) of the variables that clusters C and D have in
common, a linear constraint ∑

c̄∈V(C\D)

µC(c̄, ω) =
∑

d̄∈V(D\C)

µD(d̄, ω)

• for every (a, s, t) ∈ VA0, a linear constraint that ensures

0 = µCa(Sa=s, Ta=t)
(

=
∑

c̄∈V(C\{Sa,Ta})

µCa(c̄, s, t)
)

• a linear constraint for every value c ∈ V(C) of every cluster C ∈ C, to ensure that

zC,c = µC(VCPC(c))
(

=
∑

c̄∈V(C\VCPC)

µC(c̄,VCPC(c))
)

• and one constraint for each cluster C ∈ C to ensure that µC lies on the probability simplex, i.e.,∑
c∈V(C)

µC(c) = 1.

So in total, there are n = |3VA+ 3VC| variables, and m = 2|VA|+ |VT |+ |VA0|+ |VC|+ |C| constraints. The
same arguments made in Lemma 4 show that both n,m ∈ O(|VA+ VC|).

Also like before, it is easy to see that the components of A and b are all at most 1. However, we will need
to rescale the objective c in order for each of its components to be most 1. We can do this by dividing it by
max{−βa log pa(t|s)}(a,s,t)∈VA ∪ {1}.

Finally, to ensure that we have a solution that is ϵ-close to the end of the central path, as opposed to one that is
merely ϵ-close in compelementarity gap, we must appeal to convexity. As in the proof of Lemma 4, this amounts to
reducing the target accuracy by a factor of the smallest possible coefficient of strong convexity, along the next step
direction. In this case, the bound is simpler: because negative entropy is (unconditionally) 1-strongly convex, and
since β ≥ αγ, the remaining terms are convex, this could be, at worst, 1

γ .

This gives rise to our result: problem (14) can be solved in

O

(
|VA+ VC|1+ω

(
log
|VA+ VC|

ϵ
+ log

1

γ

(
1 + max

(a,s,t)∈VA
βa log

1

Pa(t|s)

)))
⊂ O

(
|VA+ VC|1+ω

{
log
|VA+ VC|

ϵ
+ log

βmax

γ
+ log log

1

p

})
operations, where p is the smallest nonzero probability in the PDG, and βmax is the largest confidence in the PDG
larger than 1.

Lemma 6. Problem (15) is solved to precision ϵ in

O
(
|VC||VA+ VC|ω log |VA+ VC|

ϵ

)
⊂ Õ

(
|VC + VA|4

)
time.

Proof. Problem (15) is slightly more straightforward; having done Lemmas 4 and 5 in depth, we do this one more
quickly. In the standard form, problem (15), has variables x = (u,µ,w) ∈ KVC

exp. The constraints are:

• one linear constraint for each (C, c) ∈ VC, to ensure that

wC,c = k(C,c)µC(VCPC(c))
(

=
∑

c̄∈V(C\VCPC)

µC(c̄,VCPC(c))
)

• for every edge (C−D) ∈ T , and every value ω ∈ V(C ∩ D) of the variables that clusters C and D have in
common, a linear constraint ∑

c̄∈V(C\D)

µC(c̄, ω) =
∑

d̄∈V(D\C)

µD(d̄, ω)

• for every (a, s, t) ∈ VA, a linear constraint that ensures

µCa
(Sa=s, Ta=t) νCa

(Sa=s) = νCa
(Sa=s, Ta=t)µCa

(Sa=s).

This is linear, because recall that ν is a constant in this optimization problem, found by having previously solved
(11).

• and one constraint for each cluster C ∈ C to ensure that µC lies on the probability simplex.

So in total, there are n = 3|VC| variables, andm = |VC|+|VT |+|VA|+|C| constraints. Once again the components
of A and b are all at most one, and now the components of the cost function c = 1 are identically one. Furthermore,
our objective is 1-strongly convex, so no additional multaplicative terms are required to convert an ϵ-close solution in
the sense of suboptimality, to an ϵ-close solution in the sense of proximity to the true solution.

Therefore (15) can be solved in

O
(
|VC||VA+ VC|ω log |VA+ VC|

ϵ

)
⊂ Õ(|VC + VA|4)

operations.

Theorem 10. Let M = (X ,A,P,α,β) be a proper discrete PDG with N = |X | variables each taking at most V values,
and A = |A| arcs forming a hypergraph of treewidth T . Then for all γ ∈ {0+} ∪ (0, mina∈A

βa

αa
] and ϵ > 0, we can do

γ̂-inference to precision ϵ in

O

(
(N+A)4V 4T

(
T log V + log

N+A

ϵ
+ log

βmax

βmin

))
time,† where βmax := maxa∈A βa and

βmin :=

{
min
a∈A
{βa : βa > 0} if γ = 0+

γ if γ > 0 .

Proof. Suppose the PDG has N variables (each of which can take at most V distinct values), and A hyperarcs, which
together form a structure has tree-width T .

Then each cluster (of which there are at most N) can have at most T variables, and so can take at most V T

values. Therefore, |VC| ≤ NV T . Since each arc must be entirely contained within some cluster, |VA| ≤ AV T . So,
|VA+ VC| ≤ (N +A)V T .

†At the cost of substantial overhead and engineering effort, the exponent 4 can be reduced to 2.872, by appeal to Skajaa and Ye [2015]
and the current best matrix multiplication algorithm [Duan et al., 2022, O(n2.372)] to invert n×n linear systems.

Applying Lemmas 4 to 6, we conclude that, for γ ∈ (0,mina
βa

αa
], γ̂-inference can be done in time

O
(
(N +A)4V 4T log

(N +A

ϵ
V 4T β

max

γ
) + log

1

p

))
while 0+ inference can be done in time

O
(
(N +A)4V 4T log

(N +A

ϵ
V 4T

)
log

βmax

βmin

)
.

Finally, we suppress the factor of log log 1
p in the first case. We argue this is justified because it is small even for the

smallest number representable with 64 bits, and because this notion of precision is dwarfed by the one captured by ϵ.
There is also no problem when p = 0, because then it simply becomes a constraint and is handled gracefully.

A.1 HARDNESS RESULTS AND REDUCTIONS

We now prove Theorem 11 parts (a) and (b) directly by reduction to 3-SAT. They also follow from part (c) combined with
the hardness of inference in BNs, which PDGs generalize, but the direct proof is nicer.

Theorem 11.

(a) Determining whether or not there is a distribution that shares all cpds with M is NP-hard.
(b) Computing ⟨⟨M⟩⟩γ is #P-hard, for all γ ≥ 0.
(c) For γ ∈ {0+} ∪ (0,mina

βa

αa
), there is an O(size of query result) reduction from γ̂-inference to the problem of

calculating γ-inconsistency. Under bounded tree-width, there is also an O(|VC|) reduction in the other direction,
making the problems essentially equivalent.

Proof. (a). We can directly encode SAT problems in PDGs. Specifically, let

φ :=
∧
j∈J

∨
i∈I(j)

(Xj,i)

be a CNF formula over binary variables X :=
⋃
j,iXj,i. Let Mφ be the PDG containing every variable X ∈ X and

a binary variable Cj (taking the value 0 or 1) for each clause j ∈ J , as well as the following edges, for each j ∈ J :

• a hyperedge {Xj,i : i ∈ I(j)} →→ Cj , together with a degenerate cpd encoding the boolean OR function (i.e.,
the truth of Cj given {Xj,i});

• an edge 11 →→ Cj , together with a cpd asserting Cj be equal to 1.

First, note that the number of nodes, edges, and non-zero entries in the cpds are polynomial in the |J |, |X|, and the
total number of parameters in a simple matrix representation of the cpds is also polynomial if I is bounded (e.g.,
if φ is a 3-CNF formula). A satisfying assignment x |= φ of the variables X can be regarded as a degenerate joint
distribution δX=x on X, and extends uniquely to a full joint distribution µx ∈ ∆V(Mφ) consistent with all of the
edges, by

µx = δx ⊗ δ{Cj=∨ixj,i}

Conversely, if µ is a joint distribution consistent with the edges above, then any point x in the support of µ(X) must be
a satisfying assignment, since the two classes of edges respectively ensure that 1 = µ(Cj=1 | X=x) =

∨
i∈I(j) xj,i

for all j ∈ J , and so x |= φ.

Thus, {{Mφ}} ≠ ∅ if and only if φ is satisfiable, so an algorithm for determining if a PDG is consistent can also
be adapted (in polynomial space and time) for use as a SAT solver, and so the problem of determining if a PDG
consistent is NP-hard.

(b). We prove this by reduction to #SAT. Again, let φ be some CNF formula over X, and construct Mφ as in the proof
of Theorem 11. Furthemore, let [[φ]] := {x : x |= φ} be the set of assingments to X satisfying φ, and #φ := |[[M]]|

denote the number such assignments. We now claim that

#φ = exp

[
− 1

γ
⟨⟨Mφ⟩⟩γ

]
. (9)

If true, we would have a reduced the #P-hard problem of computing #φ to the problem of computing ⟨⟨M⟩⟩γ for
fixed γ. We now proceed with proof (9). By definition, we have

⟨⟨Mφ⟩⟩γ = inf
µ

[
OIncMφ

(µ) + γSIncMφ
(µ)
]
.

We start with a claim about first term.

Claim 6.1. OIncMφ
(µ) =

{
0 if suppµ ⊆ [[φ]]× {1}
∞ otherwise

.

Proof. Writing out the definition explicitly, the first can be written as

OIncMφ(µ) =
∑
j

[
ID
(
µ(Cj)

∥∥∥ δ1)+ E
x∼µ(Xj)

ID
(
µ(Cj | Xj = x)

∥∥∥ δ∨ixj,i

)]
, (10)

where Xj = {Xij : j ∈ I(j)} is the set of variables that appear in clause j, and δ(−) is the probability
distribution placing all mass on the point indicated by its subscript. As a reminder, the relative entropy is
given by

ID
(
µ(Ω)

∥∥∥ ν(Ω)) := E
ω∼µ

log
µ(ω)

ν(ω)
,

and in particular,
if Ω is binary, ID

(
µ(Ω)

∥∥ δω) = {0 if µ(ω) = 1;

∞ otherwise.

Applying this to (10), we find that either:

1. Every term of (10) is finite (and zero) so OIncMφ(µ) = 0, which happens when µ(Cj = 1) = 1 and
µ(Cj = ∨i xj,i) = 1 for all j. In this case, c = 1 = {∨i xj,i}j so x |= φ for every (c,x) ∈ suppµ;

2. Some term of (10) is infinite, so that OIncMφ(µ) =∞, which happens if some j, either

(a) µ(Cj ̸= 1) > 0 — in which case there is some (x, c) ∈ suppµ with c ̸= 1, or
(b) suppµ(C) = {1}, but µ(Cj ̸= ∨i xj,i) > 0 — in which case there is some (x,1) ∈ suppµ for

which 1 = cj ̸= ∨i xj,i , and so x ̸|= φ.

Condensing and rearranging slightly, we have shown that

OIncMφ
(µ) =

{
0 if x |= φ and c = 1 for all (x, c) ∈ suppµ

∞ otherwise
.

Because SInc is bounded, it follows immediately that ⟨⟨Mφ⟩⟩γ , is finite if and only if there is some distribution
µ ∈ ∆V(X,C) for which OIncMφ(µ) is finite, or equivalently, by Claim 6.1, iff there exists some µ(X) ∈ ∆V(X)
for which suppµ(X) ⊆ [[φ]], which in turn is true if and only if φ is satisfiable.

In particular, if φ is not satisfiable (i.e., #φ = 0), then ⟨⟨Mφ⟩⟩γ = +∞, and

exp

[
− 1

γ
⟨⟨Mφ⟩⟩γ

]
= exp[−∞] = 0 = #φ,

so in this case (9) holds as promised. On the other hand, if φ is satisfiable, then, again by Claim 6.1, every µ
minimizing [[Mφ]]γ , (i.e., every µ ∈ [[Mφ]]

∗
γ) must be supported entirely on [[φ]] and have OIncMφ

(µ) = 0. As a
result, we have

⟨⟨Mφ⟩⟩γ = inf
µ∈∆

[
[[φ]]×{1}

] γ SIncMφ
(µ).

A priori, by the definition of SIncMφ , we have

SIncMφ
(µ) = −H(µ) +

∑
j

[
αj,1 Hµ(Cj | Xj) + αj,0 Hµ(Cj)

]
,

where αj,0 and αj,1 are values of α for the edges of Mφ, which we have not specified because they are rendered
irrelevant by the fact that their corresponding cpds are deterministic. We now show how this plays out in the present
case. Any µ ∈ ∆

[
[[φ]] × {1}

]
we consider has a degenerate marginal on C. Specifcally, for every j, we have

µ(Cj) = δ1, and since entropy is non-negative and never increased by conditioning,

0 ≤ Hµ(Cj | Xj) ≤ Hµ(Cj) = 0.

Therefore, SIncMφ
(µ) reduces to the negative entropy of µ. Finally, making use of the fact that the maximum entropy

distribution µ∗ supported on a finite set S is the uniform distribution on S, and has H(µ∗) = log |S|, we have

⟨⟨Mφ⟩⟩γ = inf
µ∈∆

(
[[φ]]×{1}

) γ SIncMφ
(µ)

= inf
µ∈∆

(
[[φ]]×{1}

)− γ H(µ)

= −γ sup
µ∈∆

(
[[φ]]×{1}

)H(µ)

= −γ log(#φ),

giving us

#φ = exp

[
− 1

γ
⟨⟨Mφ⟩⟩γ

]
,

as desired. We have now reduced #SAT to computing ⟨⟨M⟩⟩γ , for γ > 0 and an arbitrary PDG M, which is therefore
#P-hard.

To show the same for γ = 0, it suffices to add an additional hyperedge pointing to all variables, and associate it
with a joint uniform distribution, and confidence 1, resulting in a new PDG M′

φ. Then, because this new edge’s
contribution to OIncM equals ID(µ ∥ Unif(X)) = log |VX | −H(µ), we have

[[M′
φ]]0(µ) = OIncM′

φ
(µ) = [[Mφ]](µ) + log |VX | −H(µ) = [[Mφ]]1(µ)− log |VX |.

Since this is true for all µ, we conclude that

⟨⟨M′
φ⟩⟩ = ⟨⟨Mφ⟩⟩1 − log |VX | = − log

(
|VX | ·#φ

)
so the two differ by a constant, and both compute the number of satisfying assignments to φ. So in general, computing
⟨⟨M⟩⟩ is #P-hard as well.

We prove part (c) in the next section.

A.2 INFERENCE VIA INCONSISTENCY MINIMIZATION

We now address part (c) of Theorem 11, which is closely related to Richardson and Halpern [2021]’s original idea for an
inference algorithm. While that idea does not yield an efficient inference algorithm, it does yield a very efficient reduction
from inconsistency minimization to inference. In order to prove this, we first need another construction with PDGs. A cpd
between discrete variables can be represented by a stochastic matrix (i.e., a matirx whose rows sum to one). It turns out that
it is possible to use the machinery of PDGs to, effectively, give only one value of that matrix. That is, for any p ∈ [0, 1], we
can construct a PDG that represents the belief that Pr(Y=y|X = x) = p, but say nothing about how the probability splits
between other values of y, and also says nothing about the probability of Y if X ̸= x. We now describe that construction.

First, we introduce two new auxiliary variables. The first variable, which we might like to call “Y=y”, but mostly refer to as
Yy to prevent confusion with the synonomous event, is a binary variable, with V(Yy) = {y,¬y}, and takes the value y if
Y = y, and ¬y if Y ̸= y. The second variable, which we would like to call “X=x∥Y=y”, but instead mostly refer to as

XxYy to prevent notational confusion, can take three values: V(XxYy) := {x, y,¬y}. The value x is meant to correspond
exactly to the event X=x, much like before, so that XxYy = x if and only if X = x. The values y and ¬y also correspond
to their respective events, but more loosely; the variable XxYy only takes one of these values when X ̸= x. Note that both
variables can be determined from X and Y (although we will need to enforce this with additional arcs), and therefore there
is a unique way to extend a distribution over X and Y to also include the variables Yy and XxYy .

With these definitions in place, there is now an obvious way to add an arc from the variable (XxYy) to the variable Yy,
together with a cpd asserting that Pr(Y=y|X=x) = p. This cpd is written as a stochastic matrix p̂ on the right of the figure
below. The PDG we have just constructed is illustrated on the left of the figure below. In addition to p̂ and the new variables,
this PDG includes the structural constraints s1 and s2 needed to define the variables XxYy and Yy in terms of X and Y ;
they are deterministic functions, drawn in double-headed gray arrows.

X Y

x y ¬y

X=x∥Y=y

y ¬y

Y=y

s1
s2

p̂
s1(XxYy|X,Y) :=


x if X = x

y if X ̸= x and Y = y

¬y if X ̸= x and Y ̸= y

s2(Yy|Y) :=

{
y if Y = y

¬y if Y ̸= y

p̂(Yy|XxYy) =

y ¬y
x
y
¬y

 p 1− p
1 0
0 1


So, when we add Pr(Y = y|X = x) = p to a PDG, we really first implicitly convert this information to a PDG as above.
The first order of business is to prove that this works as we should expect, semantically, in the case we’re interested in.

Lemma 7. Suppose M is a PDG with variables X and β ≥ 0. Then, for all X,Y ⊆ X , x ∈ VX , y ∈ VY , p ∈ [0, 1] and
γ ≥ 0, we have that: 〈〈

M+ Pr(Y=y|X=x) = p
〉〉
γ
≥ ⟨⟨M⟩⟩γ ,

with equality if and only if there exists µ ∈ [[M]]∗γ such that µ(Y=y|X=x) = p.

Proof. The inequality is immediate; it is an instance of monotonicity of inconsistency [Richardson, 2022, Lemma 1].
Intuitively: believing more cannot make you any less inconsistent. We now prove that equality holds iff there is a
minimizer with the appropriate conditional probability.

(⇐=). Suppose there is some µ ∈ [[M]]∗γ with µ(Y=y|X=x) = p. Because µ ∈ [[M]]∗γ , we know that [[M]]γ(µ) =
⟨⟨M⟩⟩. Let µ̂ be the extension of µ to the new variables “X=x∥Y=y” and “Y=y”, whose values are functions of X
and Y according to s1 and s2. Then,〈〈

M+ Pr(Y=y|X=x) = p
〉〉
γ
≤
[[
M+ Pr(Y=y|X=x) = p

]]
γ
(µ̂)

= [[M]]γ(µ) + E
µ

[
log

µ̂(Yy|XxYy)

p̂(Yy|XxYy)

]
= [[M]]γ(µ) + µ(X=x, Y=y) log

µ(Y=y|X=x)

p
+ µ(X=x, Y ̸=y) log µ(Y ̸=y|X=x)

1− p
= [[M]]γ(µ) + µ(X=x, Y=y) log(1) + µ(X=x, Y ̸=y) log(1)

= [[M]]γ(µ) = ⟨⟨M⟩⟩γ .

The equality between the second and third lines is perhaps the trickiest to see, but follows because for joint settings in
which X ̸=x, one can easily see that µ̂(Yy|XxYy) equals 1 with probability 1, as does p̂(Yy|XxYy). So, after dividing
one by the other and taking a logarithm, these cases contribute nothing to the expectation. What remains are the two

possibilities where X=x, which are shown in the second line.

To complete this direction of the proof, it suffices to observe that we already knew the inequality held in the opposite
direction (by monotonicity), so the two terms are equal.

(=⇒). Suppose the two inconsistencies are equal, i.e.,
〈〈
M+ Pr(Y=y|X=x) = p

〉〉
γ
= ⟨⟨M⟩⟩γ .

This time, choose µ̂ ∈ [[M+ Pr(Y=y|X=x) = p]]∗γ , and define µ to be its marginal on the variables of M (which
contains the same information as µ̂ itself). Let q := µ(Y=y|X=x). Then,

⟨⟨M⟩⟩γ =
〈〈
M+ Pr(Y=y|X=x) = p

〉〉
γ

=
[[
M+ Pr(Y=y|X=x) = p

]]
γ
(µ̂)

= [[M]]γ(µ) + µ(X=x, Y=y) log
µ(Y=y|X=x)

p
+ µ(X=x, Y ̸=y) log µ(Y ̸=y|X=x)

1− p

= [[M]]γ(µ) + µ(X=x)

[
q log

q

p
+ (1− q) log 1− q

1− p

]
= [[M]]γ(µ) + µ(X=x)ID(q ∥ p)
≥ ⟨⟨M⟩⟩γ + µ(X=x)ID(q ∥ p)

Therefore 0 ≥ µ(X=x)ID(q ∥ p). But relative entropy is non-negative, by Gibbs inequality. This shows
µ(X=x)ID(q ∥ p) = 0. So either µ(X=x), or p = µ(Y=y|X=x), and the first case is just a special case of
the second one. In addition, the algebra above shows that µ ∈ [[M]]∗γ , as its score is ⟨⟨M⟩⟩γ . Thus, we have found
µ ∈ [[M]]∗γ such that µ(Y=y|X=x) = p, completing the proof.

Next, we show that the overall inconsistency is convex in the parameter p ∈ [0, 1]. It’s perhaps easier to give the more
general result:

Lemma 8. If h is a cpd, then the function h 7→ ⟨⟨M+ h⟩⟩γ and strictly convex for γ ∈ (0,mina
βa

αa
).

Proof. We start by expanding the definitions, obtaining

⟨⟨M+ h⟩⟩γ = inf
µ

[[M+ h]]γ(µ)

= inf
µ

[
[[M]]γ(µ) + E

x∼µ
X

ID
(
µ(Y | x)

∥∥∥ h(Y | x))]
= inf

µ

[
[[M]]γ(µ) + ID

(
µ(X,Y)

∥∥∥ h(Y | X)µ(X)
)]
.

Fix γ ≤ mina
βa

αa
. Then we know that [[M]]γ(µ) is a γ-strongly convex function for every PDG M, and hence there

is a unique joint distribution which minimizes it. We now show that the inconsistency is strictly convex.

Suppose h1(Y | X) and h2(Y | X) are two cpds on Y given X . Fix λ ∈ [0, 1], and define hλ := (1− λ)h1 + λh2.
Let µ1, µ2 and µλ be the joint distributions that minimze [[M+ h1]]γ , [[M+ h2]]γ and [[M+ hλ]]γ , respectively.
Then we have

⟨⟨M+ hλ⟩⟩γ = [[M]]γ(µλ) + ID
(
µλ(X,Y)

∥∥∥ hλ(Y | X)µλ(X)
)
.

By convexity of [[M]] and ID, we have

[[M]]γ(µλ) ≤ (λ− 1)[[M]]γ(µ1) + λ[[M]]γ(µ2) (11)

and ID
(
µλ(XY)

∥∥∥ hλ(Y |X)µλ(X)
)
≤ (1− λ)ID

(
µ1(XY)

∥∥∥ h1(Y |X)µ1(X)
)

+ λ ID
(
µ2(XY)

∥∥∥ h2(Y |X)µ2(X)
)
. (12)

If µ1 ̸= µ2 then since [[M]] is strictly convex, (11) must be a strict inequality. On the other hand, if µ1 = µ2, then
since µλ = µ1 = µ2 and ID is stricly convex in its second argument when its first argument is fixed, (12) must be a
strict inequality. In either case, the sum of the two inequalities must be strict, giving us

⟨⟨M+ hλ⟩⟩γ = [[M]]γ(µλ) + ID
(
µλ(XY)

∥∥∥ hλ(Y |X)µλ(X)
)

< (λ− 1)
[
[[M]]γ(µ1) + ID

(
µ1(XY)

∥∥∥ h1(Y |X)µ1(X)
)]

+ λ
[
[[M]]γ(µ2) + ID

(
µ2(XY)

∥∥∥ h2(Y |X)µ2(X)
)]

= (λ− 1)⟨⟨M+ h1⟩⟩+ λ ⟨⟨M+ h2⟩⟩,

which shows that ⟨⟨M+ h⟩⟩ is strictly convex in h, as desired.

Corollary 8.1. As before, let M is a PDG with β ≥ 0 and variables X , and fix X,Y ⊆ X , x ∈ VX , y ∈ VY , and γ > 0.
Then, for p ∈ [0, 1] the map

p 7→
〈〈
M+ Pr(Y=y|X=x) = p

〉〉
γ

is strictly convex.

Proof. Simply take h to be the cpd p̂, and absorb the the other components of (the PDG representation of)
Pr(Y=y|X=x) = p into M, and then apply Lemma 8.

We are now ready to tackle the theorem itself.

Theorem 11 (c). For γ ∈ {0+} ∪ (0,mina
βa

αa
), there is an O(size of query result) reduction from γ̂-inference to the

problem of calculating γ-inconsistency. Under bounded tree-width, there is also an O(|VC|) reduction in the other direction,
making the problems essentially equivalent.

Proof. The claim is that, with an inconsistency oracle (in particular, with the ability to query the inconsistency of
M + Pr(Y=y|X=x) = p for free), we can find [[M]]∗γ(Y=y|X=x) in constant time. Thus, if we are looking to
find the entire matrix of conditional probabilities [[M]]∗γ(Y |X), it will take time linear in the number of entries in
that matrix (i.e., |V(X,Y)|). The reduction is also linear in another sense. We will prove that we can approximate
[[M]]∗γ(Y=y|X=x) to within precision ϵ in time O(log 1/ϵ). Thus the result is the strongest reduction one can hope
for: it is linear in the number of bits we output.

We proceed by describing an algorithm that uses an our inconsistency oracle to answer porbabilistic queries with a
variant of binary search. The state of the algorith consists of three points in an interval [a, b, c] ∈ [0, 1], labeled with
the values f(a), f(b), and f(c), where f is the function

f : [0, 1]→ R
p 7→ ⟨⟨M+ (Pr(Y=y|X=x) = p)⟩⟩γ

that we assumed we have oracle access to. We can then find the minimizer x∗ of f with the following algorithm.

Initialize (a, b, c)← (0, 12 , 1);
for i = 1, 2, . . . , log(1/ϵ)/(log 4/3) do

if b− a ≥ c− b then
Let x := b+a

2 , and evaluate f(x);
if f(x) < f(b) then
(a, b, c)← (a, x, b);

else
(a, b, c)← (x, b, c);

end if

else if c− b > b− a then
Let x := b+c

2 , and evaluate f(x);
if f(x) < f(b) then
(a, b, c)← (b, x, c);

else
(a, b, c)← (a, b, x);

end if
end if

end for
return b;

We begin by proving that algorithm does, in fact, find x∗. Because f is convex, this procedure satisfies an important
invariant: both b and the minimizer of f always lie in the interval [a, c].

Proof. We proceed by induction. This is obviously true at first, because [a, b] = [0, 1] contains all points in
the domain of f . Let x∗ be the minimizer of f , and suppose inductively that x∗ ∈ [a, b].

(case 1) If b− a ≥ c− b, then x ∈ [a, b].

– Suppose f(x) < f(b). Then for all y > b, it must be the case that f(y) > f(b) by convexity of f .
(For if f(y) < f(b), then segment between (x, f(x)) and (y, f(y)) would lie entirely below (b, f(b)),
which contradicts convexity). Thus, we can rule out all such y as possible minimizers of f , so we can
restrict our attention to [a, b], which contains x.

– On the other hand, if f(x) > f(b), then it must be the case that no y < x can be a minimizer of f
by convexity, with the same reasing as above. (Namely, if f(y) < f(x) then the segment between
(y, f(y)) and (b, f(b)) lies below (x, f(x)), contradicting convexity). Thus the true minimizer lies in
[x, c], which contains the point b.

(case 2) The other case is symmetric; we include it for completeness. Suppose c−b > b−a, and so x = b+c
2 .

– Suppose f(x) < f(b). Then f(y) > f(b) for all y < b (because if f(y) < f(b), then segment
between (y, f(y)) and (x, f(x)) would lie below (b, f(b))). So x∗, x ∈ [b, c].

– On the other hand, if f(x) > f(b), then f(y) > f(x) for all y > x (because, if f(y) < f(x)
then the segment between (y, f(y)) and (b, f(b)) lies below (x, f(x)), contradicting convexity). So
x∗, b ∈ [a, x].

The other important aspect of the algorithm, is that at each each iteration reduces the size of the interval by a factor
of at least 3/4 (and possibly much more). This is because in each case we focus on the larger half of the interval, and
ultimately discard either half or all of it—so we reduce the size of the interval by at least one quarter. Thus, after n
iterations, the size of the interval is at most (3/4)n. At this point it should be clear that the number of iterations was
selected to ensure that |c− a| ≤ ϵ. Of course, [a, c] contains both b and x∗. Therefore the output of the algorithm (b)
must be within ϵ of the true minimizer (x∗).

It is easy to see that this algorithm takes constant space, and O(log 1/ϵ) time. And, fixing ϵ = 10−78 we get a
constant-time algorithm that outputs the closest 64-bit number to x∗.

Reducing inconsistency calculation to inference. This reduction is much simpler, shares more techniques with
the primary thrust of the paper. First find a tree decomposition (C, T) of the PDG’s structure, and then query the
marginals of each clique. Because of the work we’ve already done, we know this information is enough information
to simply evaluate the scoring function, including the joint entropy, by (13).

B THE CONVEX-CONCAVE PROCEDURE, AND IMPLEMENTATION DETAILS

Optimization problems (7) and (14) can be extended to apply slightly more broadly. There are some cases where there is a
unique optimal distribution but γ is large enough that β ̸≥ γα. In these cases, our convex program will fail to satisfy the

dcp requirements, and so we cannot compile it to an exponential conic program—but it turns out to still be a useful building
block. We now describe how we can still do inference in some of these cases with the convex-concave procedure, or CCCP
[Yuille and Rangarajan, 2003]. This will give us a local minimum of the PDG scoring function [[M]]γ , without requiring us
to write this scoring function in a way that proves its convexity, (as is necessary in order to specify a disciplined convex
program). At this point, if we happen to know that the problem is convex (or even just pseudo-convex) for other reasons,
then finding this distribution suffices for inference. We now describe how this can be done in more detail.

Suppose βa < γαa some a ∈ A. In this case [[M]]γ may not be convex, in general.1 However, we do know how to
decompose [[M]]γ into a sum of a convex function f(µ) and a concave one g(µ). Concretely: each term on the second line
of (6) is either convex or concave, depending on the sign of the quantity γαa − βa. Once we sort the terms into convex
terms f(µ) and strictly concave terms g(µ), the CCCP tells us to repeatedly solve f plus a linear approximation to g. In
more detail, the algorithm proceeds as follows. First, choose an initial guess µ0, and iteratively use the convex solver as in
the main paper to compute

µt+1 := argmin
µ

f(µ) + (µ− µt)T∇g(µt).

This can be slow because each iteration of the solver is expensive. Still, it is guaranteed to make progress, since

f(µt+1)+g(µt+1) < f(µt+1)+(µt+1−µt)T∇g(µt)+g(µt)
≤ f(µt) + (µt − µt)T∇g(µt) + g(µt)

= f(µt) + g(µt).

Furthermore, because in our case g is bounded, the process eventually converges a local minimum of [[M]]γ . This alone,
however, is not sufficient for inference, because we may not be able to use this local minimum to answer queries in a way
that is true of all minimizing distributions. But, if it happens there is a unique local minimum, then the CCCP will find it,
leading to an inference procedure.

Notice that if β ≥ γα, then the concave part g is identically zero, and CCCP converges after making just one call to the
convex solver. Therefore, in the cases we could already handle, this extension reduces to the algorithm we described before.
For this reason, all of our code that handles problems (7) and (14) is augmented with the CCCP.

Compared to the black-box optimization baselines (Adam and LBFGS), which also only find one minimum, the CCCP
still has some advantages. One can see in Figure 4, for example, that when γ = 2 > 1 = maxa (βa/αa), CCCP performs
better than the baselines. In fact, the CCCP-augmented could probably even higher accuracy, if were we not limiting it to a
maximum of only five iterations.

C DETAILS ON THE EMPIRICAL EVALUATION

Imagine a very steep V -shaped canyon, and inside a small slow-moving stream at a gentle incline. The end of the river may
be very far away, and the whole landscape may be smooth and strongly convex, but the gradient will still almost always
point perpendicular to it, and rather towards the center of the river. This intuition may help explain why, even though [[M]]γ
is infinitely differentiable in µ and γ-strongly convex, it can still be challenging to optimize, especially when the β’s are
very different, or when γ is small. For example, a solution to (11) finds a minimizer of OInc, but such minimizers may be
very far away from [[M]]∗0+ , despite sharing an objective value.

We now see how this is true even when working with very small PDGs and joint distributions.

C.1 SYNTHETIC EXPERIMENT: COMPARISON WITH BLACK-BOX OPTIMIZERS, ON JOINT
DISTRIBUTIONS.

Here is a more precise description of our first synthetic experiment, on joint distributions, which contrasts the convex
optimization approaches of Section 3 with black-box optimizers.

1Consider the PDG (→X, Y←) for instance, which has arcs to X and Y , both with α = 1 and β = 0. The minimizers of
[[→X, Y←]]γ are the distributions that make X and Y is independent. It is easily seen that this set is not convex: X and Y are
independent if either variable is deterministic, and every distribution is a convex combination of deterministic distributions.

Figure 1: Resource costs for the joint-distribution optimization setting of Section 3. We measure computation time (total_time, top)
and maximum memory usage (max_mem, bottom) for the various optimization methods (by color), as the size of the PDG increases,
as measured by the number of parameters in the PDG (n_params= VA, left), and the size of a joint distribution over its variables
(n_worlds= VX , right). Note that the convex solvers for the 0 and 0+ semantics are significantly faster than LBFGS, and on par with
Adam. However, all three convex-solver based approaches require significantly more memory than the black-box optimizers.

• generate 300 PDGs, each of which has the following quantities, to each of which we choose the following natural
numbers uniformly at random:

– N ∈ {5, . . . , 9} of variables (so that X := {1, . . . , N}),
– VX ∈ {2, 3} values per variable (so that |VX| = VX for each X ∈ X)
– A ∈ {7, . . . , 14} hyperarcs, each a ∈ {1, . . . , A} =: A of which has
– NS

a ∈ {0, 1, 2, 3} sources, and
– NT

a ∈ {1, 2} targets.

• For each arc a ∈ A, NS
a of the N variables are choosen without replacement to be sources Sa ⊆ N , and NT

a of
remaining variables are chosen to be targets. Finally, to each value of Sa and Ta, a number pa,s,t ∈ [0, 1] is chosen
uniformly at random, and the cpd

Pa(Ta=t | Sa=s) =
pa,s,t∑

t′∈V(T)

pa,s,t′
is given by normalizing appropriately.

This defines a PDG M = (X ,A,P,1,1), that has α = β = 1, which will allow us to comapre against belief
propogation and other graphical models at γ = 1. The complexity of this PDG is summarized by two numbers:

– n_params := VA, the total number of parameters in all cpds of M, and
– n_worlds := VX , the dimension of joint distributions over M’s variables.

• Run MOSEK on (5) to find a distribution that minimizes OInc; we refer to this method as cvx-idef

• Use the result to run MOSEK on (3) to find the special distribution [[M]]∗0+ ; we refer to this method as cvx+idef.
These names are due to the fact that SInc is called IDef in previous work [Richardson and Halpern, 2021, Richardson,
2022]; thus, this refers to using the convex solver to compute minimizers of OInc with and without considering IDef .

• Now for the torch baselines. Let θ = [θx]x∈VX ∈ RVX , be a vector of optimization variables, and choose a representa-
tion of the joint distribution, either by(renormalized

simplex

)
µθ(x) =

max{θx, 0}∑
y∈VX max{θy, 0}

or µθ(x) =
exp(θx)∑

y∈VX exp(θy)
(Gibbs) (see Figure 2)

• Then, for each value of gamma: γ ∈ {0, 10−8, 10−4, 10−2, 1}, and each learning rate lr ∈ 1E−3, 1E−2, 1E−1, 1E0,
and each optimizer opt ∈ {adam,L-BFGS}, run opt over the parameters θ to minimize [[M]]γ(µθ) until convergence
(or a maximum of 1500 iterations)

• We collect the following data about the resulting distribution and the process of computing it:
– the total time taken to arrive at µ;
– the maximmum memory taken by the process computing µ;
– the objective and its component values:

inc := SIncM(µ), idef := SIncM(µ), obj := OIncM(µ) + γSIncM(µ) = [[M]]γ(µ)

The numbers can then be recreated by running our experimental script as follows:

python random_expts.py -N 300 -n 5 9 -e 7 14 -v 2 3
--ozrs lbfgs adam
--learning-rates 1E0 1E-1 1E-2 1E-3
--gammas 0 1E-8 1E-4 1E-2 1E0
--num-cores 20
--data-dir random-joint-data

which creates a folder called random-joint-data, and fills it with .mpt files corresponding to each distribution and
the method / parameters that gave rise to it.

Figure 3: An un-compressed version of the information in Figure 1, that groups by the value of γ, and also gives the absolute values of
the objectives (top row) in addition to the relative gaps (bottom row).

Figure 2: differences in performance
between the Gibbs and simplex param-
eterizations of probabilities.

Analyzing the Results. Look at Figure 1. Our theoretical analysis, and in particular
the proof of Lemma 4, suggest that the magnitudes of VX and VA play similar roles
in the asymptotic complexity of PDG inference. Our experiments reveal that, at least
for random PDGs, the number of worlds is the far more important of the two; observe
how much more variation there is on the left side of the figure than the right—and
now note that the left side has been smoothed, while the right side has not. The
black-box py-torch based approaches clearly have an edge in that they can handle
larger models, as evidenced by the cut-offs on the right-hand side of Figure 8, when
with 5GB memory.

Note that the exponential-cone-based methods for the observational limit (gold) are
actually faster than L-BFGS (the black-box optimizer with the lowest gap), and also
seem to be growing at a slower rate. However, they use significantly more memory,
and cannot handle large models. In addition to being faster, our techniques also seem
to be more precise; they achieve objective values that are consistently much better
than the black-box methods.

Now look at Figure 3, which contains a break-down of the information in Figure 1.
The bottom half of the figure is just the same information, but with each value of γ
separated out, so that the special cases of the factor product and 0+ inference become
clear, while the top half shows why it’s more important to look at the gap than the
actual objective value for these random PDGs. Figure 3 also makes it clearer how
larger problems take longer, and especially so for cccp (violet), which solves the
most complex version of the problem (7).

Figure 4: A graph of the gap (the difference between the attained objective value, and the best objective value obtained across
all methods for that value of γ), as γ varies. The x-axis is log10(γ + 10−15). As before, colors indicate the optimization
method, and the size of the circle illustrates the number of optimization variables (i.e., the number of possible worlds).
cvx-idef corresponds to just solving (5), and cvx+idef corresponds to then solving problem (3) afterwards. The CCCP
runs are split into regimes where the entire problem is convex (γ ≤ 1, labeled cccp-VEX), and the entire problem is
concave (γ > 1, labeled cccp-CAVE). The optimization approaches opt_dist are split into three different optimizers:
LBFGS, Adam, and also a third one that performs relatively poorly: accelerated gradient descent. Note that for small γ, the
exponential-cone based methods significantly outperform the gradient-based ones.

Figure 5: An analogue of Figure 1, for the cluster setting. Note that there is even more separation between the exponential-
cone based approaches, and the black-box optimization based ones. The new grey points on the bottom correspond to belief
propogation, which is both faster and typically the most accurate.

C.2 SYNTHETIC EXPERIMENT:
COMPARING WITH BLACK-BOX OPTIMIZERS, ON CLIQUE TREES

1. Choose a number of variables N ∈ {8, . . . , 32}, and a treewidth k ∈ {1, . . . , 4} uniformly at random. Then, draw a
random k-tree and corresponding tree of clusters (C, T), as follows:

(a) initialize G ← Kk+1 to a complete graph on k + 1 vertices, and C ← {Kk+1} to be set containing a single
cluster, and T ← ∅.

(b) until there areN vertices: add a new vertex v toG, then randomly select a size k-clique (fully-connected subgraph)
U ⊂ G, and add edges between v and every vertex u ∈ U . Then, add U ∪ {v} to C, and add edges to every other
cluster C ∈ C such that U ⊂ C.

2. Then, draw the same parameters VX ∈ {2, 3}, A ∈ {8, · · · , 120}, NS
a ∈ {0, 1, 2, 3}, and NT ∈ {1, 2} as in

Appendix C.1 uniformly at random. While NS
a +NT

a > k + 1, for any a, resample NS
a and NT

a .

3. Form a PDG whose structure A can be decomposed by (C, T), as follows: for each edge a ∈ A, sample a cluster
C ∈ C uniformly at random; then select NS

a nodes from that cluster without replacement as sources, and NT
a nodes as

targets; this is possible because each cluster has k + 1 nodes, and NS
a +NT

a ≤ k + 1 by construction.

4. Fill in the probabilities by drawing uniform random numbers and re-normalizing, just as before, to form a PDG M

5. The black-box optimization baselines work in much the same way also, although now the optimization variables
include not one distribution µ but a collection µ of them; this time, we use only the simplex representation of µθ.
More importantly, we want these clusters to share appropriate marginals; to encourage this, we add a terms to the loss
function, so overall, it is

ℓ(θ) := [[M]]γ(µθ) +
∑

C−D∈T
exp

 ∑
w∈V(C∩D)

(
µC(C ∩D=w)− µD(C ∩D=w)

)2− 1.

This is admittedly pretty ad-hoc; the point is just that it is zero and does not contribute to the gradient if µθ is calibrated,
and otherwise quickly becomes overwhelmingly important.

Analyzing the Results. Observe in Figure 2 that the separation between the clique tree convex solver and the black-box
algorithms is even more distinct. This is because, in this case, the penalty for violating constraints was too small, and the
optimization effort was largely wiped out by the calibration before evalution.

This illustrates another general advantage that the convex solver has over black-box optimizers: it is much less brittle and
reliant and exactly tuning parameters correctly. Note that even in this minimal example, there were many hyper-parameters
that require tuning: the regularization strengths that enforce soft constraints (clique tree calibration, normalization), as well
as learning rate, not to mention various other structural choices: the optimizer, the representation of the distribution, and the

Figure 6: Resource costs for the cluster setting. Once again, the OInc-optimimzing exponential cone methods are in gold,
the small-gamma and CCCP is in violet, and the baselines are in green. The bottom line is belief propogation, which is
significantly faster and requires very little memory, but also only gives the correct answer under very specific cirucumstances.

Figure 7: Gap vs inference time for the small PDGs in the bnlearn repository

https://www.bnlearn.com/bnrepository/

Figure 8: A variant of Figure 1, with with gap (accuracy) information on the left, and slightly different parameter settings.

maximum number of iterations, none of which are clear-cut choices, but rather require first being tuned to the data. While
the convex solver does have internal parameters (tolerences and such) these do not need to be tuned to the problem under
normal circumstances.

C.3 COMPARING TO BELIEF PROPAGATION, ON CLIQUE TREES.

Since PDGs generalize other graphical models, one might wonder how our method stacks up against algorithms tailored to
the more traditional models. In brief: our algorithm is much slower, and only handle much smaller networks. Concretely, our
methods can handle all of the “small” networks, and some of the “medium” ones, from the bnlearn repository. In these
cases, we have verified that the two methods yield the same results. Figure 7 contains the analogue of Figures 1 and 2 for the
Bayesian Nets. This graph looks qualitatively quite similar to the other graphs we’ve seen, suggesting that the results in our
synthetic experiments hold more broadly for small real-world models as well.

References

Riley Badenbroek and Joachim Dahl. An algorithm for nonsymmetric conic optimization inspired by mosek. Optimization
Methods and Software, pages 1–38, 2021.

Joachim Dahl and Erling D Andersen. A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimiza-
tion. Mathematical Programming, 194(1):341–370, 2022.

Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric hashing. arXiv preprint, 2022. doi:
10.48550/ARXIV.2210.10173. URL https://arxiv.org/abs/2210.10173.

Joseph Y Halpern. Reasoning About Uncertainty. MIT press, 2017.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT press, 2009.

https://www.bnlearn.com/bnrepository/
https://arxiv.org/abs/2210.10173

David J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge University Press, 2003.

Yu E Nesterov, Michael J Todd, and Yinyu Ye. Infeasible-start primal-dual methods and infeasibility detectors for nonlinear
programming problems. Technical report, 1999.

Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Algorithms in Convex Programming. SIAM, 1994.

Oliver E Richardson. Loss as the inconsistency of a probabilistic dependency graph: Choose your model, not your loss
function. AISTATS ’22, 151, 2022.

Oliver E Richardson and Joseph Y Halpern. Probabilistic dependency graphs. AAAI ’21, 2021.

Anders Skajaa and Yinyu Ye. A homogeneous interior-point algorithm for nonsymmetric convex conic optimization.
Mathematical Programming, 150(2):391–422, 2015.

Alan L Yuille and Anand Rangarajan. The concave-convex procedure. Neural computation, 15(4):915–936, 2003.

	Proofs
	Hardness Results and Reductions
	Inference via Inconsistency Minimization

	The Convex-Concave Procedure, and Implementation Details
	Details on the Empirical Evaluation
	Synthetic Experiment: Comparison with Black-Box Optimizers, on Joint Distributions.
	Synthetic Experiment: Comparing with Black-Box Optimizers, on Clique Trees
	Comparing to Belief Propagation, on Clique Trees.

