
Inference for Probabilistic Dependency Graphs

Oliver E. Richardson1 Joseph Y. Halpern1 Christopher De Sa1

1Deparment of Computer Science, Cornell University, Ithaca NY 14853

Abstract

Probabilistic dependency graphs (PDGs) are a flex-
ible class of probabilistic graphical models, sub-
suming Bayesian Networks and Factor Graphs.
They can also capture inconsistent beliefs, and
provide a way of measuring the degree of this
inconsistency. We present the first tractable infer-
ence algorithm for PDGs with discrete variables,
making the asymptotic complexity of PDG infer-
ence similar that of the graphical models they
generalize. The key components are: (1) the ob-
servation that PDG inference can be reduced to
convex optimization with exponential cone con-
straints, (2) a construction that allows us to express
these problems compactly for PDGs of bound-
eed treewidth, for which we needed to further de-
velop the theory of PDGs, and (3) an appeal to
interior point methods that can solve such prob-
lems in polynomial time. We verify the correct-
ness and time complexity of our approach, and
provide an implementation of it. We then evaluate
our implementation, and demonstrate that it outper-
forms baseline approaches. Our code is available at
github.com/orichardson/pdg-infer-uai.

1 INTRODUCTION

Probabilistic dependency graphs (PDGs) [Richardson and
Halpern, 2021], form a very general class of probabilistic
graphical models, that includes not only Bayesian Networks
(BNs) and Factor Graphs (FGs), but also more recent statis-
tical models built out of neural networks, such as Variational
Autoencoders (VAEs) [Kingma and Welling, 2014]. PDGs
can also capture inconsistent beliefs, and provide a use-
ful way to measure the degree of this inconsistency; for a
VAE, this is the loss function used in training [Richardson,
2022]. PDGs have some significant advantages over other

representations of probabilistic information. Their flexibil-
ity allows them to model beliefs that BNs cannot, such as
information from independent studies of the same variable
(perhaps with different controls, yielding probabilistic ob-
servations p(Y |X) and q(Y |Z)). PDGs can deal gracefully
with conflicting information from multiple sources. Every
subcomponent of a PDG has probabilistic meaning, inde-
pendent of the other components; compared to FGs, this
makes PDGs more interpretable. But up to now, there has
been no practical way to do inference for PDGs—that is, to
answer questions of the form “what is the probability of Y
given X?” This paper presents the first algorithm to do so.

Before discussing our algorithm, we must discuss what
it even means to do inference for a PDG. A BN or FG
represents a unique joint distribution. Thus, for example,
when we ask “what is the probability of Y given thatX=x?”
in a BN, we mean “what is µ(Y |X=x)?” for the probability
measure µ that the BN represents. But a PDG might, in
general, represent more than just one distribution.

Like a BN, a PDG encodes two types of information: “struc-
tural” information about the independence of causal mecha-
nisms, and “observational” information about conditional
probabilities. Unlike in a BN, the two can conflict in a PDG.
Corresponding to these two types of information, a PDG
has two loss functions, which quantify how far a distribution
µ is from modeling the information of each type. Given a
number γ̂ ∈ [0, 1] indicating the importance of structure rel-
ative to observation, we take the γ̂-semantics of a PDG to be
the set of distributions that minimize the appropriate convex
combination of losses. We also consider the 0+-semantics:
the limiting case that arises as γ̂ goes to zero (which focuses
on observation, using structure only to break ties). This set
can be shown to contain precisely one distribution for PDGs
satisfying a mild regularity condition (required by definition
by Richardson and Halpern); we call such PDGs proper.
Thus, we have a parameterized family of inference notions:
to do γ̂-inference, for γ̂ ∈ [0, 1]∪{0+}, is to answer queries
in a way that is true of all distributions in the γ̂-semantics.
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If there are distributions fully consistent with both the obser-
vational and the structural information in a PDG M, then for
γ̂ ∈ (0, 1)∪{0+}, all notions of γ̂-inference coincide. If M
is also proper, this means there is a single distribution µM

that minimizes both loss functions, in which case we want to
answer queries with respect to µM no matter how we weight
observational and structural information. Moreover, if M
represents a BN, then µM is the distribution represented by
the BN. However, if there is no distribution that is consistent
with both types of information, then the choice of γ̂ matters.

Since PDGs subsume BNs, and inference for BNs is already
NP-hard, the same must be true of PDGs. At a high level, the
best we could hope for would be tractability on the restricted
class of models on which inference has traditionally been
tractable—that is, a polynomial algorithm for models whose
underlying structure has bounded treewidth (see Section 2
for formal definitions). That is indeed what we have. More
precisely, we show that 0+-inference and γ̂-inference for
small γ̂ can be done for discrete PDGs of bounded treewidth
containing N variables in Õ(N4) time.

Our algorithm is based on a line of recent work in convex
programming that establishes polynomial-time for a class of
optimization problems called exponential conic programs
[Badenbroek and Dahl, 2021, Skajaa and Ye, 2015, Nesterov
et al., 1999]. Our contribution is to show that the problem of
inference in a PDG of bounded treewidth can be efficiently
converted to a (sequence of) exponential conic program(s),
at which point it can be solved with a commercial solver
(e.g., ApS [2022]) in polynomial time. The direct appeal
to a solver allows us to benefit from the speed and reliabil-
ity of such highly optimized solvers, and also from future
improvements in exponential conic optimization. Thus, our
result is not only a theoretical one, but practical as well.

Beyond its role as a probabilistic model, a PDG is also of
interest for its degree of inconsistency—that is, the mini-
mum value of its loss function. As shown by Richardson
[2022], many loss functions and statistical divergences can
be viewed as measuring the inconsistency of a PDG that
models the context appropriately. This makes calculating
this minimum value of interest—but up to now, there has
been no way to do so. There is a deep connection between
this problem and PDG inference; for now, we remark that
this number is a byproduct of our techniques.

Contributions. We provide the first algorithm for infer-
ence in a PDG; in addition, it calculates a PDG’s degree
of inconsistency. We prove that our algorithm is correct,
and also fixed-parameter tractable: for PDGs of bounded
treewidth, it runs in polynomial time. We also prove that
PDG inference and inconsistency calculation are equivalent
problems. Our algorithm reduces inference in PDGs to ex-
ponential conic programming in a way that can be offloaded
to powerful existing solvers. We provide an implementation
of this reduction in a standard convex optimization frame-

work, giving users an interface between such solvers and the
standard PDG Python library. Finally, we evaluate our im-
plementation. The results suggest our method is faster and
significantly more reliable than simple baseline approaches.

2 PRELIMINARIES & RELATED WORK

Vector Notation. For us, a vector is a map from a finite set
S, called its shape, to the extended reals R := R∪{∞}. We
write u := [ui]i∈S to define a vector u by its components.
Vectors of the same shape can be added (+), partially ordered
(≤), or multiplied (�) pointwise as usual. 1 denotes an all-
ones vector, of a shape implied by context.

Probabilities. We write ∆S to denote the set of probability
distributions over a finite set S. Every variable X can take
on values from a finite set VX of possible values. We can
regard sets of variables X as variables themselves, with
VX = ΠX∈XVX . A conditional probability distribution
(cpd) p(Y |X) is a map p : VX → ∆VY assigning to each
x ∈ VX a probability distribution p(Y |x) ∈ ∆VY , which
is shorthand for p(Y |X=x). Given a distribution µ over
(the values of) a set of variables including X and Y , we
write µ(X) for its marginal on X , and µ(Y |X) for the cpd
obtained by conditioning on X and marginalizing to Y . We
also refer to µ’s entropy H(µ) := Eµ[log 1

µ ] and conditional
entropy Hµ(Y |X) := Eµ[log 1/µ(Y |X)] of Y given X .

Hypergraphs and Treewidth. A hypergraph (V, E) is a set
V of vertices and a set E of hyperedges, which correspond
to subsets of V . An ordinary graph may be viewed as the
special case in which every hyperedge contains two vertices.

Definition 1. A directed hypergraph (N,A) is a set of
nodes N , and a set of (hyper)arcs A, each a ∈ A of which
is associated with a set of source nodes Sa ⊆ N , and target
nodes Ta ⊆ N . We also write S a→T ∈ A to specify an arc
a together with its sources S = Sa and targets T = Ta. �

A directed hypergraph can be viewed as a hypergraph by
joining each source and target set, thereby “forgetting” the
direction of the arrow. Thus, notions defined for undirected
hypergraphs (like that of treewidth, which we now review),
can be applied to directed hypergraphs as well.

Many problems that are intractable for general graphs are
tractable for trees, and some graphs are closer to being
trees than others. A tree decomposition of a (hyper)graph
G = (V, E) is a tree (C, T ) whose vertices C ∈ C, called
clusters, are subsets of V such that:

1. every vertex v ∈ V and every hyperedge E ∈ E is
contained in at least one cluster, and

2. every cluster D along the unique path from C1 to C2

in T , contains C1 ∩ C2.

The width of a tree decomposition is one less than the size
of its largest cluster, and the treewidth of a (hyper)graph G
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is the smallest possible width of any tree decomposition of
G. It is NP-hard to determine the tree-width of a graph, but
if the tree-width is known to be bounded above, a tree de-
composition may be constructed in linear time [Bodlaender,
1993]. For graphs of bounded tree-width, many problems
(indeed, any problem expressible in a certain second-order
logic [Courcelle, 1990]) can be solved in linear time. This
is also true of inference in standard graphical models.

Graphical Models and Inference. A graphical model struc-
ture is a (directed) (hyper)graph whose vertices X are vari-
ables, and whose (hyper)edges somehow indicate local influ-
ences between variables. A probabilistic graphical model,
or simply “graphical model”, is a graphical model struc-
ture together with quantitative information about these local
influences. Semantically, a graphical model M typically
represents a joint probability distribution PrM ∈ ∆VX over
its variables. Inference forM is then the ability to calculate
cpds PrM(Y |X=x), where X,Y ⊂ X and x ∈ VX .

Many inference algorithms (such as belief propagation),
when applied to tree-like graphical models, run in linear
time and are provably correct. If the same algorithms are
naïvely applied to graphs with cycles (as in loopy belief
propagation), then they may not converge, and even if
they do, may give incorrect (or even inconsistent) answers
[Wainwright et al., 2008]. Nearly all exact inference algo-
rithms (including variable elimination, clique calibration,
and message-passing with and without division), effectively
construct a tree decomposition, and can be viewed as run-
ning on a tree [Koller and Friedman, 2009, §9-11]. Indeed,
under widely believed assumptions, every class of graphi-
cal models for which inference is not NP-hard has bounded
treewidth [Chandrasekaran et al., 2012]. Given a tree decom-
position (C, T ) of the underlying model structure, many of
these algorithms use a data structure known as a clique tree,
which is a collection µ={µC(C)}C∈C of probabilities over
the clusters [Koller and Friedman, 2009, §10].

A clique tree µ is said to be calibrated if neighboring clus-
ters’ distributions agree on the variables they share. In this
case, it determines a joint distribution by

Prµ(X ) =
∏
C∈C

µC(C)
/ ∏
(C−D)∈T

µC(C ∩D) , (1)

which has the property that Prµ(C) = µC for all C ∈
C. A calibrated clique tree summarizes the answers to
queries about Prµ [see Koller and Friedman, 2009, §10.3.3].
Therefore, to answer probabilistic queries with respect to a
distribution µ, it suffices to find a calibrated clique tree µ
that represents µ, and appeal to standard algorithms.

Probabilistic Dependency Graphs. Our presentation of
PDGs is slightly different from (but equivalent to) that of
Richardson and Halpern [2021], which the reader is encour-
aged to consult for more details and intuition. At a high
level, a PDG is just a collection of cpds and causal asser-

tions, weighted by confidence. More precisely:

Definition 2. A PDG M = (X,A,P,α,β) is a directed
hypergraph (X,A) whose nodes are variables, together with
probabilities P and confidence vectors α = [αa]a∈A and
β=[βa]a∈A, so that each S a→T ∈A is associated with:

• a conditional probability distribution Pa(T |S) on the
target variables given values of the source variables,

• a weight βa ∈ R indicating the modeler’s confidence
in the cpd Pa(T |S), and

• a weight αa ∈ R indicating the modeler’s confidence
in the functional dependence of T on S expressed by a.

If β ≥ 0 and αa> 0 implies βa> 0, we write β � α and
call M proper. Note that β � α if β > 0. �

One significant advantage of PDGs is their modularity: we
can combine the information in M1 and M2 by taking the
union of their variables and the disjoint union of their arcs
(and associated data) to get a new PDG, denoted M1 +M2.

As mentioned in the introduction, a PDG contains two types
of information: “structural” information, in the hypergraph
A and weights α, and “observational” data, in the cpds P
and weights β. PDG semantics are based on two scoring
functions that quantify discrepancy between each type of
information and a distribution µ ∈ ∆VX over its variables.

The observational incompatibility of µ with M, which can
be thought of as a “distance” between µ and the cpds of M,
is given by the weighted sum of relative entropies:

OIncM(µ) :=
∑
S a→T ∈A

βa ID
(
µ(T, S)

∥∥∥ Pa(T |S)µ(S)
)
.

Under a standard interpretation of the relative entropy
ID(µ ‖ p) =Eµ[log µ

p ], OIncM measures the excess cost of
using codes optimized for the cpds of M (weighted by their
confidences), when reality is distributed according to µ.

The second scoring function measures the extent to which µ
is incompatible with a causal picture consisting of indepen-
dent mechanisms along each hyperarc. This is captured by
the structural incompatibility (of µ with M), and given by

SIncM(µ) :=
( ∑
S a→T ∈A

αa Hµ(T |S)
)
−H(µ).

Note that it does not depend on the cpds of M, nor the
possible values of the variables; it is defined purely in terms
of the weighted hypergraph structure (A,α).

When the observational and structural information con-
flict, then the distribution(s) that best represent a PDG
will depend on the relative importance of observation and
structure. This is captured by a trade-off paramter γ̂ ∈
[0, 1], which we can use to form the convex combination
(1− γ̂)OInc + γ̂SInc. So as to simplify the math and match
the notation in previous work (2021, 2022), we instead use
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a rescaled variant with a different parameterization. Let
γ := γ̂/(1−γ̂) ∈ [0,∞], which is almost identical to γ̂ when
γ̂ ≈ 0. With it, define the combined scoring function:

[[M]]γ(µ) := OIncM(µ) + γ SIncM(µ) (2)

=
1

1− γ̂

(
(1− γ̂)OIncM(µ) + γ̂ SIncM(µ)

)
= Eµ

[ ∑
S a→T ∈A

log
µ(T |S)βa−γαa

Pa(T |S)βa

]
− γH(µ).

Let [[M]]∗γ := arg minµ[[M]]γ(µ) denote the set of optimal
distributions at a particular value γ. One natural conception
of inference in PDGs is then parameterized by γ̂: to do γ̂-
inference in M is to respond to probabilistic queries in a
way that is sound with respect to every µ ∈ [[M]]∗γ . It is
not too difficult to see that when β ≥ γα, (2) is strictly
convex, which ensures that [[M]]∗γ is a singleton. This paper
demonstrates that γ̂-inference is tractable for such PDGs.

The limiting behavior of the γ̂-semantics as γ̂ → 0, which
we denote [[M]]∗0+ and call the 0+-semantics, has some
special properties. If M is proper, then [[M]]∗0+ contains
precisely one distribution. This distribution intuitively re-
flects an extreme empirical view: observational data trumps
causal structure. Note that in the absence of a causal picture
(α = 0), this corresponds to the well-established practice
of selecting the maximum entropy distribution consistent
with some observational constraints [Jaynes, 1957]. One
should be careful to distinguish [[M]]∗0+ from [[M]]∗0, the
set of distributions that minimize OIncM; the latter set in-
cludes [[M]]∗0+ [Richardson and Halpern, 2021, Prop 3.4],
but may also contain other distributions. This paper also
shows how to efficiently answer queries with respect to the
unique distribution in [[M]]∗0+ , which we call 0+-inference.

Given a PDG M, the smallest possible value of its scor-
ing function, 〈〈M〉〉γ := infµ [[M]]γ(µ), is known as its γ-
inconsistency and is interesting in its own right: 〈〈 · 〉〉γ seems
to be a “universal” loss function [Richardson, 2022].

Interior-Point Methods and Convex Optimization.
Interior-point methods provide an iterative way of approx-
imately solving linear programs in polynomial time [Kar-
markar, 1984]. With the theory of “symmetric cones”, these
methods were extended in the 1990s to handle second-order
cone programs (SOCPs) and semidefinite programs (SDPs),
which allow more expressive constraints. But the constraints
that these methods can handle are insufficient for our pur-
poses. We need what have been called exponential cone
constraints. The exponential cone is the convex set

Kexp :=
{

(x1, x2, x3) : x1 ≥ x2ex3/x2, x2 > 0
}

∪
{

(x1, 0, x3) : x1 ≥ 0, x3 ≤ 0
}

⊂ R3
.

LetK :=Kp
exp×[0,∞]q ⊂ Rn be a product of p exponential

cones and q = n−3k non-negative orthants. An exponential
conic program is then an optimization problem of the form

minimize
x

cTx subject to Ax = b, x ∈ K, (3)

where c ∈ Rn is some cost vector, the function x 7→ cTx
is called the objective, and b ∈ Rm, A ∈ Rm×n encode
linear constraints. Nesterov, Todd, and Ye [1999] first es-
tablished that such problems can be solved in polynomial
time, but incur double the memory and eight times the time,
compared to the symmetric counterparts. These drawbacks
were eliminated in Skajaa and Ye [2015]. The algorithm that
seems to display the best empirical performance [Dahl and
Andersen, 2022], however, was only recently shown to run
in polynomial time [Badenbroek and Dahl, 2021].

Disciplined Convex Programming [Grant, 2004] is a com-
positional approach to convex optimization that imposes
certain restrictions on how problems can be formed; a pro-
gram conforming to those rules is said to be dcp. The reason
to do so is that a dcp program can be efficiently compiled to
a standard form [Agrawal et al., 2018], which in our case is
an exponential conic program. Only two rules are relevant
to us: a constraint of the form (x, y, z) ∈ Kexp is dcp iff
x, y, and z are affine transformations of the optimization
variables, and a linear program augmented with dcp expo-
nential conic constraints is dcp. Because all the optimization
problems that we give are of this form, we can easily com-
pile them to exponential conic programs even if they do not
exactly conform to (3).

3 INFERENCE AS A CONVEX PROGRAM

Here is an obvious, if inefficient, way of calculating
PrM(Y |X=x) in a probabilistic model M. First com-
pute an explicit representation of the joint distribution
PrM ∈ ∆VX , then marginalize to PrM(X,Y ) and condi-
tion onX=x. For a factor graph or BN, each step is straight-
forward; the problem is the exponential time and space
required to represent PrM(X ) explicitly. A key feature of
inference algorithms for BNs and FGs is that they do not
represent joint distributions in this way. For PDGs, though,
it is not obvious that we can calculate the γ̂-semantics, even
if we know it is unique, and we ignore the space required to
represent it (as we do in this section). Note that γ̂-inference
is already an optimization problem by definition:

minimize
µ

[[M]]γ(µ) subject to µ ∈ ∆VX .

For small enough γ, it is even convex. But can we solve it
efficiently? With exponential cone constraints, the answer is
yes, as we show in Section 3.2. Moreover, we can compute
the 0+-semantics with a sequence of two exponential conic
programs (Section 3.3). To give a flavor of our construc-
tions and ease into the more complicated ones, we begin by
minimizing OInc, the simpler of the two scoring functions.

3.1 MINIMIZING INCOMPATIBILTY (γ = 0)

When γ = 0, we want to find minimizers of OInc, which
is a weighted sum of conditional relative entropies. There
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is a straightforward connection between the exponential
cone and relative entropy: if m,p ∈ ∆{1, . . . , n} ⊂ Rn
are points on a probability simplex, then (−u,m,p) ∈
Kn

exp if and only if u is an upper bound on m log m
p , the

pointwise contribution to relative entropy at each outcome.
Thus, perhaps unsurprisingly, we can use an exponential
conic program to find minimizers of OInc. If all beliefs are
unconditional and over the same space, the construction is
standard; we review it here, so that we can build upon it.

Warm-up. Consider a PDG with only one variable X with
VX = {1, . . . , n}. Suppose further that every arc j ∈ A =
{1, . . . , k} has Tj = {X} and Sj = ∅. Then each Pj(X)
can be identified with a vector pj ∈ [0, 1]n, and all k of
them can conjoined to form a matrix P = [ pij ] ∈ [0, 1]n×k.
Similarly, a candidate distribution µ can be identified with
m ∈ [0, 1]n. Now consider a matrix U = [ui,j ] ∈ Rn×k
that, intuitively, gives an upper bound on the contribution to
OInc due to each edge and value of X . Observe that

(−U, [m, ... ,m], P) ∈ Kn×k
exp

⇐⇒ ∀i, j. uij ≥ mi log(mi/pij)

=⇒ ∀j.
∑
iuij ≥ ID(µ ‖ pj)

=⇒
∑
i,jβjuij ≥

∑
jβjID(µ ‖ pj)

⇐⇒ 1TUβ ≥ OInc(µ). (4)

So now, if (U,m) is a solution to the convex program

minimize
m,U

1TUβ subject to 1Tm = 1,

(−U, [m, ... ,m], P) ∈ Kn×k
exp ,

then (a) the objective value 1TUβ equals the inconsistency
〈〈M〉〉0, and (b) µ ∈ [[M]]∗0, meaning µ minimizes OIncM.

The General Case. We now show how the same construc-
tion can be used to find a distribution µ ∈ [[M]]∗0 for an
arbitrary PDG M = (X ,A,P,α,β). To further simplify
the presentation, for each arc a ∈ A, let Va := V(Sa, Ta)
denote all joint settings of a’s source and target variables,
and write VA := ta∈AVa = {(a, s, t) : a ∈ A, (s, t) ∈
V(Sa, Ta)} for the set of all choices of an arc together with
values of its source and target. For each a ∈ A, we can re-
gard µ(Ta, Sa) and µ(Sa)Pa(Ta|Sa), both distributions over
{Sa, Ta}, as vectors of shape Va. As before, we introduce
an optimization variable u that packages together all of the
relevant pointwise upper bounds. To that end, consider a
vector u = [ua,s,t] ∈ RVA in the optimization problem

minimize
µ,u

∑
(a,s,t)∈VA

βa ua,s,t (5)

subject to µ ∈ ∆VX ,
∀a ∈ A.

(
− ua, µ(Ta, Sa), Pa(Ta|Sa)µ(Sa)

)
∈ KVaexp.

where ua = [ua,s,t](s,t)∈Va consists of those components
of u associated with arc a. Note that the marginals µ(Sa, Ta)
and µ(Sa) are affine transformations of µ, so (5) is dcp. A
straightforward generalization of the logic in (4) gives us:

Proposition 1. If (µ,u) is a solution to (5), then µ ∈ [[M]]∗0,
and

∑
(a,s,t)∈VA βaua,s,t = 〈〈M〉〉0.

Thus, a solution to (5) encodes a distribution that minimizes
OInc, and the (0-)inconsistency of M. This is a start, but to
do 0+-inference, among the minimizers of OInc we must
find the unique distribution in [[M]]∗0+ , while for γ̂-inference
(γ̂ > 0), we need to find the optimizers of [[M]]∗γ . Either
way, we must consider SInc in addition to OInc.

3.2 γ-INFERENCE FOR SMALL γ > 0

When γ > 0 is small enough, the scoring function (2) is not
only convex, but admits a straightforward representation as
an exponential conic program. To see this, note that (2) can
be rewritten [Richardson and Halpern, 2021, Prop 4.6] as:

[[M]]γ(µ) =− γH(µ)−
∑
a∈A

βa E
µ

logPa(Ta|Sa)

+
∑
a∈A

(γαa − βa) Hµ(Ta|Sa).
(6)

The first term, −γH(µ), is strictly convex and has a well-
known translation into an exponential cone constraint; the
second one linear in µ. Now, if 0 < γ ≤ mina

βa

αa
, then

every summand of the last term is a negative conditional
entropy, and can be captured by an exponential cone con-
straint. The only wrinkle is that it is possible for a user
to specify that some Pa(t | s) = 0, in which case the
linear term is undefined. The result is a requirement that
µ(s, t) = 0 at such points, which we can instead encode di-
rectly with linear constraints. To do this formally, divide VA
into two parts: VA+ := {(a, s, t) ∈ VA : Pa(t|s) > 0} and
VA0 := {(a, s, t) ∈ VA : Pa(t|s) = 0}. Armed with this no-
tation, consider upper bound vectors u = [ua,s,t](a,s,t)∈VA
and v = [vw]w∈VX , in the following optimization problem:

minimize
µ,u,v

∑
(a,s,t)∈VA

(βa− αaγ)ua,s,t + γ
∑
w∈VX

vw (7)

−
∑
(a,s,t)∈VA+

αaγ µ(Sa=s, Ta=t) logPa(t|s)

subject to µ ∈ ∆VX , (−v, µ,1) ∈ KVXexp,
∀a ∈ A.

(
− ua, µ(Ta, Sa),Pa(Ta|Sa)µ(Sa)

)
∈ KVaexp,

∀(a, s, t) ∈ VA0. µ(Sa=s, Ta= t) = 0.

This optimization problem may look complex, but it falls
out of (6) fairly directly, and gives us what we wanted.

Proposition 2. If (µ,u,v) is a solution to (7), and β ≥ γα,
then µ is the unique element of [[M]]∗γ , and 〈〈M〉〉γ equals
the objective of (7) evaluated at (µ,u,v).
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3.3 CALCULATING THE 0+-SEMANTICS (γ → 0)

Section 3.1 shows how to find a distribution ν that mini-
mizes OInc—but to do 0+-inference, we need to find the
minimizer that, uniquely among them, best minimizes SInc.
It turns out this can be done by using ν to construct a second
optimization problem. The justification requires two more
results; we start by characterizing the minimizers of OInc.

Proposition 3. If M has arcs A and β ≥ 0, the minimizers
of OIncM all have the same conditional marginals along
A. That is, for all µ1, µ2 ∈ [[M]]∗0 and all S a→T ∈ A with
βa > 0, we have µ1(T, S)µ2(S) = µ2(T, S)µ1(S).1

As a result, once we find one minimizer ν of OIncM (e.g.,
via (5)), it then suffices to constrain distributions that have
the same conditional marginals along the edges, and opti-
mize SInc. But in attepting to do so, we run into a second
issue: SInc is typically not convex. Fortunately, it is if we
constrain to distributions that minimize OInc. Moreover,
on this restricted domain, it can be represented with dcp
exponential cone constraints.

Proposition 4. If µ ∈ [[M]]∗0 , then

SInc
M

(µ)=
∑
w∈VX

µ(w) log

(
µ(w)�∏

a∈A
ν
(
Ta(w)

∣∣Sa(w)
)αa), (8)

where {ν(Ta|Sa)}a∈A are the marginals along the arcs A
shared by all distributions in [[M]]∗0 (per Proposition 3), and
Sa(w), Ta(w) are the values of variables Sa and Ta in w.

If we already know a distribution ν ∈ [[M]]∗0, perhaps by
solving (5), then the denominator of (8) does not depend on
µ and so is constant in our search for minimizers of SInc .
For ease of exposition, aggregate these values into a vector

k :=
[ ∏
a∈A

ν(Ta(w)|Sa(w))αa
]
w∈VX . (9)

We can now capture [[M]]∗0+ with a convex program.

Proposition 5. If ν ∈ [[M]]∗0 and (µ,u) solves the problem

minimize
µ,u

1Tu (10)

subject to (−u, µ,k) ∈ KVXexp, µ ∈ ∆VX ,
∀S a→T ∈ A. µ(S, T ) ν(S) = µ(S) ν(S, T ),

then [[M]]∗0+ = {µ} and 1Tu = SIncM(µ).

Running (10) through a convex solver gives rise to the first
algorithm that can reliably find [[M]]∗0+ .

1Intuitively, this assserts µ1(Ta|Sa) = µ2(Ta|Sa), but also
handles cases where some µ1(Sa=s) or µ2(Sa=s) equals zero.

4 POLYNOMIAL-TIME INFERENCE
UNDER BOUNDED TREEWIDTH

We have now seen how γ̂-inference (for small γ̂) can be
reduced to convex optimization over joint distributions µ—
but µ grows exponentially with the number of variables in
the PDG, so we do not yet have a tractable inference algo-
rithm. We now show how µ can be replaced with a clique
tree over the PDG’s structure. What makes this possible is a
key independence property of traditional graphical models,
which we now prove holds for PDGs as well.

Theorem 6 (Markov Property for PDGs). If M1 and M2

are PDGs over the sets of variables X1 and X2, respectively,
thenX1 andX2 are conditionally independent givenX1∩X2

in every µ ∈ [[M1 + M2]]∗γ , for all γ > 0 and γ = 0+.

For the remainder of this section, fix a PDG M and a tree
decomposition (C, T ) of M’s hypergraph. One significant
consequence of Theorem 6 is that, in the search for optimiz-
ers of (2), we need consider only distributions that satisfy
those independencies, all of which can be represented as a
clique tree µ = {µC ∈ ∆V(C)}C∈C over (C, T ).

Corollary 6.1. If M is a PDG with arcs A, (C, T ) is a
tree decomposition of A, γ > 0, and µ ∈ [[M]]∗γ , then there
exists a clique tree µ over (C, T ) such that Prµ = µ.

For convenience, let VC := {(C, c) : C ∈ C, c ∈ V(C)}
be the set of all choices of a cluster together with a set-
ting of its variables. Like before, we start by optimizing
OInc, this time over calibrated clique trees µ, which we
identify with vectors µ ∼= [µC(C=c)](C,c)∈VC. We need
the conditional marginals Prµ(Ta|Sa) of µ along every arc
a in order to calculate OIncM(Prµ); fortunately, they are
readily available. Since (C, T ) is a tree decomposition, we
know Sa and Ta lie entirely within some clusterCa ∈ C, and
Prµ(Ta|Sa) = µCa(Ta|Sa) if µ is calibrated. For u ∈ RVA,
consider the problem

minimize
µ,u

∑
(a,s,t)∈VA

βa ua,s,t (11)

subject to ∀C ∈ C. µC ∈ ∆V(C),

∀a ∈ A.
(
−ua, µCa(Sa,Ta), µCa(Sa)Pa(Ta|Sa)

)
∈ KVaexp

∀(C,D) ∈ T . µC(C ∩D) = µD(C ∩D),

where again ua is the restriction of u to components asso-
ciated with a. Problem (11) is similar to (5), except that it
requires local marginal constraints to restrict our search to
calibrated clique trees. It is analogous to problem CTREE-
OPTIMIZE-KL of Koller and Friedman [2009, pg. 384].

Proposition 7. If (µ,u) is a solution to (11), then

(a) µ is a calibrated, with Prµ ∈ [[M]]∗0, and
(b) the objective of (11) evaluated at u equals 〈〈M〉〉0.
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We can now find a minimizer of OInc and compute 〈〈M〉〉0
without storing a joint distribution. But to do anything else,
we must deviate from the template laid out in Section 3.

Dealing with Joint Entropy. In the construction of (11),
we rely heavily on the fact that each term of OIncM de-
pends only on local marginal distributions µCa

(Ta, Sa) and
µCa

(Sa). The same is not true of SInc , which depends on
the joint entropy H(Prµ) of the entire distribution. At this
point we should point out an important reason to restrict our
focus to trees: it allows the joint entropy to be expressed in
terms of the cluster marginals [Wainwright et al., 2008], by

−H(Prµ) = −
∑
C∈C

H(µC) +
∑

(C,D)∈T

Hµ(C ∩D). (12)

Even so, it is not obvious that (12) can be captured with dcp
exponential cone constraints. (Exponential conic programs
can minimize negative entropy, but not positive entropy,
which is concave.) We now describe how this can be done.

Choose a root node C0 of the tree decomposition, and orient
each edge of T so that it points away from C0. Now each
cluster C ∈ C, except for C0, has a parent cluster Par(C);
define Par(C0) := ∅ to be an empty cluster, since C0 has no
parent. Finally, for each C ∈ C, let VCPC := C ∩ Par(C)
denote the the set of variables that cluster C has in common
with its parent cluster.2As T is now a directed tree, this
definition allow us to express (12) in a more useful form:

−H( Prµ) = −H(µC0)−
∑

(C→D)∈T

HPrµ(D | C)

=
∑
C∈C

∑
c∈V(C)

µC(C=c) log
µC(C=c)

µC(VCPC(c))
, (13)

where VCPC(c) is the restriction of the joint value c ∈ V(C)
to the variables VCPC ⊆ C. Crucially, the denominator
of (13) is an affine transformation of µC . The upshot: we
have now rewritten the joint entropy as a sum of functions
of the clusters, each of which can be captured with a dcp
exponential cone constraint. This gives us analogues of the
problems in Sections 3.2 and 3.3 that operate on clique trees.

Finding clique trees for γ̂-inference. The ability to decom-
pose the joint entropy as in (13) allows us to adapt (7) to op-
erate on calibrated clique trees, rather than joint distributions.
Beyond the changes already present in (11), the key is to
replace the exponential cone constraint (−v, µ,1) ∈ KVXexp,
which captures the entropy of µ, with(

− v, µ, [µC(VCPC(c)) ](C,c)∈VC
)
∈ KVCexp,

which captures the entropy of µ, by (13). Over vectors
v,µ ∈ RVC and u ∈ RVA, the problem becomes:

minimize
µ,u,v

∑
(a,s,t)∈VA

(βa− αaγ)ua,s,t + γ
∑

(C,c)∈VC

vC,c (14)

−
∑
(a,s,t)∈VA+

αaγ µCa
(Sa=s, Ta=t) logPa(Ta=t | s)

subject to ∀C ∈ C. µC ∈ ∆V(C),

∀a ∈ A.
(
−ua, µCa(Sa,Ta), µCa(Sa)Pa(Ta|Sa)

)
∈ KVaexp,

∀(a, s, t) ∈ VA0. µCa
(Sa=s, Ta= t) = 0,

∀(C,D) ∈ T . µC(C ∩D) = µD(C ∩D),(
− v, µ, [µC(VCPC(c)) ](C,c)∈VC

)
∈ KVCexp.

Proposition 8. If (µ,u,v) is a solution to (14), and β ≥
γα, then Prµ is the unique element of [[M]]∗γ , and the objec-
tive of (14) at (µ,u,v) equals 〈〈M〉〉γ .

A related use of (13) is to enable an analogue of (10) that
operates on clique trees (rather than joint distributions), to
find a compact representation of [[M]]∗0+ . We begin with
a straightforward adaptation of the relevant machinery in
Section 3.3. Suppose that ν={νC : C ∈ C} is a calibrated
clique tree over the tree decomposition (C, T ) representing
a distribution Prν ∈ [[M]]∗0, say obtained by solving (11).
For C ∈ C, let AC := {a ∈ A : Ca = C} be the set of
arcs assigned to cluster C, and let

k :=

[∏
a∈AC

νC(Ta(c)|Sa(c))αa

]
(C,c)∈VC

∈ RVC

be the analogue of (9) for a cluster tree. Once again, consider
u := [u(C,c)](C,c)∈VC in the optimization problem

minimize
µ,u

1Tu (15)

subject to ∀C ∈ C. µC ∈ ∆V(C),(
−u, µ, k�

[
µC(VCPC(c))

]
(C,c)∈VC

)
∈ KVCexp,

∀a ∈ A. µCa
(Sa, Ta)νCa

(Sa) = µCa
(Sa)νCa

(Sa, Ta)

∀(C,D) ∈ T . µC(C ∩D) = µD(C ∩D).

The biggest change is in the second constraint: the upper
bounds [u(C,c)]c∈VC for cluster C now account only for the
additional entropy not already modeled by C’s ancestors.

Proposition 9. If (µ,u) is a solution to (15), then µ is a
calibrated clique tree and [[M]]∗0+ = {Prµ}.

At this point, standard algorithms can use µ to answer prob-
abilistic queries about Prµ in polynomial time [Koller and
Friedman, 2009, §10.3.3]. From Propositions 8 and 9, it
follows that γ̂-inference (for small γ̂, and for 0+) can be
reduced to a (pair of) convex optimization problem(s) with
a polynomial number of variables and constraints. All that
remains is to show that such a problem can be solved in
polynomial time. For this, we turn to interior-point meth-
ods. As (14) and (15) are dcp, they can be transformed via
established methods [Agrawal et al., 2018] into a standard
form that can be solved in polynomial time by commercial

2Different choices of C0 yield different definitions of VCP,
and ultimately optimization problems of different sizes; the optimal
choice can be found with Edmund’s Algorithm [Chu, 1965], which
computes a directed analogue of the minimum spanning tree.
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Figure 1: Accuracy and resource costs for the methods in Section 3. Left: a scatter plot of several algorithms on random PDGs
of ≈ 10 variables. The x-axis is the difference in scores [[M]]γ(µ)− [[M]]γ(µ∗) + 10−15, where µ is the method’s output,
and µ∗ achieves best (smallest) known value of [[M]]γ . (Thus, the best solutions lie on the far left.) The y axis is the time
required to compute µ. Our methods are in gold (0+-inference) and violet (γ̂-inference, for γ̂ > 0); the baselines (black-box
optimizers applied directly to (2)) are in green. The area of each circle is proportional to the size of the optimization problem,
as measured by n_worlds:= |VX |. Right: how the same methods scale in run time, as |VX | increases.

solvers [ApS, 2022, Domahidi et al., 2013]. Threading the
details of our constructions through the analyses of Dahl
and Andersen [2022] and Nesterov et al. [1999] results in
our main theorem.

Theorem 10. Let M = (X ,A,P,α,β) be a proper dis-
crete PDG with N = |X | variables each taking at most V
values, andA = |A| arcs forming a hypergraph of treewidth
T . Then for all γ ∈ {0+} ∪ (0, mina∈A

βa

αa
] and ε > 0, we

can do γ̂-inference to precision ε in

O

(
(N+A)4V 4T

(
T log V + log

N+A

ε
+ log

βmax

βmin

))
time,† where βmax := maxa∈A βa and

βmin :=

{
min
a∈A
{βa : βa > 0} if γ = 0+

γ if γ > 0 .

Our approach to γ̂-inference computes 〈〈M〉〉γ as a side ef-
fect. But suppose that we were interested in calculating only
this inconsistency. Might there be a more direct, asymptoti-
cally easier way to do so? In general, the answer is no.

Theorem 11. (a) Determining whether or not there is a
distribution that shares all cpds with M is NP-hard.

(b) Computing 〈〈M〉〉γ is #P-hard, for all γ ≥ 0.
(c) For γ ∈ {0+} ∪ (0,mina

βa

αa
), there is an O(size of

query result) reduction from γ̂-inference to the problem
of calculating γ-inconsistency. Under bounded tree-
width, there is also an O(|VC|) reduction in the other
direction, making the problems essentially equivalent.

†At the cost of substantial overhead and engineering effort, the
exponent 4 can be reduced to 2.872, by appeal to Skajaa and Ye
[2015] and the current best matrix multiplication algorithm [Duan
et al., 2022, O(n2.372)] to invert n×n linear systems.

Part (b) undermines Richardson and Halpern’s original idea
of inferring the probability of Y given X by adding a hy-
pothesis h(Y |X) to M, and adjusting h to minimize the
overall inconsistency 〈〈M + h〉〉γ . If we had oracle access
to 〈〈M + h〉〉γ , however, then this procedure would not only
give the right answer, but also its running time would not
depend on the size of M. Indeed, that is how we prove (c).

5 EXPERIMENTS

We have given the first algorithm to provably do inference
in polynomial time, but that does not mean that it is the
best way of answering queries in practice; it also makes
sense to use black-box optimization tools such as Adam
[Kingma and Ba, 2014] or L-BFGS [Fletcher, 2013] to
find minimizers of [[M]]γ . Indeed, this scoring function has
several properties that make it highly amenable to such
methods: it is infinitely differentiable, γ-strongly convex,
and its derivatives have simple closed-form expressions.
So it may seem surprising that [[M]]γ poses a challege to
standard optimization tools—but it does, even when we
optimize directly over joint distributions.

Synthetic Experiment 1 (over joint distributions). Repeat-
edly do the following. First, randomly generate a small PDG
M containing at most 10 variables and 15 arcs. Then for var-
ious values of γ ∈ {0, 0+, 10−8, . . . ,mina

βa

αa
}, optimize

[[M]]γ(µ) over joint distributions µ, in one of two ways.

(a) Use cvxpy [Diamond and Boyd, 2016] to feed one of
problems (5,7,10) to the MOSEK solver [ApS, 2022], or
(b) Choose a learning rate and a representation of µ in
terms of optimization variables θ ∈ Rn. Then run a standard
optimizer (Adam or L-BFGS) built into pytorch [Paszke
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Figure 2: Left: Memory footprint. The convex solver (violet, gold) requires more memory than baselines (green). Right:
Analogue of Figure 1 for the cluster setting. Here there is even more separation between exponential conic optimization
(gold, violet) and black-box optimization (greens). The grey points represent belief propagation, which is fastest and most
accurate—but only applies in the special case when β = γα.

et al., 2019] to optimize θ until µθ converges to a minimizer
of [[M]]γ (or a time limit is reached). Keep only the best
result across all learning rates.

The results are shown in Figure 1. Observe that the convex
solver (gold, violet) is significantly more accurate than the
baselines, and also much faster for small PDGs. Our imple-
mentation of 0+-inference (gold) also appears to scale better
than L-BFGS in this regime, although that of γ̂-inference
(purple) seems to scale much worse. We suspect that the
difference comes from cvxpy’s complilation process, be-
cause the two use similar amounts of memory (Figure 2),
and so are problems of similar sizes.

Synthetic Experiment 2 (over clique trees). For PDGs of
bounded treewidth, Corollary 6.1 allows us to express these
optimzation problems compactly not just for the convex
solver, but for the black-box baseline approaches as well.
We adapt the previous experiment for clique trees as follows.
First randomly sample a maximal graph G of tree-width k,
called a k-tree [Patil, 1986]; then generate a PDG M whose
hyperarcs lie within cliques of G. This ensures that the
maximal cliques of G form a tree-decomposition (C, T ) of
M’s underlying hypergraph. We can now proceed as before:
either encode (11,14,15) as disciplined convex programs
in cvxpy, or use torch to directly minimize [[M]]γ(Prµ)
amongst clique trees µ over (C, T ).

In the latter case, however, there is now an additional diffi-
culty: it is not easy to strictly enforce the calibration con-
straints with the black-box methods. Common practice is to
instead add extra loss terms to “encourage” calibration—but
it can still be worthwile for the optimizer to simply incur
that loss in order to violate the constraints. Thus, for fair-
ness, we must recalibrate the the clique trees returned by
all methods before evaluation. The result is an even more
significant advantage for the convex solver; see Figure 2.

Evaluation on BNs. We also applied the procedure of the
Synthetic Experiment 2 to the smaller BNs in the bnlearn
repository, and found similar results (but with fewer exam-
ples; see Appendix C.3). But for a PDG that happens to also
be a BN, it is possible to use belief propagation, which is
much faster and at least as accurate.

Explicit details about all of our experiments, and many more
figures, can be found in Appendix C.

6 DISCUSSION AND CONCLUSION

In this paper, we have provided the first practical algorithm
for inference in PDGs. In more detail, we have defined a
parametric family of PDG inference notions, given a fixed-
parameter tractable inference algorithm for a subset of these
parameters, proven our algorithm correct, implemented it,
and shown our code to empirically outperform baselines.
Yet many questions about PDG inference remain open.

Asymptotically, there may be a lot of room for improvement.
Our implementation runs in time Õ(N4), and our analysis
suggests one of time Õ(N2.872). But assuming bounded
tree-width, most graph problems, including inference infer-
ence for BNs and FGs, can be solved in time O(N).

Moreover, we have shown how to do inference for only a
subset of possible paramer values, specifically, when either
β ≥ γα or β � α. The remaining cases are also of interest,
and likely require different techniques. When β = 0 and
(A,α) encodes the structure of a BN, for instance, inference
is about characterizing the BN’s independencies. While we
do not know how to tackle this problem in general, our meth-
ods can be augmented with the convex-concave procedure
[Yuille and Rangarajan, 2003] to obtain an inference algo-
rithm that applies slightly more broadly; see Appendix B.

Given the long history of improvements to Bayesian net-
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work inference algorithms, we are optimistic that further
improvements on these problems are possible.
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