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A PSEUDO-CODE FOR BPLS

We summarize the procedure of Bayesian Pseudo-Label Selection (BPLS) with approximate Pseudo Posterior Predictive
(PPP) in Algorithm 1. Pseudo-code describing the proposed extensions can be found in section E of this supplementary
material. Notation and mathematical symbols follow the main paper. Notably, the number of unobserved data |U| was
denoted m in the main paper.

Algorithm 1: Bayesian Pseudo-Label Selection (BPLS) with approximate Pseudo Posterior Predictive (PPP)
Data: D,U
Result: D, fitted model ŷ∗(x)
Fit model M on labeled data D to obtain prediction function ŷ(x)
while stopping criterion not met do

for i ∈ {1, . . . , |U|} do
predict Y ∋ ŷi = ŷ(xi)
approximate PPP p(D ∪ (xi, ŷi) |D)

end
obtain i∗ = argmaxi{p(D ∪ (xi, ŷi) |D)}
add (xi, ŷi) to labeled data: D ← D ∪ (xi, ŷi)
update U ← U \ (xi,Y)i

end
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B MISSING PROOFS

We present the proofs for Theorems 1-3 in section 2 of the main paper. For the sake of readability, we repeat the underlying
theorems as well.

B.1 PROOF OF THEOREM 1

Theorem 1 In the decision problem (A,Θ, u(·)) with A = U (definition 1), with the pseudo-label likelihood as utility
function (definition 2), and a prior π(θ) on Θ, the standard Bayes criterion

Φ(·, π) : U → R
a 7→ Φ(a, π) = Eπ(u(a, θ))

corresponds to the pseudo marginal likelihood p(D ∪ (xi, ŷi)).

Proof 1 The definition of the expected value for measurable u(·, ·) directly delivers Φ(a, π) = Eπ(u(a, θ)) =∫
u(a, θ)dπ(θ) =

∫
p(D ∪ (xi, ŷi) | θ)dπ(θ) = p(D ∪ (xi, ŷi)).

B.2 PROOF OF THEOREM 2

Theorem 2 In the decision problem (A,Θ, u(·)), using the pseudo-label likelihood as utility function as in theorem 1
but with the prior updated by the posterior π(θ) = p(θ | D) on Θ, the standard Bayes criterion Φ(·, π) : U → R; a 7→
Φ(a, π) = Eπ(u(a, θ)) corresponds to the pseudo posterior predictive p(D ∪ (xi, ŷi) | D).

Proof 2 Analogous to Proof 1, we have Φ(a, π) = Eπ(u(a, θ)) =
∫
u(a, θ)dπ(θ). Now with the updated prior π(θ) =

p(θ | D) it follows
∫
u(a, θ)dπ(θ) =

∫
p(D ∪ (xi, ŷi) | θ)dp(θ | D) = p(D ∪ (xi, ŷi) | D).

B.3 PROOF OF THEOREM 3

Theorem 3 In the decision problem (A,Θ, u(·)), using the pseudo-label likelihood as utility function as in theorem 1, the
max-max criterion

Φ: U → R
a 7→ Φ(a) = max

θ
(u(a, θ))

corresponds to the (full) likelihood at θ̂ML.

Proof 3 Recall definition 2 of the pseudo-label likelihood as utility function: u : U × Θ → R ; ((xi,Y), θ) 7→
u((xi,Y), θ) = p(D∪(xi, ŷi) | θ). Thus, it holds for the max-max criterion Φ(a) = maxθ(u(a, θ)) = maxθ(p(D∪(xi, ŷi) |
θ)) = p(D ∪ (xi, ŷi) | θ̂ML), with θ̂ML the ML-estimator.

The max-max criterion hence corresponds to direct optimization with regard to a of the likelihood, evaluated at θ̂ML. The
respective max-max-action is thus a∗max−max = maxa maxθ p(D ∪ (xi, ŷi) | θ) = maxa p(D ∪ (xi, ŷi) | θ̂ML).



C EXPERIMENTAL SETUP

We describe the setup for the experiments with both the simulated and the real-world data along with additional empirical
results comparing our approximate PPP with predominant PLS methods in section D.

C.1 BENCHMARKS

Throughout our experiments, we compare our proposed approximate PPP with a set of baseline and competing approaches:

• Likelihood (max-max): Self-training using the Likelihood max-max action as selection criterion

• Predictive Variance: Self-training using the predictive variance Var[ŷ] = E[ŷ − E[ŷ]]2 of the model predictions as a
selection criterion

• Probability Score: Self-training using the predicted probabilities (scores) P(y = ŷ) as a selection criterion

• Supervised Learning: regular supervised model fitting using the labeled training data only

All data sets reflect binary classification tasks with a fairly balanced class label distribution. Hence, we report and compare
with model performance as measured in accuracy on the holdout test data sets.

C.1.1 Generalized Linear Models

We choose generalized linear models (GLMs) [Nelder and Wedderburn, 1972] as predictive models for BPLS with PPP as
well as for all competing methods listed in section C.1. By considering the binomial distribution from the exponential family
this yields logistic regression:

P(Y = 1 | X = xi) = P(Yi = 1) =
exp(x⊤

i β)

1 + exp(x⊤
i β)

=
1

1 + exp(−x⊤
i β)

, (1)

with β = (β0, β1, . . . , βk)
⊤ and x⊤

i β = β0+xi1β1+xi2β2+ . . .+xikβk. Such a regression with additive linear predictor
x⊤
i β can be easily be extended to target variables that follow a multinomial distribution (i.e. multi-class problems). Our

setup described in section C.1 can thus be extended in a straightforward manner to such learners for multi-class classification
tasks.

C.1.2 Generalized Additive Models

We also use non-parametric generalized additive models (GAMs) [Fahrmeir et al., 2013, Hastie, 2017] as predictive models.
Here, the response variable depends on unknown smooth functions of some feature variables:

g(E(Y )) = β0 + f1(x1) + f2(x2) + · · ·+ fm(xm). (2)

As above, we assume Y to follow a binomial distribution in our experiments, since we only consider binary classification.
Like GLMs, GAMs can be easily extended to multi-class problems.

C.1.3 Simulation Design

For the simulation study, we created a simulated dataset with n samples for a binary classification based on a varying amount
of q features. This simulation follows the model equation

yi ∼ Bin(1, pi), with pi = (1 + exp(−xi,0 + xi,1 + ...xi,p))
−1 (3)

where xi ∼ N (µ, σ2) independently with varying µ and σ2.



C.1.4 Pre-Processing and Gathering of Real-world Data

Detailed information on sources, features, and target variables of all data sets [Dua and Graff, 2017] that were used in
the experiments can be found in section L. The data sets were selected randomly after filtering according to the following
criteria:

• We only consider binary classification tasks, since we test the PLS methods based on semi-supervised logistic regression.

• We choose from datasets with a low number of missing values in order to minimize algorithm differences in missing
value handling.

• We restrict ourselves to datasets with q < 100 to avoid massive overfitting and computational trouble.

In order to benchmark BPLS against classical PLS methods, we split the data sets into train and test data first, before
removing labels from a pre-defined share of training data. Our detailed splitting procedure for the real-world datasets with a
total size of n samples each is the following:

1. draw ntest samples to create the holdout test set Dtest where the remainder constitutes the training set Dtrain of size
ntrain such that ntrain = ntest (share of test data thus 50%).

2. draw nlabeled samples from Dtrain to create the labeled training data Dlabeled
train

3. Remove labels from remaining samples in Dtrain and treat them as unlabeled data Dunlabeled
train

Throughout our experiments, we repeat self-training R times and use varying shares of labeled data nunlabeled

ntrain
.

C.1.5 Hypotheses

For interpretation purposes, recall our hypotheses that we specified before running the experiments:

Hypothesis 1 (a) PPP with uninformative prior outperforms traditional PLS on data prone to initial overfitting (i.e., with
high ratio of features to data p

n and poor initial generalization). (b) For low p
n and high initial generalization, BPLS is

outperformed by traditional PLS.

Hypothesis 2 (a) Among all PLS methods, the pseudo-label likelihood (max-max-action) reinforces the initial model fit the
most and (b) hardly improves generalization.

Hypothesis 3 PPP with informative prior outperforms traditional PLS methods universally.



D FURTHER RESULTS

In this section, we present additional results. Section D.1 has the complete results for simulated data with q = 60 features.1

In section D.2, we show additional results for smaller q ∈ {10, 15, 20, 30} with varying n ∈ {300, 400, 800, 1000}.

D.1 RESULTS ON SIMULATED DATA WITH q = 60

Figure 1: Complete Results on Simulated Data for q = 60. R = 100; nunlabeled

ntrain
= 0.8.

D.2 FURTHER RESULTS ON SIMULATED DATA WITH q ∈ {10, 15, 20, 30}

Figure 2: Results on Simulated Data, n = 300 and (from left to right) q ∈ {10, 15, 20, 30}. R = 100; nunlabeled

ntrain
= 0.8.

1Results for n = 100 and n = 400 were already included in the paper, but are also shown here for the sake of completeness of the
setup with q = 60. (Note that this is an exception; all other results presented herein have not been included in the paper.)



Figure 3: Results on Simulated Data, n = 400 and (from left to right) q ∈ {10, 15, 20, 30}. R = 100; nunlabeled

ntrain
= 0.8.

Figure 4: Results on Simulated Data, n = 800 and (from left to right) q ∈ {10, 15, 20, 30}. R = 100; nunlabeled

ntrain
= 0.8.

Figure 5: Results on Simulated Data, n = 1000 and (from left to right) q ∈ {10, 15, 20, 30}. R = 100; nunlabeled

ntrain
= 0.8.



D.3 INFORMATIVE PRIOR: FURTHER RESULTS ON SIMULATED DATA

Figure 6: Results from simulated data in case of informative priors with simple GLMs (logistic regression, first row) and more complex non-parametric GAMs (second
row). Note that resolution allows zooming in.



D.4 SUMMARY OF RESULTS ON SIMULATED DATA

Table 1 summarizes the results on simulated data in an ordinal manner. That is, it shows the best-performing method on the
different setups. As in the main paper, “Oracle stopping” in table 1 refers to comparing PLS methods with regard to their
overall best accuracy as opposed to “final” comparisons after the whole data set was labeled.

Table 1: Best performing PLS on Simulated Data

n p ORACLE STOPPING FINAL
60 60 PPP PPP

100 60 PPP Supervised Learning
400 60 PPP PPP
1000 60 Probability Score Probability Score
300 30 Probability Score Probability Score
300 20 PPP PPP
300 15 PPP PPP
300 10 PPP/Probability Score PPP/Probability Score
400 30 Probability Score PPP/Probability Score
400 20 Probability Score Probability Score
400 15 PPP/Probability Score Probability Score
400 10 PPP/Probability Score PPP/Probability Score
800 30 PPP PPP
800 20 PPP/Probability Score PPP/Probability Score
800 15 PPP PPP
800 10 PPP PPP/Probability Score
1000 30 PPP PPP/Probability Score
1000 20 PPP PPP
1000 15 PPP PPP
1000 10 Predictive Variance Predictive Variance



E EXTENSIONS

We provide further details on the suggested extensions in section 6. Besides, we briefly discuss other potential extensions.

E.1 EXTENSIONS PROPOSED IN THE PAPER

We summarize the proposed extensions’ procedure from section 6 in the paper by pseudo-code as follows.

E.1.1 Bivariate Pseudo-Label Selection

The idea of bivariate BPLS would be to touch the model class M . When comparing PPPs, one could then take into account
the required model size q. The rough idea would be to prefer pseudo-labels that have high plausibility (high likelihood) even
with simpler models (small q).

Algorithm 2: Bivariate Bayesian Pseudo-Label Selection (BPLS)
Data: D,U
Result: D, fitted model ŷ∗(x)
Fit model M on labeled data D to obtain prediction function ŷ(x)
while stopping criterion not met do

for i ∈ {1, . . . , |U|} do
predict Y ∋ ŷi = ŷ(xi) with models of varying dim(Θ)
evaluate PPP p(D ∪ (xi, ŷi) |D) with predictions from the best performing (on training data) model and save
respective dim(Θ)

end
obtain i∗ = argmaxi{f(p(D ∪ (xi, ŷi) |D), dim(Θ))}, with f(·, ·) some linear combination of the PPP and the
model size dim(Θ)

retrain M on D ∪ (xi, ŷi∗)
predict Y ∋ ŷ∗i (x ∪ xi), x ∈ D
add (xi, ŷi) to labeled data: D ← D ∪ (xi, ŷi)
update U ← U \ (xi,Y)i

end

E.2 ADDITIONAL EXTENSIONS

E.2.1 Robust PPP

We further propose a robust extension of PPP based on generalized Bayesian inference [Dempster, 1968, Walley, 1991,
Ruggeri et al., 2005, Augustin et al., 2014]. Recall that for the robust PPP, now denoted as p∗(ŷ | x,y,x), we consider
the prior π∗(θ) among all priors from a convex set of priors Π that has the smallest value π∗(θ̂) at the ML-estimator θ̂.
Recall that Π ⊆ {π(θ) | π(·) a probabilty measure on (Θ, σ(Θ))} with Θ compact as throughout the paper and σ(·) an
appropriate σ-algebra.

More formally and encapsulating the notion of Γ-Maximin as in [Guo and Tanaka, 2010], for instance, we have the decision
problem (A,Θ, u(·)) with A = U (definition 1 in paper) with the pseudo-label likelihood as utility function (definition 2)
and a set of priors Π as above. Then the Γ-maximin criterion

Φ(·,Π): U → R; a 7→ Φ(a, π) = EΠ(u(a, θ)) (4)

with EΠ(u(a, θ)) = infπ∈Π E(u(a, θ)) corresponds to the robust pseudo posterior predictive p∗(D ∪ (xi, ŷi) | D) that
results from updating the prior π∗(·) ∈ Π that has the lowest value in θ̂. Action a∗Γ = argmaxi p

∗(D ∪ (xi, ŷi) | D) is
Γ-maximin-optimal for prior π∗(·).

In practice, the proposed extension heavily depends on the exact nature of Π. For illustrative purposes, suppose that we can
specify Π such that the most contradicting prior is such that the resulting posterior is uniform. Effectively, we then end up



with the same situation as with the marginal likelihood when the prior is uniform in case of independent observations, see
the end of section 3.1 in the main paper: We randomly select pseudo-labeled instances. Quite intuitively, the selection that is
most robust toward the initial fit given no other information is just such a random selection.

E.2.2 Bayesian Pseudo-Label Selection without predictions

The idea here would be to directly assign all possible q classes in Y to the unlabeled data points with q = |Y|. The following
pseudo-code lines out the procedure. Note that the inner loop thus requires |U| · |Y| assignments and respective PPP
evaluations.

Algorithm 3: Bayesian Pseudo-Label Selection (BPLS) without predictions
Data: D,U
Result: D, fitted model ŷ∗(x)
Fit model M on labeled data D to obtain prediction function ŷ(x)
while stopping criterion not met do

for i ∈ {1, . . . , |U|} do
assign all possible ŷi ∈ Y to (xi, ŷi)
evaluate all possible PPP p(D ∪ (xi, ŷi) |D)

end
obtain i∗ = argmaxi{p(D ∪ (xi, ŷi) |D)}
retrain M on D ∪ (xi, ŷi∗)
predict Y ∋ ŷ∗i (x ∪ xi), x ∈ D
add (xi, ŷi) to labeled data: D ← D ∪ (xi, ŷi)
update U ← U \ (xi,Y)i

end

E.2.3 Fantasy PPP

In complete analogy to the proposed extension in section E.2.2, we consider assignment of all possible classes instead of
predictions of single classes. As opposed to selecting from all possible pseudo-labels directly, we could also combine the
PPPs from pseudo-labels for each instance to a fantasy PPP by a weighted sum. See the following pseudo-code for details.
The formulation allows for different ways of how to define the weighted sum Σ. Regarding one instance, we would have a
PPP for each class y ∈ Y . One way to define Σ would be to consider the maximal and minimal PPP only and compute a
weighted sum thereof, leaning on the Hurwicz-criterion in decision theory [Hurwicz, 1951]. The weight assigned to the
maximal PPP is then regarded the decision-maker’s degree of optimism.

Algorithm 4: Bayesian Pseudo-Label Selection (BPLS) with fantasy PPPs
Data: D,U
Result: D, fitted model ŷ∗(x)
Fit model M on labeled data D to obtain prediction function ŷ(x)
while stopping criterion not met do

for i ∈ {1, . . . , |U|} do
assign all possible yi ∈ Y to (xi, yi)i
evaluate weighted sum Σ of respective PPPs p(D ∪ (xi, yi) |D)

end
obtain i∗ = argmaxi Σ
retrain M on D ∪ (xi, ŷi∗)
predict Y ∋ ŷ∗i (x ∪ xi), x ∈ D
add (xi, ŷi) to labeled data: D ← D ∪ (xi, ŷi)
update U ← U \ (xi,Y)i

end



F NUMERICAL EXPERIMENTS VERIFYING THE SIMPLIFIED APPROXIMATION

F.1 SIMPLIFIED APPROXIMATION

We test the equivalence of PLS with regard to the approximate PPP criterion (Equation (6) in main paper)

ℓ̃(θ̃)− 1

2
log |I(θ̃)|+ log π(θ̃)

with ℓ̃(θ̃) = ℓD∪(xi,ŷi)(θ̃) + ℓD(θ̃), and our simplified version thereof (Equation (7) in main paper):

ℓD∪(xi,ŷi)(θ̃)−
1

2
log |I(θ̃)|+ log π(θ̃).

Recall that these terms are approximately equivalent when comparing pseudo-samples (xi, ŷi) and (xj , ŷj). We expanded
ℓD around its maximizer θ̂, so that ℓD(θ̃) = ℓD(θ̂) +O(∥θ̂ − θ̃∥2). Since D ∪ (xi, ŷi) and D differ in only one sample, the
difference θ̂ − θ̃ is of order O(n−1). Thus,

ℓ̃(θ) = ℓD∪(xi,ŷi)(θ) + ℓD(θ̂) +O(n−2).

The remainder is negligible compared to the other terms in Equation (6) and ℓD(θ̂) does not depend on the pseudo-sample
(xi, ŷi). This suggests the simplified informative BPLS criterion : ℓD∪(xi,ŷi)(θ̃)− 1

2 log |I(θ̃)|+ log π(θ̃).

F.2 EXPERIMENTAL SETUP

In addition to this theoretical argument, we provide empirical evidence for this equivalence. It is verified numerically for
small n by experiments on the ionosphere data [Sigillito et al., 1989a], EEG data [Zhang et al., 1995], banknote data [Dua
and Graff, 2017], abalone data [Waugh, 1995] as well as on simulated binomially distributed data, see section C.1. For
all data sets, we compare semi-supervised GLM performance of BPLS with simplified criterion (“rough PPP”, eq. 7) and
unsimplified criterion (“fine PPP”, eq. 6) with regard to test accuracy averaged over 40 repetitions.

F.3 RESULTS

Figure 11 shows the results for EEG data, Figure 13 for abalone data, while Figure 14 displayes results for the simulated
binomially distributed data. In order to assess the ceteris paribus effect of growing n, we take random subsamples of the
ionosphere data with varying size n ∈ {220, 260, 300} and the full data set with n = 350. Figures 7 through 10 show the
respective results.

It becomes apparent that with growing n the differences between the performances of the two approximations diminishes.
Already for small n
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Figure 7: Approximations’ performances
on ionosphere subsample of size n = 220.
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Figure 8: Approximations’ performances
on ionosphere subsample of size n = 260.
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Figure 9: Approximations’ performances
on ionosphere subsample of size n = 300.
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Figure 10: Approximations’ performances
on ionosphere data set of size n = 350.
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Figure 11: Approximations’ performances on EEG data set (n = 185, q = 13).



0.875

0.900

0.925

0.950

0.975

1.000

0 20 40 60 80
banknote

M
ea

n.
A

cc
ur

ac
y

PLS Method

fine PPP (bayes−optimal)

rough PPP (bayes−optimal)

Figure 12: Approximations’ performances on banknote data set (n = 200, q = 3).
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Figure 13: Approximations’ performances on abalone data set (n = 400, q = 4).
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G MCMC BASELINE

In order to compare our method against MCMC approximations of the pseudo posterior predictive (PPP), we compare BPLS
with our approximation against selecting pseudo-samples according to an MCMC-approximation of the PPP.

The latter is reminiscent of [Li et al., 2020]: They propose to use mixtures of predictive distributions of a neural net (applying
MC dropout) as a selection criterion. Essentially, this approach thus considers (MC)MC-based approximations of the
posterior predictive of single pseudo-labeled data. Our approach differs by considering the joint posterior predictive but is
similar with regard to the (Bayesian) concept. The main difference, however, is our analytical approximation of the posterior
predictive. Li et al., 2020, thus propose a valid alternative to our approximate Bayes optimal criteria iBPLS (eq. 7 in main
paper) and uBPLS (eq. 8 in main paper).

We benchmark this PLS method against our uBPLS on the smallest data set (cars) from the 8 UCI data sets in the paper
as well as on a balanced subsample of another small data set (Pima diabetes data, see [Chang et al., 2022]), since the
MC-based approximation is computationally very costly for high n. The following tables show the final (after all data were
pseudo-labeled) mean accuracy on unseen test data, averaged over 100 replications.

The experiments demonstrate that our analytical approximations can compete with MC-sampling based approximations of
the pseudo posterior predictive. The results can be smoothly added to the existing results, as they simply entail an additional
baseline. All in all, we emphasize these additional results do not change the takeaway from the empirical evaluation of our
method in the main paper.

The fact that our Laplace-based approximation outperforms MC-bases ones is slightly reminiscent of recent interesting
trends in Bayesian uncertainty quantification in deep learning, where Laplace-based analytical approximations of the
Hessian matrix were shown to outperform sampling-based (MC), see [Benzing, 2022, Daxberger et al., 2021, Izmailov et al.,
2021, Wenzel et al., 2020].

Cars Data
PLS Method Mean Accuracy (Final)
MC-based approximation of PPP (Li et al.) 0.658
uBPLS approximation of PPP (our paper) 0.760
Likelihood (max-max) 0.719
Predictive Variance 0.691
Probability Score 0.733
Supervised Learning 0.727

Table 2: Comparison of BPLS with uBPLS approximation of PPP against MC-based approximation and other baselines on
cars data.

Pima Data
PLS Method Mean Accuracy (Final)
MC-based approximation of PPP (Li et al.) 0.603
uBPLS approximation of PPP (our paper) 0.670
Likelihood (max-max) 0.667
Predictive Variance 0.663
Probability Score 0.677
Supervised Learning 0.675

Table 3: Comparison of BPLS with uBPLS approximation of PPP against MC-based approximation and other baselines on
Pima data.



Cervical Cancer Data
PLS Method Mean Accuracy (Final)
MC-based approximation of PPP (Li et al.) 0.556
uBPLS approximation of PPP (our paper) 0.701
Likelihood (max-max) 0.611
Predictive Variance 0.644
Probability Score 0.688
Supervised Learning 0.611

Table 4: Comparison of BPLS with uBPLS approximation of PPP against MC-based approximation and other baselines on
cervical cancer data.

EEG Data
PLS Method Mean Accuracy (Final)
MC-based approximation of PPP (Li et al.) 0.549
uBPLS approximation of PPP (our paper) 0.551
Likelihood (max-max) 0.544
Predictive Variance 0.541
Probability Score 0.547
Supervised Learning 0.537

Table 5: Comparison of BPLS with uBPLS approximation of PPP against MC-based approximation and other baselines on
cervical cancer data.

Sonar Data
PLS Method Mean Accuracy (Final)
MC-based approximation of PPP (Li et al.) 0.521
uBPLS approximation of PPP (our paper) 0.550
Likelihood (max-max) 0.534
Predictive Variance 0.535
Probability Score 0.521
Supervised Learning 0.52

Table 6: Comparison of BPLS with uBPLS approximation of PPP against MC-based approximation and other baselines on
EEG data.

H APPLICATION ON BAYESIAN NEURAL NETWORKS

We have implemented BPLS on Bayesian neural nets (BNNs) and run experiments on simulated data to benchmark BPLS
against other PLS methods (exactly the same setup as in the paper, just with BNNs used to predict pseudo-labels instead of
GLMs and GAMs).

We opt for BNNs, because they come with out-of-the-box uncertainty quantification. As model architecture, we use a
simple feed-forward neural network with one layer consisting of 128 hidden neurons with a tanh activation function and one
output neuron with a sigmoid activation for the binary classification case. For computing iBPLS (eq. 7 in main paper) and
uBPLS (eq. 8 in main paper), we simply access the log-likelihood of the trained network. As we use variational inference by
posterior mean-field approximation in the BNN with a multivariate normal prior with covariance of 0 for all weights, the
evaluation of the log-determinant of the Fisher-info matrix (being a diagonal matrix here) simplifies to summing up the
weights’ variances.

We present preliminary results in the following tables. They show the mean accuracies (on test data) for different PLS
methods on simulated data with uninformative and informative prior and BNNs trained with 50 and 150 epochs each. For
the informative setup, we simulate data from a BNN, while for the uninformative setup, we simulate from a simple binomial
distribution, which makes the classification task easier (see the generally higher accuracies in the uninformative setup). The
general simulation setup follows the one described in supplement C.

The results confirm those for GLMs and GAMs reported in the main paper: In scenarios of low initial generalization (tables



2-4) inducing a high risk of overfitting, our method clearly outperforms other PLS methods, see experiments on hypothesis
1 a) in the paper. This is particularly pronounced in settings with informative priors (tables 3 and 4), see hypothesis 3 in
the paper. In scenarios of high initial generalization (table 1) with low risk of overfitting, other methods have higher mean
accuracies than our method, in line with hypothesis 1 b) in the paper.

Uninformative Setup, 150 epochs
PLS Method Mean Accuracy
Likelihood (max-max) 0.889
PPP (bayes-optimal) 0.884
Predictive Variance 0.884
Probability Score 0.880
Supervised Learning 0.890

Table 7: Comparison of mean accuracies of different PLS methods on simulated data with uninformative priors.

Uninformative Setup, 50 epochs
PLS Method Mean Accuracy
Likelihood (max-max) 0.562
PPP (bayes-optimal) 0.677
Predictive Variance 0.657
Probability Score 0.557
Supervised Learning 0.662

Table 8: Comparison of mean accuracies of different PLS methods on simulated data with uninformative priors.

Informative Setup, 150 epochs
PLS Method Mean Accuracy
Likelihood (max-max) 0.671
PPP (bayes-optimal) 0.702
Predictive Variance 0.695
Probability Score 0.637
Supervised Learning 0.583

Table 9: Comparison of mean accuracies of different PLS methods on simulated data with uninformative priors.

Informative Setup, 50 epochs
PLS Method Mean Accuracy
Likelihood (max-max) 0.513
PPP (bayes-optimal) 0.587
Predictive Variance 0.520
Probability Score 0.564
Supervised Learning 0.578

Table 10: Comparison of mean accuracies of different PLS methods on simulated data with uninformative priors.



I EXPERIMENTS: STATISTICAL HYPOTHESIS TESTING

As mentioned in section 4 of the main paper, we perform several non-parametric hypothesis tests tailored to comparing
classification accuracies of different ML methods across multiple data sets, see especially [Demšar, 2006]. All hypotheses
formulated in the paper (1a), 1b), 2a), 2b), and 3)) were tested. For conducting the tests, we compare both the final and
the oracle-stopping (best among all iterations) accuracies of all PLS methods across different classification tasks on both
simulated and real-world data. We present the results in what follows.

Hypothesis 1 (a) PPP with uninformative prior outperforms traditional PLS on data prone to initial overfitting (i.e., with
high ratio of features to data q

n and poor initial generalization). (b) For low q
n and high initial generalization, BPLS is

outperformed by traditional PLS.

1 a) Final: Using the multiple comparison approaches from [Demšar, 2006], the Friedman-test [Friedman, 1937, Friedman,
1940] for overall differences in final accuracies indicates a significant (α = 0.05) difference between performances of all
PLS methods (likelihood, PPP with uninformative prior, predictive variance, probability score and supervised baseline) on
tasks prone to initial overfitting (with high ratio of features to data). A post-hoc Nemenyi-test [Nemenyi, 1963] for pairwise
comparisons indicates a statistically significant (α = 0.05) difference between PPP and the supervised baseline and no
statistically significant (α = 0.05) difference between all other PLS methods.

1 b) Final: On tasks with low q
n and high initial generalization, the Friedman-test suggests no significant difference among

all the PLS methods. A post-hoc test for pairwise comparisons can thus not be conducted.

1 a) Oracle-stopping: Again, the Friedman-test [Friedman, 1937, Friedman, 1940] for overall differences in oracle-stopping
accuracies indicates a significant (α = 0.05) difference between performances of the PLS methods on tasks prone to initial
overfitting (with high ratio of features to data). This time, however, the post-hoc Nemenyi-test [Nemenyi, 1963] for pairwise
comparisons indicates a statistically significant (α = 0.05) pairwise difference between PPP with uninformative prior and
all other methods. This confirms our heuristic reasoning in the interpretation section in section 4 in the main paper.

1 b) Oracle-stopping: On tasks with a low ratio of features to data, the Friedman-test indicated a significant difference
(α = 0.05) between all PLS methods. The post-hoc Nemenyi-test for pairwise comparisons, however, does not indicate
significant differences (α = 0.05) between any of the PLS methods.

Hypothesis 2 (a) Among all PLS methods, the pseudo-label likelihood (max-max-action) reinforces the initial model fit the
most and (b) hardly improves generalization.

For this hypothesis, we do not compare (final and oracle-stopping) accuracies but the differences of them to the initial
model’s test accuracy. Further note that for 2 b) we do not need the multiple comparison approaches from [Demšar, 2006],
because we only compare the likelihood (max-max) PLS method to the supervised baseline. A standard Wilcoxon rank sum
test will do.

2 a) Final: The Friedman-test [Friedman, 1937, Friedman, 1940] for overall differences indicates a significant (α = 0.05)
difference between all PLS methods’ improvements compared to the supervised baseline. The post-hoc Nemenyi-test
[Nemenyi, 1963] indicates a statistically significant (α = 0.05) difference between the pseudo-label likelihood’s (max-max-
action’s) improvements and the improvements of our PPP method.

2 b) Final: The Wilcoxon rank sum test [Wilcoxon, 1992] does not reject the (one-sided) null hypothesis that likelihood
performs better than the initial model. (Note that, in order to be able to control the error probability when searching for
evidence for our hypothesis 2 b), we test the complementary hypothesis as null.) As mentioned in section 4 (paragraph on
interpretation) of the paper, there seems to be not enough evidence that the likelihood method cannot improve generalization.
Oracle-Stopping: The test results for Oracle-Stopping accuracies exactly match those for final accuracies regarding
Hypotheses 2 a) and 2 b).

Hypothesis 3 PPP with informative prior outperforms traditional PLS methods universally.

3) Final: The Friedman-test shows a significant (α = 0.05) difference between performances of PLS methods, and, indeed,
the post-hoc Nemenyi-test [Nemenyi, 1963] for pairwise comparisons indicates a statistically significant (α = 0.05) pairwise
difference between our PPP with informative prior and all other methods. Oracle-Stopping: The test decisions for final and
oracle-stopping accuracy metrics do not differ.



J EXPERIMENTS ON PLS UNDER DISTRIBUTIONAL SHIFT

In order to check whether the robustness towards confirmation is also helpful in the presence of distributional shifts, see
section 6 of the main paper, we have conducted some preliminary experiments: We simulated labeled and unlabeled data
from two different binomial distributions with the test data from the same distribution as the unlabeled data (share of
unlabeled: 0.8 and 0.9, train/test-ratio: 1

9 , q = 7, GAMs with non-parametric splines). We closely followed the experimental
setup described in supplement C.1.3.

The preliminary results below support the intuition that our Bayesian approach robustifies PLS also towards distributional
shift. The tables below depict mean accuracy after varying number of self-training iterations (colums of tables) of PPP with
informative priors and concurring PLS methods with non-parametric GAMs on simulated binomially distributed (with mean
shift from labeled to unlabeled) data of varying sizes, just like in the experiments presented in figure 3 of the main paper.

At first sight, the results closely resemble the results from the experimental setup without distributional shift (see figure 3 in
the paper and figure 6 in supplement D.3 as well as supplement C, in particular C.1.3.). However, there are differences:
PPP only needs very few iterations (< 20) to outperform other PLS methods here. In the experiments without distributional
shift, PPP also achieves accuracy gains over other methods after 10-40 iterations in some setups, see results for share of
unlabeled = 0.9 in figure 6 in supplement D.3. The extreme speed of this process for data with a distributional shift, however,
appears a bit odd. We do not have an explanation for this phenomenon yet. All in all, however, it appears as if indeed our
Bayesian approach to the selection problem of pseudo-labeled data robustifies PLS not only towards initial overfitting and
confirmation bias but also towards distributional shift. This of course requires more careful empirical evaluation. We leave
this to future work.



n = 500, share of unlabeled: 0.8
Method 20 40 60 80 100 120 140 160 180 200
——————– —— —— —— —— —— —— —— —— —— ——
Likelihood (max-max) 0.9020 0.9005 0.8965 0.8950 0.8940 0.8915 0.8915 0.8910 0.8840 0.8830
PPP (bayes-optimal) 0.9515 0.9540 0.9530 0.9520 0.9530 0.9560 0.9520 0.9530 0.9550 0.9555
Predictive Variance 0.9065 0.8975 0.8975 0.8990 0.8990 0.8985 0.8980 0.8985 0.8985 0.8990
Probability Score 0.9005 0.8980 0.8950 0.8940 0.8950 0.8940 0.8940 0.8940 0.8885 0.8790
Supervised Learning 0.9035 0.9035 0.9035 0.9035 0.9035 0.9035 0.9035 0.9035 0.9035 0.9035

Table 11: Mean Accuracies after iterations {20, 40, 60, . . . } from experiments on simulated binomially distributed data with distribution shift. n = 500.

n = 500, share of unlabeled: 0.9
Method 20 40 60 80 100 120 140 160 180 200
——————– —— —— —— —— —— —— —— —— —— ——
Likelihood (max-max) 0.8600 0.8600 0.8655 0.8590 0.8530 0.8520 0.8505 0.8500 0.8515 0.8525
PPP (bayes-optimal) 0.9100 0.9160 0.9150 0.9180 0.9110 0.9145 0.9120 0.9105 0.9105 0.9110
Predictive Variance 0.8655 0.8540 0.8550 0.8580 0.8565 0.8555 0.8550 0.8555 0.8555 0.8565
Probability Score 0.8605 0.8600 0.8585 0.8580 0.8530 0.8540 0.8535 0.8505 0.8540 0.8625
Supervised Learning 0.8585 0.8585 0.8585 0.8585 0.8585 0.8585 0.8585 0.8585 0.8585 0.8585

Table 12: Mean Accuracies after iterations {20, 40, 60, . . . } from experiments on simulated binomially distributed data with distribution shift. n = 500.

n = 1000, share of unlabeled: 0.8
Method 20 40 60 80 100 120 140 160 180 200 220 240 260 280
——————– —— —— —— —— —— —— —— —— —— —— —— —— —— ——
Likelihood (max-max) 0.9128 0.9128 0.9128 0.9124 0.9120 0.9112 0.9112 0.9104 0.9104 0.9096 0.9084 0.9084 0.9068 0.9072
PPP (bayes-optimal) 0.9752 0.9752 0.9752 0.9724 0.9744 0.9756 0.9756 0.9760 0.9760 0.9760 0.9764 0.9764 0.9760 0.9760
Predictive Variance 0.9208 0.9188 0.9228 0.9204 0.9208 0.9200 0.9212 0.9200 0.9208 0.9208 0.9212 0.9212 0.9212 0.9212
Probability Score 0.9128 0.9128 0.9128 0.9120 0.9120 0.9112 0.9112 0.9104 0.9104 0.9096 0.9084 0.9080 0.9068 0.9064
Supervised Learning 0.9128 0.9128 0.9128 0.9128 0.9128 0.9128 0.9128 0.9128 0.9128 0.9128 0.9128 0.9128 0.9128 0.9128

Table 13: Mean Accuracies after iterations {20, 40, 60, . . . } from experiments on simulated binomially distributed data with distribution shift. n = 1000.



n = 2000, share of unlabeled: 0.8
Method 20 40 60 80 100 120 140 160 180 200 220
——————– ——— ——— ——— ——— ——— ——— ——— ——— ——— ——— ———
Likelihood (max-max) 0.9169444 0.9158333 0.9147222 0.9122222 0.9080556 0.9063889 0.9108333 0.9108333 0.9169444 0.9158333 0.9147222
PPP (bayes-optimal) 0.9655556 0.9688889 0.9691667 0.9691667 0.9688889 0.9688889 0.9675000 0.9686111 0.9655556 0.9688889 0.9691667
Predictive Variance 0.9363889 0.9200000 0.9155556 0.9136111 0.9191667 0.9188889 0.9105556 0.9111111 0.9363889 0.9200000 0.9155556
Probability Score 0.9163889 0.9152778 0.9152778 0.9125000 0.9080556 0.9036111 0.9072222 0.9063889 0.9163889 0.9152778 0.9152778
Supervised Learning 0.9111111 0.9111111 0.9111111 0.9111111 0.9111111 0.9111111 0.9111111 0.9111111 0.9111111 0.9111111 0.9111111

Table 14: Mean Accuracies after iterations {20, 40, 60, . . . } from experiments on simulated binomially distributed data with distribution shift. n = 2000.

n = 4000, share of unlabeled: 0.8
Method 20 40 60 80 100 120 140 160 180 200 220
——————– ——— ——— ——— ——— ——— ——— ——— ——— ——— ——— ———
Likelihood (max-max) 0.9551852 0.9550926 0.9550926 0.9546296 0.9540741 0.9556481 0.9545370 0.9540741 0.9531481 0.9523148 0.9518519
PPP (bayes-optimal) 0.9665741 0.9676852 0.9673148 0.9679630 0.9665741 0.9657407 0.9656481 0.9654630 0.9661111 0.9673148 0.9673148
Predictive Variance 0.9623148 0.9680556 0.9711111 0.9740741 0.9749074 0.9751852 0.9722222 0.9725926 0.9725000 0.9722222 0.9723148
Probability Score 0.9550926 0.9550000 0.9550000 0.9546296 0.9541667 0.9535185 0.9524074 0.9518519 0.9508333 0.9501852 0.9497222
Supervised Learning 0.9552778 0.9552778 0.9552778 0.9552778 0.9552778 0.9552778 0.9552778 0.9552778 0.9552778 0.9552778 0.9552778

Table 15: Mean Accuracies after iterations {20, 40, 60, . . . } from experiments on simulated binomially distributed data with distribution shift. n = 4000.

n = 8000, share of unlabeled: 0.8
Method 20 40 60 80 100 120 140 160 180 200 220
——————– ——— ——— ——— ——— ——— ——— ——— ——— ——— ——— ———
Likelihood (max-max) 0.9132237 0.9125000 0.9123026 0.9116447 0.9112500 0.9107895 0.9097368 0.9111184 0.9136184 0.9138816 0.9146053
PPP (bayes-optimal) 0.9673684 0.9676974 0.9586842 0.9586184 0.9536184 0.9536184 0.9551974 0.9581579 0.9584211 0.9584868 0.9596711
Predictive Variance 0.9351316 0.9363816 0.9397368 0.9406579 0.9403289 0.9409868 0.9410526 0.9410526 0.9410526 0.9411842 0.9412500
Probability Score 0.9133553 0.9124342 0.9123684 0.9116447 0.9112500 0.9107237 0.9098684 0.9112500 0.9134868 0.9138816 0.9150000
Supervised Learning 0.9132895 0.9132895 0.9132895 0.9132895 0.9132895 0.9132895 0.9132895 0.9132895 0.9132895 0.9132895 0.9132895

Table 16: Mean Accuracies after iterations {20, 40, 60, . . . } from experiments on simulated binomially distributed data with distribution shift. n = 8000.



K REPRODUCIBILITY AND OPEN SCIENCE

The implementation of the proposed methods as well as reproducible scripts for the experiments are provided in the following
repository named Bayesian-pls (“Bayesian, please!”): https://github.com/rodemann/Bayesian-pls. Please
follow the instructions on the Readme-file to reproduce the experiments.

L DATA SETS

The following tables provide details on data sources as well as features and target variables of the eight real-world datasets
from the UCI machine learning repository [Dua and Graff, 2017].

Table 17: Breast Cancer Data, Details: [Street et al., 1993]

Name Class Values
target factor ’0’ ’1’
radius_mean numeric Num: 6.981 to 28.11
texture_mean numeric Num: 9.71 to 33.81
perimeter_mean numeric Num: 43.79 to 188.5
area_mean numeric Num: 143.5 to 2501
smoothness_mean numeric Num: 0.053 to 0.145
compactness_mean numeric Num: 0.019 to 0.311
concavity_mean numeric Num: 0 to 0.427
concave_points_mean numeric Num: 0 to 0.201
symmetry_mean numeric Num: 0.117 to 0.304
fractal_dimension_mean numeric Num: 0.05 to 0.097
radius_se numeric Num: 0.112 to 2.873
texture_se numeric Num: 0.36 to 4.885
perimeter_se numeric Num: 0.757 to 21.98
area_se numeric Num: 6.802 to 542.2
smoothness_se numeric Num: 0.002 to 0.031
compactness_se numeric Num: 0.002 to 0.106
concavity_se numeric Num: 0 to 0.396
concave_points_se numeric Num: 0 to 0.053
symmetry_se numeric Num: 0.008 to 0.061
fractal_dimension_se numeric Num: 0.001 to 0.03
radius_worst numeric Num: 7.93 to 36.04
texture_worst numeric Num: 12.02 to 49.54
perimeter_worst numeric Num: 50.41 to 251.2
area_worst numeric Num: 185.2 to 4254
smoothness_worst numeric Num: 0.071 to 0.223
compactness_worst numeric Num: 0.027 to 1.058
concavity_worst numeric Num: 0 to 1.252
concave_points_worst numeric Num: 0 to 0.287
symmetry_worst numeric Num: 0.156 to 0.664
fractal_dimension_worst numeric Num: 0.055 to 0.208

https://github.com/rodemann/Bayesian-pls


Table 18: Sonar Data Set, Details: [Gorman and Sejnowski, 1988]

Name Class Values
V1 numeric Num: 0.002 to 0.137
V2 numeric Num: 0.001 to 0.234
V3 numeric Num: 0.002 to 0.306
V4 numeric Num: 0.006 to 0.426
V5 numeric Num: 0.007 to 0.401
V6 numeric Num: 0.01 to 0.382
V7 numeric Num: 0.003 to 0.373
V8 numeric Num: 0.005 to 0.459
V9 numeric Num: 0.007 to 0.683
V10 numeric Num: 0.011 to 0.711
V11 numeric Num: 0.029 to 0.734
V12 numeric Num: 0.024 to 0.706
V13 numeric Num: 0.018 to 0.713
V14 numeric Num: 0.027 to 0.997
V15 numeric Num: 0.003 to 1
V16 numeric Num: 0.016 to 0.999
V17 numeric Num: 0.035 to 1
V18 numeric Num: 0.038 to 1
V19 numeric Num: 0.049 to 1
V20 numeric Num: 0.066 to 1
V21 numeric Num: 0.051 to 1
V22 numeric Num: 0.022 to 1
V23 numeric Num: 0.056 to 1
V24 numeric Num: 0.024 to 1
V25 numeric Num: 0.024 to 1
V26 numeric Num: 0.092 to 1
V27 numeric Num: 0.048 to 1
V28 numeric Num: 0.028 to 1
V29 numeric Num: 0.014 to 1
V30 numeric Num: 0.061 to 1
V31 numeric Num: 0.048 to 0.966
V32 numeric Num: 0.04 to 0.931
V33 numeric Num: 0.048 to 1
V34 numeric Num: 0.021 to 0.965
V35 numeric Num: 0.022 to 1
V36 numeric Num: 0.008 to 1
V37 numeric Num: 0.035 to 0.95
V38 numeric Num: 0.038 to 1
V39 numeric Num: 0.037 to 0.986
V40 numeric Num: 0.012 to 0.93
V41 numeric Num: 0.036 to 0.899
V42 numeric Num: 0.006 to 0.825
V43 numeric Num: 0 to 0.773
V44 numeric Num: 0 to 0.776
V45 numeric Num: 0 to 0.703
V46 numeric Num: 0 to 0.729
V47 numeric Num: 0 to 0.552
V48 numeric Num: 0 to 0.334
V49 numeric Num: 0 to 0.198
V50 numeric Num: 0 to 0.082
V51 numeric Num: 0 to 0.1
V52 numeric Num: 0.001 to 0.071
V53 numeric Num: 0 to 0.039
V54 numeric Num: 0.001 to 0.035
V55 numeric Num: 0.001 to 0.045
V56 numeric Num: 0 to 0.039
V57 numeric Num: 0 to 0.035
V58 numeric Num: 0 to 0.044
V59 numeric Num: 0 to 0.036
V60 numeric Num: 0.001 to 0.044
V61 matrix Num: 1 to 2

Table 19: Mushrooms Data Set, Details: [Schlimmer, 1987]

Name Class Values
cap.diameter numeric Num: 0.71 to 54.6
stem.height numeric Num: 0 to 28.33
stem.width numeric Num: 0 to 52.22
target factor ’0’ ’1’



Table 20: Banknote Data Set, Details: archive.ics.uci.edu/ml/datasets/banknote+authentication

Name Class Values
target factor ’0’ ’1’
Length numeric Num: 213.8 to 216.3
Left numeric Num: 129 to 131
Right numeric Num: 129 to 131.1
Bottom numeric Num: 7.2 to 12.7
Top numeric Num: 7.7 to 12.3
Diagonal numeric Num: 137.8 to 142.4

Table 21: Abalone Data Set, Details: [Waugh, 1995]

Name Class Values
target factor ’0’ ’1’
rings numeric Num: 4 to 29
length numeric Num: 0.165 to 0.775
weight numeric Num: 0.024 to 2.493
height numeric Num: 0.04 to 0.24
diameter numeric Num: 0.125 to 0.605
shell_weight numeric Num: 0.008 to 0.885

Table 22: Cars Data Set, Details: [Ezekiel, 1930]

Name Class Values
wt numeric Num: 1.513 to 5.424
qsec numeric Num: 14.5 to 22.9
vs factor ’0’ ’1’

Table 23: EEG Data Set, Details: [Zhang et al., 1995]

Name Class Values
V1 numeric Num: -2.035 to 1
V2 numeric Num: -1.005 to 1
V3 numeric Num: -0.912 to 1
V4 numeric Num: -1.107 to 1
V5 numeric Num: -1.078 to 1
V6 numeric Num: -1.073 to 1
V7 numeric Num: -1.651 to 1
V8 numeric Num: -1.024 to 1
V9 numeric Num: -1.864 to 1
V10 numeric Num: -1.604 to 1
V11 numeric Num: -0.883 to 1
V12 numeric Num: -1.087 to 1
target factor ’0’ ’1’

https://archive.ics.uci.edu/ml/datasets/banknote+authentication


Table 24: Ionosphere Data, Details: [Sigillito et al., 1989b]

Name Class Values
V1 integer Num: 0 to 1
V3 numeric Num: -1 to 1
V4 numeric Num: -1 to 1
V5 numeric Num: -1 to 1
V6 numeric Num: -1 to 1
V7 numeric Num: -1 to 1
V8 numeric Num: -1 to 1
V9 numeric Num: -1 to 1
V10 numeric Num: -1 to 1
V11 numeric Num: -1 to 1
V12 numeric Num: -1 to 1
V13 numeric Num: -1 to 1
V14 numeric Num: -1 to 1
V15 numeric Num: -1 to 1
V16 numeric Num: -1 to 1
V17 numeric Num: -1 to 1
V18 numeric Num: -1 to 1
V19 numeric Num: -1 to 1
V20 numeric Num: -1 to 1
V21 numeric Num: -1 to 1
V22 numeric Num: -1 to 1
V23 numeric Num: -1 to 1
V24 numeric Num: -1 to 1
V25 numeric Num: -1 to 1
V26 numeric Num: -1 to 1
V27 numeric Num: -1 to 1
V28 numeric Num: -1 to 1
V29 numeric Num: -1 to 1
V30 numeric Num: -1 to 1
V31 numeric Num: -1 to 1
V32 numeric Num: -1 to 1
V33 numeric Num: -1 to 1
V34 numeric Num: -1 to 1
target factor ’0’ ’1’
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