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A ALGORITHM AND EXPERIMENT DETAILS

In the following, we provide algorithmic formalizations and implementation details of the HAMBO framework and its
practical variants which were discussed in the main paper.

A.1 GENERIC HAMBO ALGORITHM FROM SECTION 3.1

First, we formalize the general HAMBO framework from Section 3.1:

Algorithm 1 HAMBO Framework

Require: Offline dataset Db, evaluation policy πe, reward function r(·, ·), Horizon T , initial state distribution p0(s0)
(µn,σn, βn)← TrainModel(Db) . Train statistical model with offline data
p̃η(st+1|st,at)← pε

(
st+1 − µn(st,at)− βnη(st,at)σn(st,at)

)
. Set up adversarial transition model.

J̃(π)← minη Es0∼p0 [Epη,π[
∑T
t=0 r(st,at)]] . Optimize adversary to get pessimistic value estimate.

return J̃(π)

We estimate Jp̃η (πe) = Es0∼p0 [Epη,π[
∑T
t=0 r(st,at)]] via Monte Carlo estimation, i.e., we roll out L trajectories and

estimate the expectation as the average of the trajectory return:

Ĵp̃η (πe) =
1

L

L∑
l=1

T∑
t=0

r(sl,t,al,t) where sl,0 ∼ p0, al,t ∼ π(a|sl,t), sl,t+1 ∼ p̃η(s′|sl,t,al,t) (1)

The optimization of the advesary corresponds to a standard optimal control problem for which we use traditional methods
such as trajectory optimization or model-free RL algorithms such as SAC.

A.2 BNN BASED HAMBO VARIANTS

A.2.1 The BNN model

We use fully connected neural networks with 4 hidden layers each of size 256 with ReLU activation functions. Before
training, the offline data inputs and targets are standardized. The NN takes the concatenated state and action as input (i.e.,
ds + da dimensional) and outputs a vector of size 2ds which is split into two vectors of size ds. The first one corresponds to
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the mean prediction hθ(s,a) and the second one is the raw the aleatoric standard deviation which is fed through a softplus
function to ensure positivity of ν2

θ(s,a)

As BNN prior we use a standard Normal distribution over the NN parameters θ, i.e., p(θ) = N (θ;0, I). However, as
commonly done for BNNs to alleviate the problems of prior misspecification, we add a temperature parameter τ to the prior,
so that we have p(θ|Db) ∝ p(Db|θ)p(θ)τ . This hyper-parameter is chosen to as τ = 0.0001 for Pendulum and Hopper and
τ = 0.01 for the HalfCheetah control environment.

We use Stein Variational Gradient Descent (SVGD) [Liu and Wang, 2016] for approximate posterior inference. In particular,
we approximate the posterior p(θ|Db) with K NN particles {θ1, ...,θK}. After randomly initializing the parameters of the
K NNs, the parameters are iteratively updated with the SVGD update rule:

θk ← θk +
1

K

K∑
k′=1

[
k(θk′ ,θk)∇θk′ log p(θk′ |Db) +∇θk′k(θ′k,θk)

]
∀k = 1, ...,K . (2)

Here k(·, ·) is a kernel function on the space of NN parameters vectors. In our experiments, we use an RBF kernel
k(θ,θ′) = exp

(
−‖θ − θ′‖22/(2`)

)
with a length scale of ` = 10 and K = 5 NN particles. Note that the kernel here is

different from the one in Section 3.2. Algorithm 2 summarizes how to obtain the SVGD BNN posterior approximation.

Algorithm 2 SVGD

Require: Training data D, number of particles K
Initialize NN parameter vectors θ1, ...,θK . Initialize SVGD particles.
while not converged do

log p(θk|D)← log p(D|θk) + τ log p(θk) ∀k = 1, ...,K

θk ← θk + 1
K

∑K
k′=1

[
k(θk′ ,θk)∇θk′ log p(θk′ |D) +∇θk′k(θ′k,θk)

]
∀k = 1, ...,K

end while
return {hθ1 ,ν2

θ1
, · · · ,hθK ,ν2

θK
} . Return the K NN predictive mean and aleatoric variance functions

A.3 RECALIBRATION OF THE BNN UNCERTAINTY ESTIMATES

To obtain well-calibrated confidence sets for HAMBO, we recalibrate the BNNs predictive distribution. In particular,
we use temperature scaling based on the regression calibration error Kuleshov et al. [2018]. We perform re-calibration
based on the predictive distribution N (µΘ(s,a),σ2

Θ(s,a)). The calibration error compares the predictive quantiles
of this Normal distribution with the corresponding empirical frequencies of data points, that fall below the predicted
quantiles. Formally, we define Φ−1

τ (α; s,a) : [0, 1]ds → S as the quantile function (inverse cumulative density function) of
N (µΘ(s,a), τ 2σ2

Θ(s,a)) where τ ∈ Rds is the temperature scaling vector. Given a calibration dataset Dc = {(s,a, s′)},
the calibration error [Kuleshov et al., 2018] for multivariate distributions follows as

CalErr(τ ) :=
1

ds

ds∑
j=1

1

|A|
∑
α∈A

(EmpFreq(α, τ )j − α)
2
, (3)

where A = {0.1, · · · , 0.9, 0.99} is a set of confidence levels and

EmpFreq(α; τ ) :=
1

|Dc|
∑

(s,a,s′)∈Dc

1{s′ ≤ Φ−1
τ (α; s,a)} (4)

is a vector-valued function of the (per dimension) empirical frequencies of the prediction targets that fall below the α
quantile. Finally, we recalibrate the BNN predictions, by choosing the variance scaling vector τ such that the calibration
error is minimized, i.e., we choose

τ ∗ = arg min
τ

CalErr(τ ) . (5)

Algorithm 3 summarizes this BNN re-calibration procedure:



Algorithm 3 CALIBRATEBNN

Require: calibration dataset Dc, predictive mean µ(·, ·), predictive variance σ2(·, ·)
A← {0.1, · · · , 0.9, 0.99}. . Fix a set of confidence levels.
Φ−1(·; s,a, τ ) : [0, 1] 7→ Rds as the inverse CDF of the Gaussian distribution N (µ(s,a), τ 2σ2(xi)).
Define EmpFreq(α; τ )← 1

|Dc|
∑

(s,a,s′)∈Dc 1{s
′ ≤ Φ−1

τ (α; s,a, τ )}
Define CalErr(τ )← 1

ds

∑ds
j=1

1
|A|
∑
α∈A (EmpFreq(α, τ )j − α)

2

return arg minτ CalErr(τ ) . Choose τ that minimizes the calibration error

A.4 THE NN-BASED HAMBO VARIANTS

Here, we provide algorithmic descriptions of the NN-Based HAMBO variants from Section 4 as well as details about their
implementation and how the corresponding experiments were conducted.

A.4.1 HAMBO with a Continuous Adversary (HAMBO-CA)

HAMBO-CA directly reflects the hallucinated adversarial transition model, introduced in Section 3. The adversary η(s,a) ∈
[−1, 1]ds chooses the mean of the Gaussian transition probability from the epistemic confidence set, i.e.,

p̃η(s′|s,a) := N
(
s′;µΘ(s,a) + τ2η(s,a)σ2

Θ,e,σ
2
Θ,a(s,a)

)
(6)

For obtaining the corresponding conservative value estimate J̃(πe) = minη Jp̃η (πe), we need to find the adversary η?

that minimizes the expected return. For this, we parameterize the adversary η as a neural network policy with two hidden
layers of size 256 with ReLU activations and a tanh squashed Gaussian conditional distribution over the adversary actions
in [−1, 1]ds . We use SAC [Haarnoja et al., 2018] to maximize the negative expected return of the adversary policy. As
usual, to stabilize the SAC training and avoid Q-value overestimation, we use double critics and trailing target critics. The
SAC training is conducted in rounds consisting of rollouts of 1000 episodes under the hallucinated transition model where
actions are chosen by πe, followed by 1000 gradient steps on the SAC objectives. For the gradient steps, we use a batch
size of 1024 and the Adam optimizer with a learning rate of 10−3 for critic and policy and 5 ∗ 10−5 for the SAC entropy
parameter. After SAC has converged, we take the adversary policy η? and estimate the expected return Ĵp̃η? (πe) of πe
under the adversary transition model, induced by η? with L = 104 trajectories (see Eq. 1). The HAMBO-CA method is
summarized in Algorithm 4.

Algorithm 4 HAMBO-CA

Require: Offline dataset Db, evaluation policy πe, Number of BNN particles K
Select a subset of Db as calibration set Dc
{hθ1 ,ν2

θ1
, · · · ,hθK ,ν2

θK
} ← SVGD(Db \ Dc,K) . Train BNN via SVGD and get predictive NN functions

µΘ(s,a)← 1
K

∑K
k=1 hθk(s,a) . Calculate posterior mean.

σ2
Θ,e(s,a)← 1

K

∑K
k=1(hθk(s,a)− µΘ(s,a))2 . Calculate epistemic uncertainty.

σ2
Θ,a(s,a)← 1

K

∑K
k=1 ν

2
θk

(s,a) . Calculate aleatoric uncertainty.
τ ← CalibrateBNN(Dc,µΘ,σ

2
Θ,e + σ2

Θ,a) . Calibrate the model
Initialize adversary policy η
p̃η(s′|s,a)← N

(
s′;µΘ(s,a) + τ2η(s,a)σ2

Θ,e,σ
2
Θ,a(s,a)

)
. Setup hallucinated adversarial transition model

η? ← SoftActorCritic(−Jp̃η (πe),η) . Train adversary η via SAC to maximize the negative return
J̃(πe)← Ĵp̃η? (πe) . Estimate expected return of πe via sampling (see Eq. 1)
return J̃(πe)

A.4.2 HAMBO with a Discrete Adversary (HAMBO-DA1 and HAMBO-DAINF)

In the case of HAMBO-DA1 the adversary ϑ has discrete action {1, ...,K}, i.e. picking one of the K particles. We
parameterize the adversary policy as a neural network with two hidden layers of size 256 with ReLU activations and
softmax-categorical distribution over the K discrete actions. To train this adversary policy, we use clipped double DQN



[Fujimoto et al., 2018]. The double DQN training is conducted in rounds consisting of rollouts of 1000 episodes under
the hallucinated transition model where actions are chosen by πe, followed by 1000 gradient steps on the DQN objectives.
For the gradient steps, we use a batch size of 1024 and the Adam optimizer with a learning rate of 10−3. Once double
DQN has converged, we take the adversary policy ϑ? and estimate the expected return Ĵp̃ϑ? (πe) of πe under the adversary
transition model, induced by ϑ? with L = 104 trajectories (see Eq. 1). The overall HAMBO-DA1 method is summarized in
Algorithm 5.

Algorithm 5 HAMBO-DA1

Require: Offline dataset Db, evaluation policy πe, Number of BNN particles K
{hθ1 ,ν2

θ1
, · · · ,hθK ,ν2

θK
} ← SVGD(Db,K) . Train BNN via SVGD and get predictive NN functions

Initialize adversary policy ϑ
p̃ϑ(s′|s,a) :=

∑K
k=1 ϑ(k|s,a)N

(
s′;hθk(s,a),ν2

θk
(s,a)

)
. Setup hallucinated adversarial transition model

ϑ? ← DoubleDQN(−Jp̃η (πe), ϑ) . Train adversary ϑ via to maximize the negative return
J̃(πe)← Ĵp̃ϑ? (πe) . Estimate expected return of πe via sampling (see Eq. 1)
return J̃(πe)

In contrast to HAMBO-DA1, HAMBO-DAINF uses a weaker adversary that has to commit to one of the BNN par-
ticles for the entire trajectory. As a result, the corresponding pessimistic HAMBO estimate can simply be chosen as
the minimum of the expected evaluation policy return under each of the NN models in the particle approximation, i.e.
J(πe) = mink∈{1,...,K} Jpθk (πe). The HAMBO-DAINF method is summarized in Algorithm 5.

Algorithm 6 HAMBO-DAINF

Require: Offline dataset Db, evaluation policy πe, Number of BNN particles K
{hθ1 ,ν2

θ1
, · · · ,hθK ,ν2

θK
} ← SVGD(Db,K) . Train BNN via SVGD and get predictive NN functions

pθk(s′|s,a)← N
(
s′;hθk(s,a),ν2

θk
(s,a)

)
J̃(πe)← mink∈{1,...,K} Ĵpθk (πe) . Estimate return of πe for each model (see Eq. 1) and take minimum
return J̃(πe)

B PROOFS AND DERIVATIONS

Proof of Proposition 3.2. By Assumption 3.1 we have, with probability 1− δ, uniformly over S ×A, that

|µn(s,a)− f(s,a)| ≤ βn(δ)σn(s,a) . (7)

Hence, there exists an (adversary) mapping η† : S ×A 7→ [−1, 1]ds such that every ∀ s,a ∈ S ×A we have

f(s,a) = µn(s,a) + βn(δ)η†(s,a)σn(s,a) , (8)

and, thus the hallucinated transition model is equal to the true transition dynamics, i.e.,

p̃η†(st+1|st,at) = pε
(
st+1 − µn(s,a) + βη(s,a)†σn(s,a)

)
= pε

(
st+1 − f(s,a)

)
= p(st+1|st,at) . (9)

Finally, we can use this to show

J̃(πe) := min
η
Jp̃η (πe) ≤ Jp̃

η†
(πe) = Jp(πe) = J(πe) , (10)

which concludes the proof.

Proof of Example 3.4. If π(a|s) can be reparametrized as g(s, ζ), where ζ ∼ p(ζ) and g is Lg-Lipschitz, we have that the
two random variables are equal in distribution, i.e. a d

= g(s, ζ) . Therefore,

W1(π(a|s), π(a|s′)) = inf
γ∈Γ(π(a|s),π(a|s′))

Ea,a′∼γ [‖a− a′‖2] (11)

≤ Ea,a′∼γ̃ [‖a− a′‖2] = Eζ [‖g(s, ζ)− g(s′, ζ)‖2] (12)
≤ Lg‖s− s′‖2 (13)

where γ̃(a,a′) is the joint probability distribution of (g(s, ζ), g(s′, ζ)), and, thus a coupling. Hence, we have shown that
π(a, s) is Lg-Lipschitz w.r.t. the Wasserstein-1 distance.



B.1 PROOF OF THEOREM 3.5

The following lemmata will be used to prove the theorem.

Lemma B.1 (Reparameterizability of two random variables with covariates). Let X and Y be random variables with finite
expectation and corresponding probability distributions p and q. Then, we can reparameterize Y as Y d

= X + ω|X , where
ω|X is a covariate that is generally dependent on X and satisfies

EXEω|X [‖ω‖2] =W1(p, q) , (14)

whereW1(p, q) is the Wasserstein-1 distance between p and q.

Proof. Recall that the Wasserstein-1 distance is defined as infimum over couplings between p and q, i.e.,

W1 = inf
γ∈Γ(p,q)

EX′,Y ′∼γ [‖X ′ − Y ′‖2] (15)

If the expectation of p and q is finite, then the infimum over couplings in (15) is attained for some γ∗(x, y). Now we
construct the covariate ω|X which is defined by applying the change of variable gx(x, y) 7→ (x, y − x) = (x,ω) to γ∗, so
that we get γ̃∗(x,ω) = γ∗(x, x+ ω). The conditional distribution of the covariate ω|X is

γ̃∗(ω|x) =
γ∗(x, x+ ω)

γ∗(x)
=
γ∗(x, x+ ω)

p(x)

.

Now, given our construction of ω|X , we aim to show that Y d
= X +ω|X . Define the random variable Z := X +ω|X . Then

we have

p(z) =

∫
X
p(x, z − x)dx =

∫
X
p(x)γ̃∗(z − x︸ ︷︷ ︸

ω

|x)dx (16)

=

∫
X
γ∗(x, x+ (z − x))dx =

∫
X
γ∗(x, z)dx = q(z) (17)

which shows that the pdf of z is q, the probability density of Y . Since γ∗(x, y) is the coupling that minimizes the transport
cost, we can write

W1(p, q) = inf
γ∈Γ(p,q)

Ex′,y′∼γ [‖x′ − y′‖2] = Ex′,y′∼γ∗ [‖x′ − y′‖2] = Ex′∼p(x′)Eω∼γ̃∗(ω|x′) [‖ω‖2] (18)

which shows that EXEω|X [‖ω‖2] =W1(p, q), and, thus concludes the proof.

Corollary B.2. Let π(a|s) be Lπ-Lipschitz w.r.t. the Wasserstein-1 distance. For any arbitrary but fixed s, s′ ∈ S we denote
A and A′ as the random variables that follow the conditional distributions π(a|s) and π(a′|s′) respectively. Then, we can

construct a covariate ω|A such that A′ d= A+ ω|A and EAEω|A [‖ω‖2] ≤ Lπ‖s− s′‖2.

Proof. The corollary directly follows from Lemma B.1 and the definition of theLπ-Lipschitz continuity w.r.t. the Wasserstein-
1, i.e., that ∀ s, s′ ∈ S we have thatW1(π(a|s), π(a|s′)) ≤ Lπ‖s− s′‖2.

Lemma B.3 (Lipschitz continuity of Wasserstein-one distance implies Lipschitz continuity in expectation). Let f :
X1 ×X2 → Y be Lf Lipschitz continuous and x2 a random variable with distribution p(·|x1) that is Lp Lipschitz w.r.t. the
Wasserstein-1 distance. Then we have

E
x2∼p(·|x1)

[f(x1, x2)]− E
x′2∼p(·|x′1)

[f(x′1, x
′
2)] ≤ L̄f ||x1 − x′1||.

with L̄f = Lf (1 + Lp).



Proof.

E
x2∼p(·|x1)

[f(x1, x2)]− E
x′2∼p(·|x′1)

[f(x′1, x
′
2)] = E

x2∼p(·|x1)
[f(x1, x2)]− E

x2∼p(·|x1)

[
E

ω∼γ̃∗(ω|x2)
[f(x′1, x2 + ω)]

]
(Lemma B.1.)

= E
x2∼p(·|x1)

[
E

ω∼γ̃∗(ω|x2)
[f(x1, x2)− f(x′1, x2 + ω)]

]
≤ Lf E

x2∼p(·|x1)

[
E

ω∼γ̃∗(ω|x2)
[||x1 − x′1||2 + ||ω||2]

]
(Lipschitzness of f )

≤ Lf ||x1 − x′1||2 + LfLp||x1 − x′1||2 (Corollary B.2)
= Lf (1 + Lp)||x1 − x′1||2.

In the following, we bound the difference between the pessimistic and true return with the distance between the true and
pessimistic trajectory using the Lipschitz continuity of the reward function and the policy’s Wasserstein-one distance.

Lemma B.4 (Bound on difference between pessimistic and true return estimate). Under Assumption 3.3 we have

∣∣∣J(πe)− J̃(πe)
∣∣∣ ≤ L̄r E

ε0:T−1,a0:T

[
E
ω0:T

[
T−1∑
t=0

||st − s̃t||2

]]
.

where L̄r = Lr(1 + Lπ).

Proof. We have

∣∣∣J(πe)− J̃(πe)
∣∣∣ =

∣∣∣∣∣ E
s0:T ,a0:T

[
T−1∑
t=0

r(st,at)

]
− E
s̃0:T ,ã0:T

[
T−1∑
t=0

r(s̃t, ãt)

]∣∣∣∣∣
=

∣∣∣∣∣ E
ε0:T ,a0:T

[
T−1∑
t=0

r(st,at)

]
− E
ε0:T ,a0:T

[
E
ω0:T

[
T−1∑
t=0

r(s̃t,at + ωt)

]]∣∣∣∣∣ (Lemma B.1)

=

∣∣∣∣∣ E
ε0:T ,a0:T

[
E
ω0:T

[
T−1∑
t=0

r(st,at)− r(s̃t,at + ωt)

]]∣∣∣∣∣ .
From Lemma B.1, know that E ω =W1(π(·|st), π(·|s̃t)), where π(·|·) is continuous w.r.t. the WD-1 distance. Therefore,

∣∣∣J(πe)− J̃(πe)
∣∣∣ =≤ E

ε0:T ,a0:T

[
E
ω0:T

[
T−1∑
t=0

Lr(1 + Lπ)||st − s̃t||2

]]
(Lemma B.3)

= L̄r E
ε0:T ,a0:T

[
E
ω0:T

[
T−1∑
t=0

||st − s̃t||2

]]
. (L̄r = Lr(1 + Lπ))

Next, we bound the distance between the true and pessimistic trajectory with the epistemic uncertainty around the true
trajectory.

Lemma B.5 (Bound on pessimistic and true trajectory). Under Assumption 3.1 and 3.3 with probability at least 1− δ for
all η : S → [−1, 1]ds we have for all t ∈ {0, . . . , T} that

E
ε0:T ,a0:T

[
E
ω0:T

[‖st+1 − s̃t+1‖2]

]
≤
(
1 +
√
ds
)
β
∑(t+1)−1
i=0

(
L̄f +

(
1 +
√
ds
)
βL̄σ

)(t+1)−1−i E
ε0:T ,a0:T

[
E
ω0:T

[‖σn(si,ai)‖2]

]
.



Proof. We prove by induction. For t = 1 we have

E
ε0:T ,a0:T

[
E
ω0:T

[‖s1 − s̃1‖2]

]
= E
ε0:T ,a0:T

[
E
ω0:T

[‖f(s0,a0) + ε0 − µn(s0,a0)− βσn(s0,a0)η(s0,a0)− ε0‖2]

]
(Lemma B.1)

≤ E
ε0:T ,a0:T

[
E
ω0:T

[‖f(s0,a0)− µn(s0,a0)‖2 + ‖βnσn(s0, a0)η(s0)‖2]

]
≤
(

1 +
√
ds

)
βn E
ε0:T ,a0:T

[
E
ω0:T

[‖σn(s0,a0)‖2]

]
(η ∈ [−1, 1]ds )

We get the induction hypothesis that for an arbitrary but fixed t ≥ 0 we have

E
ε0:T ,a0:T

[
E
ω0:T

[‖st − s̃t‖2]

]
≤
(
1 +
√
ds
)
βn
∑t−1
i=0

(
L̄f +

(
1 +
√
ds
)
βL̄σ

)t−1−i E
ε0:T ,a0:T

[
E
ω0:T

[‖σn(si,ai)‖2]

]

Now for the induction step we can first derive

E
ε0:T ,a0:T

[
E
ω0:T

[
‖st+1 − s̃t+1‖2

]]
= E
ε0:T ,a0:T

[
E
ω0:T

[
‖f(st,at) + εt − µn(s̃t, ãt)− βnσn(s̃t, ãt)η(s̃t, ãt)− εt‖2

]]
= E
ε0:T ,a0:T

[
E
ω0:T

[
‖f(st,at)− µn(s̃t,at + ωt)− βnσn(s̃t,at + ωt)η(s̃t,at + ωt)‖2

]]
(Lemma B.1)

≤ E
ε0:T ,a0:T

[
E
ω0:T

[
‖f(st,at)− f(s̃t,at + ωt) + f(s̃t,at + ωt)− µn(s̃t,at + ωt)‖2

]]
+ E
ε0:T ,a0:T

[
E
ω0:T

[
‖βnσn(s̃t,at + ωt)η(s̃t,at + ωt))‖2

]]
≤ E
ε0:T ,a0:T

[
E
ω0:T

[
‖f(st,at)− f(s̃t,at + ωt)‖2 + ‖f(s̃t,at + ωt)− µn(s̃t,at + ωt)‖2

]]
+ E
ε0:T ,a0:T

[
E
ω0:T

[
‖βnσn(s̃t,at + ωt)η(s̃t,at + ωt)‖2

]]
≤ E
ε0:T ,a0:T

[
E
ω0:T

[
L̄f‖st − s̃t‖2 +

(
1 +
√
ds
)
βn‖σn(s̃t,at + ωt)‖2

]]
(Lemma B.3 and η ∈ [−1, 1]ds )

By applying the triangle inequality and adding and subtracting σn to the second term,

E
ε0:T ,a0:T

[
E
ω0:T

[
‖st+1 − s̃t+1‖2

]]
≤ E
ε0:T ,a0:T

[
E
ω0:T

[
L̄f‖st − s̃t‖2 +

(
1 +
√
ds
)
βn‖σn(s̃t,at + ωt)‖2

]]
= E
ε0:T ,a0:T

[
E
ω0:T

[
L̄f‖st − s̃t‖2

]]
+ E
ε0:T ,a0:T

[
E
ω0:T

[(
1 +
√
ds
)
βn‖σn(s̃t,at + ωt)− σn(st,at) + σn(st,at)‖2

]]
≤ E
ε0:T ,a0:T

[
E
ω0:T

[
L̄f‖st − s̃t‖2 +

(
1 +
√
ds
)
βn
(
‖σn(s̃t,at + ωt)− σn(st,at)‖2

)]]
+
(

1 +
√
ds
)
βn E
ε0:T ,a0:T

[
E
ω0:T

[(
‖σn(st,at)‖2

)]]
≤ E
ε0:T ,a0:T

[
E
ω0:T

[
L̄f‖st − s̃t‖2 +

(
1 +
√
ds
)
βn
(
L̄σ‖st − s̃t‖2 + ‖σn(st,at)‖2

)]]
(Lemma B.1)

= E
ε0:T ,a0:T

[
E
ω0:T

[(
L̄f +

(
1 +
√
ds
)
βnL̄σ

)
‖st − s̃t‖2 +

(
1 +
√
ds
)
βn‖σn(st,at)‖2

]]



Next, we apply the induction hypothesis

E
ε0:T ,a0:T

[
E
ω0:T

[
‖st+1 − s̃t+1‖2

]]
≤ E
ε0:T ,a0:T

[
E
ω0:T

[(
L̄f +

(
1 +
√
ds
)
βnL̄σ

)
‖st − s̃t‖2 +

(
1 +
√
ds
)
βn‖σn(st,at)‖2

]]
≤
[(
L̄f +

(
1 +
√
ds
)
βnL̄σ

)(
1 +
√
ds
)
βn
]

×

(
t−1∑
i=0

(
L̄f +

(
1 +
√
ds
)
βnL̄σ

)t−1−i
E

ε0:T ,a0:T

[
E
ω0:T

[
‖σn(si,ai)‖2

]]

+ E
ε0:T ,a0:T

[
E
ω0:T

[
‖σn(st,at)‖2

]])

=
(

1 +
√
ds
)
βn

(t+1)−1∑
i=0

(
L̄f +

(
1 +
√
ds
)
βnL̄σ

)(t+1)−1−i
E

ε0:T ,a0:T

[
E
ω0:T

[
‖σn(si,ai)‖2

]]

Using the above lemmas, we present the proof to the main theorem.

Proof of Theorem 3.5.∣∣∣J(πe)− J̃(πe)
∣∣∣ ≤ L̄r E

ε0:T ,a0:T

[
E
ω0:T

[
T−1∑
t=0

||st − s̃t||2

]]
(Lemma B.4)

≤ L̄r
T−1∑
t=0

(
1 +
√
ds
)
βn

(t+1)−1∑
i=0

(
L̄f +

(
1 +
√
ds
)
βnL̄σ

)(t+1)−1−i
E

ε0:T ,a0:T

[
E
ω0:T

[
‖σn(si,ai)‖2

]]
(Lemma B.5)

Since L̄f ≥ 1, then for all 0 ≤ i ≤ t and 0 ≤ t ≤ T − 1,(
L̄f +

(
1 +

√
ds

)
βnL̄σ

)(t+1)−1−i
≤
(
L̄f +

(
1 +

√
ds

)
βnL̄σ

)T−1

which allows us to write,∣∣∣J(πe)− J̃(πe)
∣∣∣ ≤ L̄r (1 +

√
ds
)
βn
(

1 + L̄f +
(

1 +
√
ds
)
βnL̄σ

)T−1

T E
ε0:T ,a0:T

[
E
ω0:T

[
T−1∑
t=0

‖σn(st,at)‖2

]]

= L̄r
(

1 +
√
ds
)
βn
(

1 + L̄f +
(

1 +
√
ds
)
βnL̄σ

)T−1

T E
s0:T ,a0:T

[
T−1∑
t=0

‖σn(st,at)‖2

]

=

[
L̄r
(

1 +
√
ds
)
βn
(

1 + L̄f +
(

1 +
√
ds
)
βnL̄σ

)T−1

T

]
=

[
L̄r
(

1 +
√
ds
)
βn
(

1 + L̄f +
(

1 +
√
ds
)
βnL̄σ

)T−1

T

]
×

(∫
S×A

T−1∑
t=0

p(st = s, at = a|πe,M)‖σn(s,a)‖2dsda

)

= L̄r
(

1 +
√
ds
)
βn
(

1 + L̄f +
(

1 +
√
ds
)
βnL̄σ

)T−1

T

∫
S×A

Tρπe(s,a)‖σn(s,a)‖2dsda (See Eq. 2)

= L̄r
(

1 +
√
ds
)
βn
(

1 + L̄f +
(

1 +
√
ds
)
βnL̄σ

)T−1

T 2 E
s,a∼ρπe

[
‖σn(s,a)‖2

]

In summary, the deviation between the true and pessimistic return is proportional to the expected epistemic uncertainty of
the evaluation policy state-occupancy measure ρπe , and the constant Cn defined as

Cn := L̄r

(
1 +

√
ds

)
βnT

2
(

1 + L̄f +
(

1 +
√
ds

)
βnL̄σ

)T−1

.



In Appendix B.3, we provide consistency guarantees for our method. In particular, we prove under further assumptions on
the true dynamics function f , that

∣∣∣J(πe)− J̃(πe)
∣∣∣→ 0, for n→∞.

B.2 PROOF OF KNOWN RESULTS FOR KERNEL METHODS

We first recall the notion of maximum mutual information [Srinivas et al., 2012, Cover and Thomas, 2006]. The mutual
information I(x1:n; k) quantifies the reduction in uncertainty due to the observations x1:n. Given a GP model GP(0, k(·, ·))
and gaussian noise assumption, mutual information is equal to

I(x1:n) =
1

2
log det(I + σ−2

ε K)

with the kernel matrix K = [k(xi,xj)]i,j≤n. The maximum information capacity or maximum mutual information of a
kernel k is an upper bound on the mutual information, and is defined as

γn = max
x1:n

I(x1:n).

Table 1 shows the growth rate of γn with n for multiple different kernels.

Proof of Lemma 3.6. Let γn be the maximum mutual information of GP(0, k(·, ·)). Set βn(δ) :=(
B + σε

√
2(γn + 1 + ln(ds/δ)

)
. Element-wise application of Theorem 2 in Chowdhury and Gopalan [2017]

over the dimensions of S and taking a union bound proves the lemma.

Proof of Lemma 3.7. First, we prove the Lipschitz continuity of f . By the Cauchy-Schwartz inequality, we have ∀ x,x′ ∈ X

|fj(x)− fj(x′)| = |〈fj , k(x, ·)− k(x′, ·)〉k| ≤ ‖fj‖k dk(x,x′) (19)

Since ‖fj‖k ≤ B, ∀j = 1, ..., ds and dk(x,x′) is Lk-Lipschitz, we have that

‖f(x)− f(x′)‖2 =

√√√√ ds∑
j=1

(fj(x)− fj(x′))2 ≤
√
dsB2dk(x,x′)2 =

√
dsBdk(x,x′) ≤

√
dsBLk‖x− x′‖2; . (20)

Next, we show the Lipschitz continuity of the GP standard deviation. By Lemma 12 in Curi et al. [2020], we have,
independent of n, |σn(x)−σn(x)| ≤ dk(x,x′) for the GP standard deviation. Now, we make a similar argument as above:

‖σn(x)− σn(x)‖2 ≤
√
dsd2

k(x,x′) ≤
√
dsLk‖x− x′‖2 (21)

which shows that σn(·) is
√
dsLk-Lipschitz.

B.3 PROOF OF THEOREM 3.8

For showing consistency of our lower bound in Theorem 3.5 for the GP case, we first prove that the uncertainty with respect
to an i.i.d., data sampling distribution p(x) shrinks in expectation.

Lemma B.6 (Shrinking uncertainty in expectation). Let p(x) denote a data sampling distribution with compact support.
Then the following holds for sequences {xi}n−1

i=0 sampled i.i.d. from p(x),

C2
n E
x1:n∼p

[
σ2(xn|{xi}n−1

i=0 )
]
≤ C2

n E
x1:n−1∼p

[
σ2(xn−1|{xi}n−2

i=0 )
]
. (22)



Proof.

C2
n E
x1:n∼p

[
σ2(xn|{xi}n−1

i=0 )
]

= C2
n E
x1:n−1∼p

[
E

xn∼p

[
σ2(xn|{xi}n−1

i=0 )
]]

= C2
n E
x1:n−1∼p

[
E
x∼p

[
σ2(x|{xi}n−1

i=0 )
]]

≤ C2
n E
x1:n−1∼p

[
E
x∼p

[
σ2(x|{xi}n−2

i=0 )
]]

(Monotonicity of variance)

= C2
n E
x1:n−2∼p

[
E

xn−1∼p

[
E
x∼p

[
σ2(x|{xi}n−2

i=0 )|xn−1

]]]
= C2

n E
x1:n−2∼p

[
E
x∼p

[
σ2(x|{xi}n−2

i=0 )
]]

(All points are sampled i.i.d from p)

= C2
n E
x1:n−2∼p

[
E

xn−1∼p

[
σ2(xn−1|{xi}n−2

i=0 )
]]

= C2
n E
x1:n−1∼p

[
σ2(xn−1|{xi}n−2

i=0 )
]
.

Lemma B.7 (Bound on expectation of uncertainty at n). Let p(x) denote the data sampling distribution with a compact
support. Then the following holds for sequences {xi}n−1

i=0 sampled i.i.d. from p(x),

nC2
n E
x1:n∼p

[
σ2(xn|{xi}n−1

i=0 )
]
≤ C2

n E
x1:n∼p

 n∑
j=1

σ2(xj |{xi}j−1
i=0 )

 . (23)

Moreover, we have

C2
n E
x1:n∼p

[
σ2(xn|{xi}n−1

i=0 )
]
≤ C2

nγn
n

,

where γn represents the maximum information gain (Srinivas et al. [2012], Cover and Thomas [2006]).

Proof. We prove by induction. For n = 1, Eq. 23 holds trivially. Now assume n > 1,

nC2
n E
x1:n∼p

[
σ2(xn|{xi}n−1

i=0 )
]

= C2
n E
x1:n∼p

[
σ2(xn|{xi}n−1

i=0 )
]

+ (n− 1)C2
n E
x1:n∼p

[
σ2(xn|{xi}n−1

i=0 )
]

≤ C2
n E
x1:n∼p

[
σ2(xn|{xi}n−1

i=0 )
]

+ (n− 1)C2
n E
x1:n−1∼p

[
σ2(xn−1|{xi}n−2

i=0 )
]

(Lemma B.6)

≤ C2
n E
x1:n∼p

[
σ2(xn|{xi}n−1

i=0 )
]

+ C2
n E
x1:n−1∼p

n−1∑
j=1

σ2(xj |{xi}j−1
i=0 )


(By induction hypothesis)

= C2
n E
x1:n∼p

 n∑
j=1

σ2(xj |{xi}j−1
i=0 )

 .
Note,

∑n
j=1 σ

2(xj+1|{xi}ji=0) is a measure of the mutual information associated to the sampling scheme, and lower bounds
the mutual information. The mutual information I(x1:n) quantifies the reduction in uncertainty due to the observations
x1:n Cover and Thomas [2006]. When f ∈ Hk, mutual information is equal to

I(x1:n) =
1

2
log det(I + λ−1K)

with the kernel matrixK = [k(xi,xj)]i,j≤n. Moreover,

E
x1:n∼p

 n∑
j=1

σ2(xj+1|{xi}ji=0)

 ≤ I(x1:n).



The maximum information gain, is an upper bound on the mutual information, and is defined as

γn = max
x1:n

I(x1:n).

Therefore, by definition of γn, it is greater than the mutual information of all sampling schemes within the the support of
p(x).

C2
n E
x1:n∼p

[
σ2(xn|{xi}n−1

i=0 )
]
≤ C2

nγn
n

Srinivas et al. [2012] derive the bounds on γn (see Table 1) for linear, RBF, and Matèrn kernels on compact and convex sets.
Hence, we obtain that for the linear and RBF kernel, C2

nγn grows sublinearly in n, i.e., C2
nγn/n→ 0 for n→∞.

Kernel Bounds on γn for x ∈ Rd
Linear O(d log n)
RBF O((log n)d+1)

Matèrn ν > 1/2 O(n
d

2ν+d log
2ν

2ν+d (n))

Table 1: Bounds on γn from [Vakili et al., 2021, Theorem 5.]

Lemma B.8. Let p(x) denote a distribution with compact support, and assume that x1, . . . ,xn−1 are i.i.d. samples from p.
Then, the following holds,

P

 E
x∼p

[Cnσn(x)] = O

(1 + 1/
√
δ)

√
γT+1
n

n

 , ∀x1:n−1

 ≥ 1− δ, ∀n ∈ N.

For kernels with a maximum information capacity γn = O(poly(log(n)) that grows at most polylogarithmically with n, we
have that

P
(

E
x∼p

[Cnσn(x)]→ 0 for n→∞
)

= 1.

Proof. From Lemma B.7

E
x1:n−1∼p

[
C2
n E
x∼p

[
σ2
n(x)

]]
≤ C2

nγn
n

. (24)

Using the Markov inequality, we get

P(X ≥ a) ≤ E [X]

a
.

Let X denote C2
n E
x∼p

[
σ2
n(x)

]
. Then we have for all a > 0,

P(C2
n E
x∼p

[
σ2
n(x)

]
≥ a) ≤

E
x1:n−1∼p

[
C2
n E
x∼p

[
σ2
n(x)

]]
a

≤ C2
nγn
na

.

Therefore, for n→∞,C2
n E
x∼p

[
σ2
n(x)

]
→ 0 almost surely if C

2
nγn
n → 0 for n→∞. Now by definition of Cn (Theorem 3.5)

and plugging in the choice of βn (Lemma 3.6), we have C2
nγn
n ∝ γT+1

n

n . By assumption, we have that γn = O(poly(log(n)),

and, thus γT+1
n

n = O(poly(log(n))T+1/n) = O(poly(log(n))/n). Hence, C
2
nγn
n → 0 for n → ∞. For example, for the

linear and RBF kernel, we have (see Table 1)

γT+1
n

n
= O

(
dT+1 (log n)

T+1

n

)
(Linear kernel)

γT+1
n

n
= O

(
(log n)

(d+1)(T+1)

n

)
. (RBF kernel)



Now to recover the rate of convergence, let v = E
x∼p

[Cnσn(x)]. We study its variance and expectation with respect to

x1:n−1 ∼ p for a fixed n. We have

Var[v] ≤ E
[
v2
]
≤ E
x1:n−1∼p

[
C2
n E
x∼p

[
σ2
n(x)

]]
≤ C2

nγn
n

.

Additionally, E [v] ≤
√

E [v2] ≤ Cn
√

γn
n . Now, we apply the Chebyshev inequality, i.e.,

P(|v − E
v

[v] | ≥ a) ≤ Var[v]

a2
≤

E
v

[
v2
]

a2
.

Therefore, for a2 =
E
v
[v2]
δ , we have with probability at least 1− δ,

v ≤ E
v

[v] + a

= E
v

[v] +

√
E
v

[v2]

δ

≤
(

1 +
1√
δ

)√
E
v

[v2].

Next, we plug in the definition of v, to get

E
x∼p

[Cnσn(x)] ≤
(

1 +
1√
δ

)√
E

x1:n−1∼p

[
E
x∼p

[C2
nσ

2
n(x)]

]

≤
(

1 +
1√
δ

)
Cn

√
γn
n

= O

(1 + 1/
√
δ
)√γT+1

n

n

 .

with probability at least 1− δ.

Proof of Theorem 3.8 (Consistency of HAMBO). For the GP case we prove that the well calibration assumption, and the Lip-
schitz continuity of f and σ are satisfied (see Lemmas 3.6 and 3.7). This allows us to apply Theorem 3.5 and Proposition 3.2,
which gives with probability at least 1− δ that,

J(πe) ≥ J̃(πe) ≥ J(πe)− Cn E
s,a∼ρπe

[‖σn(s,a)‖2] . (25)

To prove consistency, we then only need to show thatCn E
s,a∼ρπe

[‖σn(s,a)‖2] goes to 0 for n→∞. Since the support of the

behavioural policy’s state-occupancy measure ρπb is compact, and supp(ρπe) ⊆ supp(ρπb), we have ρπb(s, a) ≥ Ĉρπe(s, a)
for all (s, a) ∈ S ×A, and some Ĉ > 0, i.e., the importance sampling ratio is bounded. We can then write,

Cn E
s,a∼ρπe

[‖σn(s,a)‖2] ≤
ds∑
i=1

E
s,a∼ρπe

[Cnσn,i(s,a)]

=

ds∑
i=1

E
s,a∼ρπb

[
Cnσn,i(s,a)

ρπe(s, a)

ρπb(s, a)

]

≤ 1

Ĉ

ds∑
i=1

E
s,a∼ρπb

[Cnσn,i(s,a)] .

Moreover, by taking a union bound over the dimensions 1, ..., ds, Lemma B.8 implies that with probability greater than
1− δ, for any set of i.i.d. trajectories,

ds∑
i=1

E
s,a∼ρπe

[Cnσn,i(s,a)] = O

ds (1 +
√
ds/δ

)√γT+1
n

n

 .



Ours Model-based Model-free
HAMBO-CA HAMBO-DA1 Rigter et al. [2022] Yu et al. [2021] Yu et al. [2020] Kidambi et al. [2020] Kumar et al. [2020] Kostrikov et al. [2022]

HalfCheetah-random 37.1 35.1 39.5 38.8 35.4 25.6 19.6 -
HalfCheetah-medium 66.9 67.9 77.9 54.2 69.5 42.1 49.0 47.4

Table 2: Comparisons on the HalfCheetah from the D4RL benchmark suite. Results of the other algorithms are taken from
Rigter et al. [2022].

Consider a sequence {δn}n≥0 such that limn→0 δn = 0, and limn→∞ ds

(
1 +

√
ds/δn

)√
γT+1
n /n = 0 (e.g., δn = γ−1

n ),

and let Sn =
∑ds
i=1 Cnσn,i(s,a). Then we have for all ε > 0

∞∑
n=0

P (Sn > ε) =

N∗(ε)∑
n=0

P (Sn > ε) +

∞∑
n=N∗(ε)

P (Sn > ε)

≤ N∗(ε) +

∞∑
n=N∗(ε)

δn <∞,

where, N∗(ε) is the smallest integer such that ds
(

1 +
√
ds/δ

)√
γT+1
n /n ≤ ε. This implies that

P

(
ds∑
i=1

E
s,a∼ρπe

[
Cnσ

i
n(s,a)

]
→ 0 for n→∞

)
= 1.

C HAMBO FOR OFFLINE REINFORCEMENT LEARNING

OPE methods are commonly used in offline reinforcement learning (ORL) Levine et al. [2020] to recommend/learn an
optimal policy. Moreover, ORL methods also suffer from distribution shifts and are susceptible to overestimation, i.e.,
overestimating the performance of the recommended policy. Therefore, in principle, a good COPE method can be applied
for ORL applications. To this end, we propose a natural modification of HAMBO-CA for ORL.

J̃(π∗) := max
π

min
η
Jp̃η (π) . (26)

Our proposed method induces pessimism with respect to the epistemic uncertainty of the learned transition model to tackle
distribution shifts. Similar, to HAMBO-CA, we can also use the HAMBO-DS1 variant to induce pessimsm.

We compare our HAMBO-based ORL variants to other ORL algorithms on the OpenAI Gym tasks from the D4RL
benchmark Fu et al. [2020]. Specifically, we consider the HalfCheetah environment with data sets generated with a random
and a medicore-performing policy. Our results are presented in table 2.

The max-min optimization in eq (26) is typically very challenging. For our experiments we use the soft actor critic algorithm
to train the policy and adversary together (DQN algorithm is used for the HAMBO-DA1 variant).

Note, our proposed ORL algorithms recommend the policy with the best lower bound and not the best expected return
(see eq 26). Therefore, in general, they may fail to recommend the optimal policy. This is the price we pay for inducing
robustness in our ORL methods. However, in practice (see table 2) we observer that the HAMBO based ORL methods
perform competitively to the start of the art in the field.
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