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Abstract

We study the problem of conservative off-policy
evaluation (COPE) where given an offline dataset
of environment interactions, collected by other
agents, we seek to obtain a (tight) lower bound
on a policy’s performance. This is crucial when
deciding whether a given policy satisfies certain
minimal performance/safety criteria before it
can be deployed in the real world. To this end,
we introduce HAMBO, which builds on an
uncertainty-aware learned model of the transition
dynamics. To form a conservative estimate of
the policy’s performance, HAMBO hallucinates
worst-case trajectories that the policy may take,
within the margin of the models’ epistemic con-
fidence regions. We prove that the resulting COPE
estimates are valid lower bounds, and, under reg-
ularity conditions, show their convergence to the
true expected return. Finally, we discuss scalable
variants of our approach based on Bayesian Neural
Networks and empirically demonstrate that they
yield reliable and tight lower bounds in various
continuous control environments.

1 INTRODUCTION

Reinforcement learning methods require many interactions
with their environment to successfully learn and evaluate
policies. Therefore, they are rarely applied in challenging
real-world applications such as medicine [Murphy et al.,
2001], education [Mandel et al., 2014] or autonomous
driving [Kiran et al., 2021], where a policy can only be
deployed in the environment if it exceeds a pre-specified
performance threshold or fulfills certain safety criteria. This
leaves us with a challenging problem: How do we know
whether a policy fulfills the necessary criteria so that it can
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safely interact with the environment, without testing it on
the environment, and in the process, compromising safety?

Off-policy evaluation (OPE) aims to solve this problem by
estimating the performance of an evaluation policy, using
only offline data that was previously collected by other
agents [e.g. Precup et al., 2001, Dudík et al., 2011]. In
practice, offline datasets are often recorded interactions of
a human expert with the environment. Since the evaluation
policy typically induces a different action-state distribution
than offline data, OPE methods often have to make
predictions under strong distribution shifts. As a result,
most existing OPE estimators suffer from high variance and
are prone to overestimating the performance of the policy
[Thomas et al., 2015]. In safety-critical applications, we can
not risk and deploy a policy that is potentially much worse
than what the OPE estimate suggests. Therefore, we aim
for conservative off-policy evaluation (COPE) which seeks
a (tight) lower bound on the evaluation policy’s expected
return that holds with high probability. Once deployed, the
policy may end up exploring areas that were not included
in the offline data. Thus, reliably bounding the worst-case
performance can be quite challenging.

We develop a novel model-based COPE approach that
hinges upon two key ideas: epistemic uncertainty and
pessimism. In particular, our approach, Hallucinated
Adversarial Model-Based Off-policy evaluation (HAMBO)
(HAMBO), builds on a learned statistical model of the
transition dynamics that is able to quantify epistemic
uncertainty. To obtain a valid lower bound on the policy
performance, HAMBO hallucinates adversarial/worst-case
trajectories the agent may take within the epistemic
confidence sets of the model.

We prove that HAMBO reliably yields a high-probability
bound on the true expected return of the policy, even
when the offline data does not cover the areas explored by
the evaluation policy (Proposition 3.2). Under regularity
conditions, we further show that our conservative estimate
converges from below to the true expected return (Theo-
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rem 3.8). To the best of our knowledge, HAMBO is the
first provably consistent and conservative approach for OPE
in continuous action-state spaces. We then propose scalable
Bayesian neural network (BNN) variants of HAMBO
and empirically evaluate them on various continuous
control tasks. Importantly, we demonstrate that, even when
the regularity conditions are not met, HAMBO reliably
provides tight lower bounds on the true expected return.

2 PROBLEM SETTING

We consider a finite horizon Markov decision process
(MDP)M = (S,A, p0, p, r, T ) with continuous state and
action spaces S ⊆ Rds and A ⊆ Rda , initial state dis-
tribution p0(s0), reward function r(at, st) and horizon
T ∈ N. In particular, we consider stochastic transition dy-
namics that are governed by st+1 = f(st,at) + εt where
f : S×A → S is unknown and εt ∈ Rds is independent, ad-
ditive transition noise with distribution pε(εt|st,at). Hence,
the transition distribution p follows as p(st+1|st,at) =
pε(st+1 − f(st,at)|st,at). For simplicity, we assume that
the reward function is known. However, all results can
straightforwardly be extended to unknown rewards.

The agent interacts with the environment according to
a policy π(at|st), which is a distribution over actions,
conditioned on the current state st. The performance
of a policy is typically measured by its expected return
J(π) := Jp(π) := Es0∼p0 [V πp,0(s0)] where V πt (s) :=
V πp,t(s) := Ep,π[Gt|St = s] is the value function and
Gt :=

∑T
t′=t+1 r(st′ ,at′) is the return. For simplicity, we

omit a discount factor in the return computation. However,
all results presented can be straightforwardly adapted to
discounted rewards. Furthermore, we denote the occupancy
measure of policy π as

ρπ(s,a) :=
1

T

T−1∑
t=0

p(st = s,at = a|π,M) ,

that is, the probability density function of being in state s
and performing action a at any point of time t = 0, ..., T−1.

We study the problem of offline policy evaluation where
the task is to evaluate the performance, i.e. estimate the ex-
pected return J(πe), of a given evaluation policy πe while
only using an offline dataset Db = {(si,ai, ri, s′i)}ni=1 of
observed transitions. The key challenge in OPE is the dis-
tribution shift between the (unknown) behavior policy πb
which generated the dataset Db and the policy πe which we
would like to evaluate. If πb differs from πe, their state occu-
pancy measures ρπb and ρπe can look significantly different.
As a result, the dataset Db which is generated based on
ρπb may contain many samples in regions of the state-action
space which πe is unlikely to visit and limited data in regions
that are relevant for accurately evaluating πe. In some cases,
the support of ρπb might not even contain the support of

ρπe , i.e., ∃(s,a) ∈ S ×A : ρπe(s,a) > 0∧ ρπb(s,a) = 0.
Since OPE methods have to make predictions under such
strong distribution shifts their estimates suffer from high
variance and are prone to overestimate the performance of
the policy.

OPE is particularly relevant in applications where we need
to ensure a certain level of performance before a policy can
be deployed online. Hence, it is often important to reliably
determine whether or not the policy πe meets its minimum
performance requirements. We formalize this problem as
conservative offline policy evaluation (see Definition 2.1)
where we want to ideally find a tight lower bound on the
expected return that holds with high-probability:

Definition 2.1 (Conservative Offline Policy Evaluation).
LetM be an MDP andDb ∈ (S×A×R×S)n a dataset of
transitions, collected with a behavior policy πb onM. Then
the task of conservative OPE is: Given the offline dataset
Db, a policy πe to evaluate and a confidence level δ ∈ (0, 1),
find the largest possible lower-bound b ∈ R, which satisfies
b ≤ J(πe) with probability at least 1− δ.

In some applications [e.g., Brunke et al., 2022], safety
criteria are not directly encoded in the reward and instead,
are expressed as additional constraints in the form of
E(s,a)∼ρπe [ci(s,a)] ≥ 0. To determine with high confi-
dence whether πe meets these constraints, we can apply
COPE to each ci individually.

3 COPE VIA ADVERSARIAL
TRANSITION MODELS

We take a model-based approach to COPE, and use a
statistical model to estimate which transition functions
h : S × A → S from a hypothesis space H are plausi-
ble given the offline dataDb of size n. Then, we employ this
statistical model of the transition dynamics to estimate the
policy value J(πe). For this estimate, we want to guarantee
with high probability that it does not exceed the true policy
value. To ensure this, we need to be able to reliably quantify
the epistemic uncertainty of our model estimates.

Uncertainty quantification can be done with either a
frequentist approach that produces mean and confidence
estimate µn(s,a) and σn(s,a) or with a Bayesian model
that maintains a posterior distribution p(h|Db) over
dynamics models in H. In the Bayesian case, we denote
µn(s,a) := Eh∼p(h|Db)[h(s,a)] as the posterior mean
and σ2

n(s,a) := diag(Eh,h′∼p(h|Db)[h(s,a)h′(s,a)>])
as the posterior variance. In either case, we require that our
statistical model of h is calibrated:

Assumption 3.1 (Calibrated model). A statistical model
(µn,σn, βn), with βn(δ) ∈ R+ as a scalar function that
depends on the confidence level δ ∈ (0, 1], is calibrated
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with respect to f if, with probability at least 1− δ, for all
(s,a) ∈ S ×A and j = 1, . . . , ds

|µn,j(s,a)− fj(s,a)| ≤ βn(δ)σn,j(s,a),

where µn,j and σn,j denote the j-th element in the vector-
valued functions µn and σn, respectively.

Popular statistical models for transition dynamics that
capture epistemic uncertainty are Gaussian Processes (GPs)
[Rasmussen and Williams, 2005], Probabilistic Neural
Network Ensembles [Lakshminarayanan et al., 2017] and
Bayesian Neural Networks [Blundell et al., 2015]. In later
sections, we will attend to these specific choices of model
in more detail and discuss when they are calibrated.

3.1 THE HAMBO FRAMEWORK

If our model is calibrated, we can, with high probability,
use the confidence region

[µn(s,a)− βn(δ)σn(s,a),µn(s,a) + βn(δ)σn(s,a)]

which is a ds-dimensional hypercube, as a proxy for the true
dynamics f(s,a). We then pessimistically select transitions
within this region, to guarantee a high probability lower
bound on the policy value J(πe). We do so, by introducing
an adversary η : S×A → [−1, 1]ds that, for every (s,a) ∈
S×A picks a transition from the confidence region, thereby
inducing the following hallucinated transition distribution:

p̃η(st+1|st,at) := pε
(
st+1 − µn(st,at)

− βnη(st,at)σn(st,at)
)
.

(1)

This allows us to obtain a conservative value estimate for πe

J̃(πe) := min
η
Jp̃η (πe) . (2)

This equation summarizes our approach hallucinated
adversarial model-based off-policy evaluation (HAMBO)
and Algorithm 1 presents the pseudo-code. Here, the
expected reward Jp̃η (πe) of πe under the hallucinated
transition model p̃η can, e.g., be estimated via Monte Carlo
estimation (i.e., generating trajectory rollouts and averaging
the respecting returns). To find the adversary η(s,a) which
minimizes (2), we can view η(s,a) as policy that aims to
maximize −Jp̃η (πe) and solve the corresponding optimal
control problem. Importantly, with high probability, J̃(πe)
is a lower bound on the true policy value J(πe):

Proposition 3.2 (Valid lower bound). Given a calibrated
model (µn,σn, βn(δ)), the HAMBO estimates satisfy
J̃(πe) ≤ J(πe), with probability greater than 1− δ.

While Proposition 3.2 shows that our estimate J̃(πe) fulfills
the requirements of COPE, J̃(πe) could potentially be very
loose. However, we can further establish a worst-case lower
bound on J̃(πe), if f , r,σn and πe are continuous. Formally,
we make the following Lipschitz continuity assumption:

Assumption 3.3. (Lipschitz continuity) f is Lf -Lipschitz,
r is Lr-Lipschitz, σ is Lσ-Lipschitz and πe is Lπ-Lipschitz
w.r.t. the Wasserstein-1 distance, i.e., for all s, s′ ∈ S

W1(π(a|s), π(a|s′)) ≤ Lπ‖s− s′‖2. (3)

Here, the continuity assumption on π is expressed in terms
the Wasserstein-1 distance and implies that a small change in
the state space only induces a proportionally small change in
the conditional action distribution of the policy. For instance,
this is the case for policies that can be reparametrized with
a Lipschitz function which is very common in practice:

Example 3.4. Any policy π(a|s) that can be
reparametrized as g(s, ζ), where ζ ∼ p(ζ) and g is
Lg-Lipschitz, is also Lg-Lipschitz w.r.t. theW1- distance.

Such Lipschitz assumptions are common in model-based
OPE [e.g. Fonteneau et al., 2009, Paduraru, 2013] and RL
more broadly [e.g. Berkenkamp et al., 2017, Curi et al.,
2020], and, e.g, hold in many real-world control problems.
With these regularity assumptions, we bound how far away
the HAMBO estimate J̃(πe) is from the true policy value:

Theorem 3.5. Under Assumption 3.1 and 3.3 we have, with
probability at least 1− δ, that

J(πe)− J̃(πe) ≤ Cn E
(s,a)∼ρπe

[‖σn(s,a)‖2]

where

Cn :=L̄r

(
1+
√
ds

)
βnT

2
(

1+L̄f+(1+
√
ds)βn(δ)L̄σ

)T−1

with L̄r := Lr(1 + Lπ) and L̄f , L̄σ defined analogously.

This theorem shows how by tuning the confidence level
δ, we can trade-off accuracy with reliability. In particular,
choosing a small δ will ensure that the upper-bound on
J(πe) holds. However, it also increases βn(δ) and loosens
the bound, indicating the J̃(πe) estimate will be less accu-
rate. Tightness of the HAMBO lower bound J̃(πe) depends
on the following key factors: Lipschitz-regularity, episode
horizon T , and epistemic uncertainty. Mainly, smaller Lip-
schitz constants and shorter episode lengths improve the
bound. Moreover, the smaller the expected epistemic stan-
dard deviation σn(st,at) under the state occupancy mea-
sure of πe, the tighter the bound. While the first two factors
are generally dictated by the problem instance, the epistemic
uncertainty can be reduced by using more offline data (in
the relevant areas of the state-action space). If we can show
that the epistemic uncertainty shrinks sufficiently fast with
the number of offline data points n (i.e., faster than O(βTn )),
then we can prove that J̃(πe) converges to the true policy
value as n→∞. In the following, we discuss corresponding
sufficient convergence conditions for GP models.
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3.2 HAMBO WITH SMOOTH GP FUNCTIONS

In this section, we discuss the application of GPs for
constructing calibrated confidence regions to be used
for HAMBO. For the transition dynamics, we consider
vector-valued functions f(s,a) 7→ (f1(s,a), ..., fds(s,a))
such that the scalar-valued functions fj ∈ Hk re-
side in a Reproducing Kernel Hilbert Space (RKHS)
Hk with kernel function k(·, ·) and have bounded
RKHS norm, i.e. ‖fj‖k ≤ B. We denote this space
by f ∈ Hdsk,B = {[f1, ..., fds ] : ‖fj‖k ≤ B, j = 1, ..., ds}.
We assume that transition noise ε ∼ N (0, σ2

εI) is normally
distributed with variance σ2

ε .

By fitting a zero-mean Gaussian Process GP(0, k) on each
dimension j = 1, ..., ds of the next state st+1, we can use
the posterior means and variances to construct calibrated
confidence sets. For brevity, we denote x := (s,a), so that

µn,j(x) = k>n (x)(Kn + σ2
εI)−1yn,j

σ2
n,j(x) = k(x,x)− kTn (x)(Kn + σ2

εI)−1kn(x)
(4)

where yn,j = [s′i,j ]
>
i≤n is the vector the j-th element of the

observed next states s′i, kn(x) = [k(x,xi)]
>
i≤n, andKn =

[k(xi,xl)]i,l≤n is the kernel matrix. By concatenating the
element-wise posterior mean and standard deviation, we ob-
tain µn(x) = [µn,j(x)]>j≤ds and σn(x) = [σn,j(x)]>j≤ds .
Using this, we can construct calibrated confidence intervals
that fulfill Assumption 3.1:

Lemma 3.6 (Calibrated GP confidence sets). Let f ∈ Hdsk,B .
Suppose µn and σn are the posterior mean and variance of
a GP with kernel k, fitted to n noisy evaluations of f . There
exists βn(δ), for which the tuple (µn,σn, βn(δ)) satisfies
Assumption 3.1 w.r.t. function f .

In Appendix B.2 we prove this lemma using results
of Chowdhury and Gopalan [2017] and give the exact
expression for a βn(δ) that satisfies it. Generally, βn(δ)
depends on the maximum information capacity γn of the
kernel (see Appendix B.2 for definition and details). In the
GP setting, we can also show Lipschitz continuity of f and
σ, if the kernel function k is sufficiently regular:

Lemma 3.7. If the kernel metric dk(x,x′) := (k(x,x) +

k(x′,x′) − 2k(x,x′))
1
2 is Lk-Lipschitz, then every f ∈

Hdsk,B is Lipschitz with Lf =
√
dsBLk and the posterior

standard deviation σ is Lipschitz with Lσ =
√
dsLk.

For common kernels, the kernel metric is Lipschitz
continuous, and thus Lemma 3.7 applies. For instance,
for the linear kernel we have Lk = 1, for the RBF kernel
we have Lk = 1/` and for the Matern-ν kernel we have
Lk =

√
ν/(ν − 1)/`, where ` is the lengthscale and ν the

smoothness parameter of the Matern kernel.

We can conclude that conditions of Proposition 3.2 and The-
orem 3.5 are met when a GP is used for learning the tran-

sition dynamics from offline data. Hence, when the reward
and the policy are Lipschitz, the HAMBO estimate satisfies

J(πe)− Cn E
ρπe

[‖σn(s,a)‖2] ≤ J̃(πe) ≤ J(πe)

with high probability. We can show that given a dataset
of i.i.d. trajectories, the difference term shrinks with n
sufficiently fast:

Theorem 3.8 (Consistency of HAMBO). Let r be Lr-
Lipschitz, π be Lπ-Lipschitz w.r.t. the W1-distance and
f ∈ Hdsk,B where k is a kernel with a Lk-Lipschitz kernel
metric with a maximum information capacity γn which is
O(polylog(n)).Suppose both ρπe and ρπb have a compact
support and supp(ρπe) ⊆ supp(ρπb) and Db consists of n
data points from i.i.d. trajectories according to the behavior
policy πb. Then as n→∞,

J̃n(πe)
a.s.−−→ J(πe).

The theorem implies that J̃(πe) is not only a conservative
estimator for J(πe), but under certain regularity conditions,
it is also a consistent estimator of the policy’s true value.
Meaning that for large n, the trade-off between reliability
and accuracy vanishes. In Appendix B.3 we prove this theo-
rem and give the exact rate at which the HAMBO estimate
converges to the true value of πe. This rate depends on the
choice of kernel, time horizon T , and dimensions of the envi-
ronment (da, ds). As an example, if k is a Linear or RBF ker-
nel, with high probability |J̃n(πe)− J(πe)| = Õ

(
n−1/2

)
where Õ omits polylogarithmic factors.

The kernel assumptions in Theorem 3.8 hold for many pop-
ular kernels such as any inner product kernel k(x,x′) =
φ(x)>φ(x′) with Lipschitz continuous finite-dimensional
feature maps φ(·) or smooth kernels such as the RBF. On
the other hand, Theorem 3.8 does hold for non-smooth func-
tions, e.g., those corresponding to a Matern since their max-
imum information capacity γn grows polynomially with n.

To the best of our knowledge, Theorem 3.8 is the first result
that shows the consistency of a model-based finite-horizon
OPE method for a continuous environments.

4 HAMBO WITH NEURAL NETWORKS

In practice, we often want to evaluate policies in settings
where the state and action spaces are higher-dimensional,
and have access to larger amounts of offline data. In such en-
vironments, GPs become unpractical as they tend to general-
ize poorly in high-dimensional domains and their inference
becomes prohibitively expensive for larger datasets.

The NN-based Statistical Model. In this section, we dis-
cuss practical variants of HAMBO which employ neu-
ral networks that scale more favorably to large datasets
and high-dimensional domains. Crucially, we need to be
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able to quantify epistemic uncertainty. For this purpose, we
employ Bayesian Neural Networks (BNNs) which model
hθ(s,a) as a neural network function where θ are the pa-
rameters of the neural network. BNNs presume a prior dis-
tribution p(θ) = N (θ; 0, λI) and maintain an approxima-
tion of the posterior p(θ|Db) ∝ p(Db|θ)p(θ) over neu-
ral network parameters. We use an independent Gaussian
likelihood p(Db|θ) =

∏n
i=1N (s′i;hθ(si,ai),ν

2
θ(si,ai))

where ν2
θ(s,a) is the vector of transition noise variances

which is also predicted by the BNN.

We use Stein Variational Gradient Descent (SVGD) [Liu
and Wang, 2016] to approximate the posterior as a set of K
particles Θ = {θ1, ...,θK}. We form the mean prediction
of our model as the average prediction of the K NNs:

µΘ(s,a) =
1

K

K∑
k=1

hθk(s,a).

Similarly, we estimate the epistemic variance as

σ2
Θ,e(s,a) =

1

K

K∑
k=1

(hθk(s,a)− µΘ(s,a))2.

The overall predictive distribution is the equally weighted
mixture of all K NN-based conditional Gaussians, i.e.,

p(s′|s,a,Db) =
1

K

K∑
k=1

N (s′;hθk(s,a),ν2
θk

(s,a)) (5)

whose variance is σ2
Θ(s,a) = σ2

Θ,e(s,a) + σ2
Θ,a(s,a),

where σ2
Θ,a(s,a) := 1

K

∑K
k=1 ν

2
θk

(s,a) represents
aleatoric and σ2

Θ,e(s,a) the epistemic uncertainty.

Calibrating the Model. Since our BNN model uses
approximate inference and a potentially misspecified prior,
it may not satisfy the calibration condition of Assumption
3.1. Thus, we re-calibrate the model’s uncertainty estimates
with a calibration set Dc ⊂ Db that is withheld from the
training. In particular, we use temperature scaling which
chooses τ > 0 such that the scaled predictive distribution
(5) with variance τ2σ2

Θ(s,a) has a minimal empirical
calibration error on Dc [Kuleshov et al., 2018]. Algorithm 3
formalizes this technique. Note that re-calibrating the BNN
model does not guarantee formal calibration in the sense
of Assumption 3.1. However, in our experiments, we found
it to reliably yield a conservative value estimate J̃(πe).

4.1 PRACTICAL NN-BASED HAMBO VARIANTS

In the following, we discuss three ways of constructing
adversarially hallucinated transition models based on our
BNN model described in Equation (5). The formal pseudo-
code of all algorithms is presented in Appendix A.

Continuous Adversary (HAMBO-CA). This approach
directly reflects the hallucinated adversarial transi-
tion model, introduced in (1) and (2). The adversary

η(s,a) ∈ [−1, 1]ds chooses the mean of the Gaussian
transition probability from the epistemic confidence set, i.e.,

p̃η(s′|s,a) := N
(
s′;µΘ(s,a) + τ2η(s,a)σ2

Θ,e,σ
2
Θ,a(s,a)

)
.

To get the corresponding conservative value estimate J̃(πe),
we need to solve the minimization problem minη Jp̃η (πe).
For this, we parameterize the adversary η(s,a) as a neural
network policy and use Soft Actor-Critic (SAC) [Haarnoja
et al., 2018b] to maximize the negative return.

Discrete Adversary (HAMBO-DA). Our BNN posterior
is approximated by a set of K NNs whose mean squared
error difference corresponds to epistemic uncertainty.
Thus, we can also construct a pessimistic transition
model by letting the adversary choose which of the K
NNs to pick. In this case, the adversary ϑ(k|s,a) is a
categorical distribution over the NN indices {1, ...,K}. The
hallucinated transition model follows as:

p̃ϑ(s′|s,a) :=

K∑
k=1

ϑ(k|s,a)N
(
s′;hθk(s,a),ν2

θk
(s,a)

)
.

Here, the adversary stochastically picks one of NN models
at every step t = 0, ..., T − 1. For this reason, we refer to
this variant as DA1 (Algorithm 5). The corresponding value
estimate follows as J̃DA1(πe) = minϑ Jp̃ϑ(πe). We solve
the optimization problem by parameterizing the adversary ϑ
as a NN policy and use the clipped double DQN algorithm
Fujimoto et al. [2018] to maximize the negative return.

Alternatively, we can constrain the adversary so that it
has to commit to one of the K NN models for the en-
tire trajectory. We refer to this variant as DAINF (Algo-
rithm 6). In this case, the transition model corresponds to
the predictive distribution of one of the NNs pθk(s′|s,a) =
N
(
s′;hθk(s,a),ν2

θk
(s,a)

)
, and the value estimate fol-

lows as the minimum the policy values under each of the
models, i.e., J̃DAinf(πe) = mink∈{1,...,K} Jpθk (πe). If K
is larger (e.g.,K > 20), we recommend taking the empirical
δ quantile of the policy values {Jp̄k(πe)}Kk=1 instead of the
minimum. In this case, DAINF has similarities to the model-
based bootstrap approach of Kostrikov and Nachum [2020].

Naturally, the value estimates of DAINF are less pessimistic
than those of DA1, i.e. J̃DAinf(πe) ≥ J̃DA1(πe), because
the adversary cannot change which model it picks through-
out the trajectory. In the experiment section, we investigate
whether DAINF is still conservative enough to reliably yield
lower bounds on the true policy values J(πe).

5 EXPERIMENTS

We start this section by illustrating the inner workings of
HAMBO with a toy example to show why pessimism is
crucial for COPE. We demonstrate that the convergence
guarantees from Section 3.2 materialize in practice for

1778



2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Real Neutral OPE HAMBO (n = 50) Unsafe

Figure 1: Hallucinated trajectories for model-based OPE
and pessimistic HAMBO. While OPE overestimates the
performance of the unsafe policy, HAMBO correctly gives
a conservative estimates through its adversarial transition
model. The adversary chooses the worst-case trajectory with
the confidence sets (shaded blue areas).

GP models. Finally, we empirically evaluate and compare
the practical variants of HAMBO with BNNs on various
continuous control tasks. For comparability between our
environments, we shift and scale all our results so that the
true policy return value J(πe) is 1.

5.1 ILLUSTRATIVE EXAMPLE

To illuminate the core idea of HAMBO and why pessimism
is crucial for COPE, we conduct experiments on a toy envi-
ronment which we call PointSafety (see Figure 1). In this
environment, the agent navigates in the two-dimensional
plane by applying actions a ∈ [−0.5, 0.5]2 such that its
position (i.e, state s ∈ S = R2) changes to st+1 = st + at.
The agent always starts on the left s0 = (−2, 0) and aims
to go to its goal on the right sfin = (2, 0). However, the
unit circle is a danger zone, in which the agent is subject to
highly negative rewards (red shaded area).

We consider evaluation policies πy with an intermediate
goal sim = (0, y) on the y-axis that goes in a straight line
from s0 to sim and then in a straight line from sim to the
goal sfin. Note that policies πy with |y| ≤ 1.155 are unsafe.

We generate an offline dataset by rolling out the behavior
policy π1.6 with Gaussian action noise with a standard de-
viation of 0.1. Then, we evaluate π1.1, which is unsafe (see
black trajectory), by rolling it out using HAMBO-CA.

We compare this to a neutral variant that predicts the next
state with the predictive mean µΘ(s,a), i.e., without pes-
simism. As we can observe from the yellow trajectory, it
falsely estimates π1.1 as safe, that is, it predicts that the tra-
jectory lies outside of the danger zone. The trajectories with
the adversarial transition model and the corresponding epis-
temic confidence sets for every step are depicted in Fig 1.
The adversary successfully moves the prediction towards the
danger zone within the confidence set, and, thus, correctly
estimates the policy to be unsafe. Overall, this demonstrates

a failure case of (neutral) off-policy evaluation and shows
how HAMBO reliably gives a conservative estimate of the
policy value through its pessimistic transition model.

5.2 EMPIRICAL CONVERGENCE OF HAMBO

For GP models, we show that HAMBO estimates converge
to the true policy values (Theorem 3.8). Now, we empirically
evaluate the behavior of GP-based HAMBO with an RBF
kernel, as the number of offline data points grows. To this
end, we consider two environments; a simple 2D PointEnv
(S = R2, A = [−1, 1]2), similar to the PointSaftey
environment, and the Pendulum-v1 environment from the
OpenAI Gym [Brockman et al., 2016]. In the PointEnv, the
agent has to navigate the origin and accordingly receives
the negative distance to the origin as a reward.

To generate the offline dataset, we collect transition data
by uniformly sampling states and actions from the state
and action space respectively. For the PointEnv, we restrict
the sampled states to [−40, 40]2 which covers the relevant
part of the state space. As the evaluation policy, we use a
proportional controller for the PointEnv, and a controller
learned with SAC for the Pendulum.

Figure 2 plots the HAMBO estimates J̃(πe) for a vary-
ing number of offline datapoints n = |Db|. We notice that
in the PointEnv, when we have insufficient data (here, ca.
n ≤ 150), the epistemic confidence regions of our GP model
are large enough so that the transition model adversary some-
times manages to steer the policy outside the data support
where the epistemic uncertainty is even higher. As a result,
we see that J̃(πe) are initially far below the true expected
return J(πe). However, as n increases, the GP uncertainty
regions become smaller, and, as we can observe in Fig-
ure 2, J̃(πe) becomes an increasingly tighter lower bound,
approaching J(πe) for both the environments.

5.3 HAMBO FOR CONTINUOUS CONTROL

We evaluate the NN-based HAMBO methods from Section
4 on the continuous control tasks Pendulum-v1, Hopper-v3,
and HalfCheetah-v3 from the OpenAI Gym and compare
them to respective neutral (non-pessimistic) OPE methods.

Our general methodology is as follows: For a given
environment, we first train a policy using the SAC algorithm
Haarnoja et al. [2018a,b] and save several checkpoints of the
agent. Then, some of the mediocre-performing checkpoints
are rolled out to generate an offline dataset. After that,
a given policy (usually one of the best checkpoints) is
evaluated with the NN-based HAMBO variants.

We compare our approach to neutral OPE variants that do
not use a pessimistic transition model [Fonteneau et al.,
2013]. In particular, we consider various trajectory uncer-
tainty propagation methods from Chua et al. [2018], em-
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Figure 2: GP-based HAMBO for increasing offline dataset sizes n evaluated on the PointEnv and Pendulum-v1. The lower
bound approaches the true return.
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Figure 3: HAMBO variants and neutral OPE baselines for continuous control. Unlike neutral OPE, which frequently
overestimates the true expected return, HAMBO always yields a valid lower bound, which becomes more accurate with n.
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Figure 4: HAMBO variants and neutral OPE baselines for different horizons. With longer horizons, the variance of the
neutral OPE estimates increases and HAMBO lower bounds become looser.

ployed in the context of OPE: First, we consider OPE-DS,
where the transition model is approximated by a Gaussian
p(s′|s,a) = N (s′;µΘ(s,a);σ2

Θ(s,a)), here the variance
is the sum of the epistemic and aleatoric variance. Second,
we consider OPE-TS1 where the transition model is the
mixture of predictive Gaussians in (5). This means that, in
every step, one of the NN models is chosen uniformly at
random to compute the next state distribution. Third, we con-
sider OPE-TSINF, where, for every episode, we randomly
commit to one of the K NNs.

We investigate the following three aspects: 1) whether

a method yields reliable lower bounds, 2) the effect of
the offline dataset size, and 3) the curse of long horizons.
Figure 3 and 4 report the estimated expected policy
returns, averaged over 5 seeds, alongside the corresponding
confidence intervals.

Reliable Lower Bounds. The HAMBO variants are de-
signed to give reliable lower bounds on the true expected
return. The results in Figure 3 and 4 empirically confirm that,
across all seeds, all NN-based HAMBO variants reliably
provide lower bounds on J(πe), and, thus, fulfill the COPE
requirements from Definition 2.1. In contrast, the neutral
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OPE variants which do not introduce pessimism w.r.t. the
epistemic uncertainty of the transition model fail to do so.
In many cases, they overestimate the true policy value, par-
ticularly in the Hopper environment. This demonstrates the
importance of pessimism in model-based COPE and affirms
the validity of HAMBO, even with BNN models, where
calibration (Definition 3.1) cannot be formally proven.

Offline Dataset Size and Tightness. The difference
between HAMBO estimates J̃(πe) and the true expected
reward J(πe) depends on the strength of the transition adver-
sary, which is limited by the size of the epistemic confidence
sets. As the size of the offline datasets Db increases, we can
generally expect the epistemic uncertainty to shrink. Thus,
the adversary η becomes less powerful and the HAMBO
estimates become an increasingly tight lower bound.

In Figure 3, we empirically investigate this effect by vary-
ing the offline dataset size n. As we hypothesized, we can
observe the general trend that the HAMBO estimates come
close to the true policy value, as n increases. Moveover,
we observe that the HAMBO-DA1 estimates are always
strictly smaller than those of the HAMBO-DAINF variant.
This is expected, since in the DA1 variant, the adversary
can pick the worst-case NN transition model at every step
while in the case of DAINF the adversary can only do so per
trajectory, and, thus has less power. Since our experiment
results indicate that the pessimism in HAMBO-DAINF is
sufficient to obtain reliable lower bounds in practice, we con-
clude that HAMBO-DAINF is the preferred choice among
the two. While HAMBO-DAINF performs better in Hopper
and HalfCheetah, HAMBO-CA yields the tightest lower
bounds in the Pendulum environment.

The Curse of the Long Horizons. Finally, we investigate
the effect of the horizon length T on our COPE estimates.
Over the course of a trajectory, the transition model estima-
tion errors can compound and lead to large discrepancies.
This is a well-studied phenomenon in model-based RL [e.g.
see Janner et al., 2019]. In our case, this is reflected by
the worst-case lower bound in Theorem 3.5 which depends
exponentially on T .

To evaluate the empirical effect of horizon length, we report
the (C)OPE estimates for an offline dataset of size n = 105

across varying horizon lengths: T = 100, 200 and 400 for
the Pendulum and Hopper. For HalfCheetah, we only report
horizon lengths of T = 100 and 150. Figure 4 displays the
corresponding results. For an increasing horizon length,
the variance of the neutral variants increases and the lower
bounds of the conservative HAMBO estimates become
looser. However, the observed decline in tightness in
Figure 4 is much less pronounced than the exponential
decline of the worst-case bound in Theorem 3.5.

For large horizon lengths, it can happen that the hallucinated
trajectory under the pessimistic transition model strives far
outside the support of the offline data. In such cases, unlike

neutral OPE methods, HAMBO will still provide lower
bounds on the true expected return. However, these bounds
can be very pessimistic. For instance, this can be observed
in the case of Pendulum, where for T = 400 the estimates
of HAMBO-DA1 and HAMBO-DAINF go out of the
chart. Making accurate long-horizon predictions is generally
very hard. For instance, this is discussed extensively in
the context of model-based RL in Janner et al. [2019].
Often, a discount factor is used when computing returns
to alleviate these issues. We highlight that we work with
undiscounted returns and continuous state-action spaces,
and, thus, operate in the most challenging setting for OPE.

6 RELATED WORK

This work mainly contributes to the literature on off-policy
evaluation for MDPs, which we divide to three categories.

Model-Free OPE. The key challenge in OPE is to the
distribution shift between behavior and evaluated policy.
A popular natural approach to correct the distribution mis-
match is to use importance sampling (IS) ratios to re-weight
the rewards collected by the behavior policy [Precup et al.,
2000, Dudík et al., 2011] or to adjust the recursive updates
when estimating the values directly via the Bellman equation
[Precup et al., 2001, Sutton et al., 2015, Hallak and Mannor,
2017]. Some work also combine both approaches to obtain
a more favorable bias-variance trade-off [Jiang and Li, 2016,
Thomas and Brunskill, 2016]. Unlike HAMBO, these ap-
proaches are model-free, i.e., they do not learn a model of
the state transitions. However, they suffer from three key
disadvantages: First, they have notoriously high variance, es-
pecially if the evaluated policy differs a lot from the behavior
policy Levine et al. [2020]. Second, they require the support
of the behavior occupancy measure ρπb to contain the sup-
port of ρπe which is often not the case. In contrast, HAMBO
still provides valid estimates in this scenario. Third, to com-
pute the importance ratios, they assume access to the dis-
tribution of behavior policy which is almost never the case
in practical applications where data is often collected by
human experts. HAMBO does not require access to the
behavior policy and, thus, is much more broadly applicable.

A recent line of work [Nachum et al., 2019a,b, Zhang et al.,
2020, Yang et al., 2020] estimates the state occupancy cor-
rection ratios via a form of fixed point iteration, and does
not require access to the behavior policy. However, the
Bellmann-like fixed point iteration is not applicable to the
finite horizon case that we study in this paper. In addition,
due to the fixed point iteration, it is very hard to quantify
the uncertainty or bound error that is associated with such
OPE estimates, making them poorly suited to COPE.

Model-Based OPE. This approach first learns the transition
dynamics, to then simulate rollouts with the evaluation pol-
icy πe and thereby estimate the expected reward of πe [e.g.,
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Fonteneau et al., 2013, Hanna et al., 2017, Kostrikov and
Nachum, 2020]. Due to error in predicting the transitions,
the resulting OPE estimate may overestimate the policy’s
performance which is prohibited in safety-critical appli-
cations. Our approach additionally simulates pessimistic
trajectories using the model’s epistemic uncertainty, to avoid
overestimation. Further, to the best of our knowledge, Theo-
rem 3.8 is the first consistency result for model-based OPE.

COPE and High-Confidence OPE. We study the problem
of COPE which seeks a high-probability lower bound on
the expected return. This is is closely related to estimating
confidence bounds for OPE. Thomas et al. [2015] provide
such confidence bounds for IS-based OPE estimates.
However, due to the high variance of IS estimates, such
bounds are often very loose [Levine et al., 2020]. Kallus and
Uehara [2020] and Shi et al. [2021] propose a model-free
approach to give asymptotically normal confidence intervals
for directly J(π). Assuming that the Q-function resides
in an RKHS, Feng et al. [2020] and Feng et al. [2021]
present rates of convergence, under theoretically unverified
assumptions about the MDP. These model-free approaches
only work for discounted, infinite-horizon MDPs, thus, are
not generally applicable to our finite-horizon setting.

Hanna et al. [2017], Kostrikov and Nachum [2020] use
model-based bootstrapping to construct confidence intervals
for the OPE estimates. Kostrikov and Nachum [2020] prove
the asymptotic correctness of the bootstrap confidence inter-
vals only for finite state-action spaces. In contrast, we show
the validity of our COPE estimates non-asymptotically for
any |Db|, and in continuous state-action spaces. Alterna-
tively, Fonteneau et al. [2009] and Paduraru [2013] employ
a Lipschitz argument to obtain valid COPE estimates. Our
derivation of the worst-case lower bound in Theorem 3.5
also uses Lipschitz continuity. However, the HAMBO es-
timate provide a tighter lower bound on the true policy
value, as we use the local confidence intervals rather than
the global Lipschitz constants to introduce pessimism. Fur-
thermore, unlike the mentioned work, HAMBO does not
require knowledge of the Lipschitz constant and works with
sub-Gaussian noise.

7 CONCLUSION

HAMBO, a novel approach for COPE that forms a pes-
simistic estimate of the expected return by hallucinating
adversarial trajectories within the epistemic confidence re-
gions of the estimated transition model. We formally prove
the validity and consistency of the resulting COPE estimates.
We propose various scalable NN-based variants of HAMBO
and empirically demonstrate that they give reliable and tight
lower bounds on the true expected return.

Importantly, our approach does not require access to the
probability distribution of the behavior policy and gives

reliable estimates, even when the support evaluation pol-
icy’s occupancy measure is not contained in the offline data
distribution. This makes HAMBO particularly relevant for
safety-critical real-world applications, where the offline data
is mostly collected by human experts and we need to make
reliable decisions about whether a given policy is good
enough to be deployed.

HAMBO can be naturally combined with other offline rein-
forcement learning (ORL) algorithms to solve safety-critical
ORL tasks. We leave this for future work to investigate.
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