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A PROOFS

Proof of Proposition 1. Let P,Q ⊂ ∆(Y, σ(Y)) be credal sets, and assume |Y| = 2. Then we have the following.

• Vol(P) ≥ 0 and Vol(P) ≤ Vol(∆2−1) =
√
2. Hence Vol(·) satisfies A1.

• The volume being a continuous functional is a well-known fact that comes from the continuity of the Lebesgue measure,
so Vol(·) satisfies A2.

• Q ⊂ P =⇒ Vol(Q) ≤ Vol(P). This comes from the fundamental property of the Lebesgue measure, so Vol(·)
satisfies A3.

• Consider a sequence (Pn) of credal sets on (Y, σ(Y)) such that limn→∞[Pn(A) − Pn(A)] = 0, for all A ∈ σ(Y).
Then, this means that there exists N ∈ N such that for all n ≥ N , the geometric representation of Pn is a subset of the
geometric representation of Pn+1. In addition, the limiting element of (Pn) is a (multi)set P⋆ whose elements are all
equal to P ⋆, so its geometric representation is a point and its volume is 0. Hence, probability consistency is implied by
continuity A3, so Vol(·) satisfies A4’.

• The volume is invariant to rotation and translation. This is a well-known fact that comes from the fundamental property
of the Lebesgue measure, so Vol(·) satisfies A7.

Let us now show that the volume operator satisfies sub-additivity A5. Let Y = Y1 × Y2. In addition, suppose we are in
the general case in which |Y| = |Y1| = |Y2| = 2. In particular, let Y = {(y1, y2), (y3, y4)}, so that Y1 = {y1, y3} and
Y2 = {y2, y4}. Suppose also y1 ̸= y3 and y2 ̸= y4. Now, pick any probability measure P on Y . In general, we would have
that its marginal margY1

(P ) = P ′ on Y1 is such that P ′(yi) =
∑

j P ((yi, yj)). Similarly for marginal margY2
(P ) = P ′′

on Y2. In our case, though, the computation is easier. To see this, fix y1. Then, we should sum over j the probability of
(y1, yj), yj ∈ Y2. But the only pair (y1, yj) is (y1, y2). A similar argument holds if we fix y3, or any of the elements of Y2.
Hence, we have that

P ′(y1) = P ((y1, y2)) = P ′′(y2) and P ′(y3) = P ((y3, y4)) = P ′′(y4).

Let P ′ and P ′′ denote the marginal convex sets of probability distributions on Y1 and Y2, respectively, and let P denote the
convex set of joint probability distributions on Y = Y1 ×Y2 [Couso et al., 1999]. Then, given our argument above, we have
that Vol(P) < Vol(P ′) + Vol(P ′′) = 2Vol(P). So in the general |Y| = |Y1| = |Y2| = 2 case where y1 ̸= y3 and y2 ̸= y4,
the volume is subadditive.

Proof of Proposition 2. Immediate from the assumption on the instance of SI.

Proof of Theorem 1. Pick any compact set P ⊂ M(Ω,F) and any set Q satisfying (a)-(c). Let Bd
r ⊂ Rd denote a generic

ball in Rd of radius r > 0. Notice that N pack
r−ϵ (Q′) = N pack

r−ϵ (P)−N pack
r−ϵ (Q) ≥ 0 because P ⊃ Q. Then, the proof goes as
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follows

Vol(P)− Vol(Q′)

Vol(P)
=

1
c(r,d,P)Vol(P̃r)− 1

c(r−ϵ,d,Q′)Vol(Q̃′
r−ϵ)

1
c(r,d,P)Vol(P̃r)

(1)

≥
Vol(P̃r)− Vol(Q̃′

r−ϵ)

Vol(P̃r)
(2)

=
N pack

r (P)Vol(Bd
r )−N pack

r−ϵ (Q′)Vol(Bd
r−ϵ)

N pack
r (P)Vol(Bd

r )
(3)

=
N pack

r (P)Vol(Bd
1 )r

d −N pack
r−ϵ (Q′)Vol(Bd

1 )(r − ϵ)d

N pack
r (P)Vol(Bd

1 )r
d

(4)

=
N pack

r (P)rd −N pack
r−ϵ (Q′)(r − ϵ)d

N pack
r (P)rd

= 1−
N pack

r−ϵ (Q′)

N pack
r (P)

(
1− ϵ

r

)d
≥ 1−

(
1− ϵ

r

)d
, (5)

where (1) comes from equation (3), (2) comes from the fact that r − ϵ ≤ r =⇒ c(r − ϵ, d,Q′) ≥ c(r, d,P) by (4), (3)
comes from P̃r being the union of pairwise disjoint balls of radius r, (4) comes from properties of the volume of a ball of
radius r in Rd, and (5) comes from property (c) of Q.

B HIGH-DIMENSIONAL PROBABILITY

Since Theorem 1 in Section 4.2 is intimately related with Carl-Pajor’s Theorem [Ball and Pajor, 1990], we state (a version)
of the theorem here.

Theorem 1 (Carl-Pajor). Let B1,d denote the d-dimensional unit euclidean ball, and let P ⊂ B1,d be a polytope with
m ∈ N vertices. Then, we have

Vol(P)

Vol(B1,d)
≤

(
4

√
logm

d

)d

. (6)

For further results connecting high-dimensional probability and data science, see Vershynin [2018].
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