Is the Volume of a Credal Set a Good Measure for Epistemic Uncertainty? (Supplementary Material)

Yusuf Sale ${ }^{1,3}$
Michele Caprio ${ }^{2}$
Eyke Hüllermeier ${ }^{1,3}$
${ }^{1}$ Institute of Informatics, University of Munich (LMU), Germany
${ }^{2}$ PRECISE Center, Department of Computer and Information Science, University of Pennsylvania, USA
${ }^{3}$ Munich Center for Machine Learning, Germany

A PROOFS

Proof of Proposition 1 Let $\mathcal{P}, \mathcal{Q} \subset \Delta(\mathcal{Y}, \sigma(\mathcal{Y}))$ be credal sets, and assume $|\mathcal{Y}|=2$. Then we have the following.

- $\operatorname{Vol}(\mathcal{P}) \geq 0$ and $\operatorname{Vol}(\mathcal{P}) \leq \operatorname{Vol}\left(\Delta^{2-1}\right)=\sqrt{2}$. Hence $\operatorname{Vol}(\cdot)$ satisfies A1.
- The volume being a continuous functional is a well-known fact that comes from the continuity of the Lebesgue measure, so $\operatorname{Vol}(\cdot)$ satisfies A2.
- $\mathcal{Q} \subset \mathcal{P} \Longrightarrow \operatorname{Vol}(\mathcal{Q}) \leq \operatorname{Vol}(\mathcal{P})$. This comes from the fundamental property of the Lebesgue measure, so $\operatorname{Vol}(\cdot)$ satisfies A3.
- Consider a sequence $\left(\mathcal{P}_{n}\right)$ of credal sets on $(\mathcal{Y}, \sigma(\mathcal{Y}))$ such that $\lim _{n \rightarrow \infty}\left[\bar{P}_{n}(A)-\underline{P}_{n}(A)\right]=0$, for all $A \in \sigma(\mathcal{Y})$. Then, this means that there exists $N \in \mathbb{N}$ such that for all $n \geq N$, the geometric representation of \mathcal{P}_{n} is a subset of the geometric representation of \mathcal{P}_{n+1}. In addition, the limiting element of $\left(\mathcal{P}_{n}\right)$ is a (multi)set \mathcal{P}^{\star} whose elements are all equal to P^{\star}, so its geometric representation is a point and its volume is 0 . Hence, probability consistency is implied by continuity A3, so $\operatorname{Vol}(\cdot)$ satisfies A4'.
- The volume is invariant to rotation and translation. This is a well-known fact that comes from the fundamental property of the Lebesgue measure, so $\operatorname{Vol}(\cdot)$ satisfies A7.

Let us now show that the volume operator satisfies sub-additivity A5. Let $\mathcal{Y}=\mathcal{Y}_{1} \times \mathcal{Y}_{2}$. In addition, suppose we are in the general case in which $|\mathcal{Y}|=\left|\mathcal{Y}_{1}\right|=\left|\mathcal{Y}_{2}\right|=2$. In particular, let $\mathcal{Y}=\left\{\left(y_{1}, y_{2}\right),\left(y_{3}, y_{4}\right)\right\}$, so that $\mathcal{Y}_{1}=\left\{y_{1}, y_{3}\right\}$ and $\mathcal{Y}_{2}=\left\{y_{2}, y_{4}\right\}$. Suppose also $y_{1} \neq y_{3}$ and $y_{2} \neq y_{4}$. Now, pick any probability measure P on \mathcal{Y}. In general, we would have that its marginal $\operatorname{marg}_{\mathcal{Y}_{1}}(P)=P^{\prime}$ on \mathcal{Y}_{1} is such that $P^{\prime}\left(y_{i}\right)=\sum_{j} P\left(\left(y_{i}, y_{j}\right)\right)$. Similarly for marginal marg $\mathcal{Y}_{2}(P)=P^{\prime \prime}$ on \mathcal{Y}_{2}. In our case, though, the computation is easier. To see this, fix y_{1}. Then, we should sum over j the probability of $\left(y_{1}, y_{j}\right), y_{j} \in \mathcal{Y}_{2}$. But the only pair $\left(y_{1}, y_{j}\right)$ is $\left(y_{1}, y_{2}\right)$. A similar argument holds if we fix y_{3}, or any of the elements of \mathcal{Y}_{2}. Hence, we have that

$$
P^{\prime}\left(y_{1}\right)=P\left(\left(y_{1}, y_{2}\right)\right)=P^{\prime \prime}\left(y_{2}\right) \quad \text { and } \quad P^{\prime}\left(y_{3}\right)=P\left(\left(y_{3}, y_{4}\right)\right)=P^{\prime \prime}\left(y_{4}\right)
$$

Let \mathcal{P}^{\prime} and $\mathcal{P}^{\prime \prime}$ denote the marginal convex sets of probability distributions on \mathcal{Y}_{1} and \mathcal{Y}_{2}, respectively, and let \mathcal{P} denote the convex set of joint probability distributions on $\mathcal{Y}=\mathcal{Y}_{1} \times \mathcal{Y}_{2}$ [Couso et al., 1999]. Then, given our argument above, we have that $\operatorname{Vol}(\mathcal{P})<\operatorname{Vol}\left(\mathcal{P}^{\prime}\right)+\operatorname{Vol}\left(\mathcal{P}^{\prime \prime}\right)=2 \operatorname{Vol}(\mathcal{P})$. So in the general $|\mathcal{Y}|=\left|\mathcal{Y}_{1}\right|=\left|\mathcal{Y}_{2}\right|=2$ case where $y_{1} \neq y_{3}$ and $y_{2} \neq y_{4}$, the volume is subadditive.

Proof of Proposition 2. Immediate from the assumption on the instance of SI.

Proof of Theorem 11. Pick any compact set $\mathcal{P} \subset \mathcal{M}(\Omega, \mathcal{F})$ and any set \mathcal{Q} satisfying (a)-(c). Let $B_{r}^{d} \subset \mathbb{R}^{d}$ denote a generic ball in \mathbb{R}^{d} of radius $r>0$. Notice that $N_{r-\epsilon}^{\mathrm{pack}}\left(\mathcal{Q}^{\prime}\right)=N_{r-\epsilon}^{\mathrm{pack}}(\mathcal{P})-N_{r-\epsilon}^{\mathrm{pack}}(\mathcal{Q}) \geq 0$ because $\mathcal{P} \supset \mathcal{Q}$. Then, the proof goes as
follows

$$
\begin{align*}
\frac{\operatorname{Vol}(\mathcal{P})-\operatorname{Vol}\left(\mathcal{Q}^{\prime}\right)}{\operatorname{Vol}(\mathcal{P})} & =\frac{\frac{1}{c(r, d, \mathcal{P})} \operatorname{Vol}\left(\tilde{\mathcal{P}}_{r}\right)-\frac{1}{c\left(r-\epsilon, d, \mathcal{Q}^{\prime}\right)} \operatorname{Vol}\left(\tilde{\mathcal{Q}}_{r-\epsilon}^{\prime}\right)}{\frac{1}{c(r, d, \mathcal{P})} \operatorname{Vol}\left(\tilde{\mathcal{P}}_{r}\right)} \tag{1}\\
& \geq \frac{\operatorname{Vol}\left(\tilde{\mathcal{P}}_{r}\right)-\operatorname{Vol}\left(\tilde{\mathcal{Q}}_{r-\epsilon}^{\prime}\right)}{\operatorname{Vol}\left(\tilde{\mathcal{P}}_{r}\right)} \tag{2}\\
& =\frac{N_{r}^{\text {pack }}(\mathcal{P}) \operatorname{Vol}\left(B_{r}^{d}\right)-N_{r-\epsilon}^{\text {pack }}\left(\mathcal{Q}^{\prime}\right) \operatorname{Vol}\left(B_{r-\epsilon}^{d}\right)}{N_{r}^{\text {pack }}(\mathcal{P}) \operatorname{Vol}\left(B_{r}^{d}\right)} \tag{3}\\
& =\frac{N_{r}^{\text {pack }}(\mathcal{P}) \operatorname{Vol}\left(B_{1}^{d}\right) r^{d}-N_{r-\epsilon}^{\text {pack }}\left(\mathcal{Q}^{\prime}\right) \operatorname{Vol}\left(B_{1}^{d}\right)(r-\epsilon)^{d}}{N_{r}^{\text {pack }}(\mathcal{P}) \operatorname{Vol}\left(B_{1}^{d}\right) r^{d}} \tag{4}\\
& =\frac{N_{r}^{\text {pack }}(\mathcal{P}) r^{d}-N_{r-\epsilon}^{\text {pack }}\left(\mathcal{Q}^{\prime}\right)(r-\epsilon)^{d}}{N_{r}^{\text {pack }}(\mathcal{P}) r^{d}} \\
& =1-\frac{N_{r-\epsilon}^{\text {pack }}\left(\mathcal{Q}^{\prime}\right)}{N_{r}^{\text {pack }}(\mathcal{P})}\left(1-\frac{\epsilon}{r}\right)^{d} \\
& \geq 1-\left(1-\frac{\epsilon}{r}\right)^{d}, \tag{5}
\end{align*}
$$

where (1) comes from equation (3), (2) comes from the fact that $r-\epsilon \leq r \Longrightarrow c\left(r-\epsilon, d, \mathcal{Q}^{\prime}\right) \geq c(r, d, \mathcal{P})$ by (4), (3) comes from $\tilde{\mathcal{P}}_{r}$ being the union of pairwise disjoint balls of radius r, 4) comes from properties of the volume of a ball of radius r in \mathbb{R}^{d}, and (5) comes from property (c) of \mathcal{Q}.

B HIGH-DIMENSIONAL PROBABILITY

Since Theorem 1 in Section 4.2 is intimately related with Carl-Pajor's Theorem [Ball and Pajor 1990], we state (a version) of the theorem here.

Theorem 1 (Carl-Pajor). Let $B_{1, d}$ denote the d-dimensional unit euclidean ball, and let $\mathcal{P} \subset B_{1, d}$ be a polytope with $m \in \mathbb{N}$ vertices. Then, we have

$$
\begin{equation*}
\frac{\operatorname{Vol}(\mathcal{P})}{\operatorname{Vol}\left(B_{1, d}\right)} \leq\left(4 \sqrt{\frac{\log m}{d}}\right)^{d} \tag{6}
\end{equation*}
$$

For further results connecting high-dimensional probability and data science, see Vershynin [2018].

