
Learning Good Interventions in Causal Graphs via Covering
(Supplementary Material)

Ayush Sawarni1 Rahul Madhavan1 Gaurav Sinha2 Siddharth Barman1

1Indian Institute of Science, Bangalore
2Microsoft Research, Bangalore

A MISSING PROOFS FROM SECTION 3.1

We first provide a standard concentration bound which will be used in the analysis. Then, we restate and prove Lemmas 2, 3,
and 4.

Lemma 1 (Hoeffding’s Inequality). Let Z1, . . . , Zn be independent bounded random variables with Zi ∈ [ai, bi], for all
i ∈ [n]. Then, for all ε ≥ 0:

P

{∣∣∣∣∣
n∑

i=1

(Zi − E [Zi])

∣∣∣∣∣ ≥ ε

}
≤ 2 exp

(
− 2ε2∑n

i=1(bi − ai)2

)
.

Lemma 2. For estimates obtained via a covering intervention set I, as in Algorithm 1, write E to denote the event that

|∆P
(
zi | zPa(i)

)
| ≤

√
|I|(d+log (NT ))

T for all vertices i ∈ V . Then, Pr{E} ≥
(
1− 2

T

)
.

Proof. Since I is a covering intervention set, for each conditional distribution P
(
zi | zPa(i)

)
, we have at least T

|I| inde-

pendent samples. Now, we invoke Lemma 1, with ε =
√

|I| log (2dNT )
T , and apply the union bound over all i ∈ [N ] and all

assignments to Pa(i). This gives us the desired probability bound.

Lemma 3. For estimates obtained via a covering intervention set I, as in Algorithm 1, the following event holds with
probability at least

(
1− 2

T

)
: ∑

z∈Z(A)

|Lz| ≤ 4(Nη)2 for all A ∈ A.

Here, parameter η =
√

|I|(d+log (NT ))
T and T is moderately large T .

Proof. We will use the fact that each error term in Lz satisfies the bound stated in Lemma 2. Moreover, we utilize the graph
structure to marginalize variables that do not appear in an expansion of Lz.

∑
z∈Z(A)

|Lz| ≤
∑

z∈Z(A)

|V(A)|∑
k=2

∑
U⊆V(A)
|U |=k

(∏
i∈U

∣∣∆P
(
zi | zPa(i)

)∣∣) ∏
j∈V(A)\U

P
(
zj | zPa(j)

)

=

|V(A)|∑
k=2

∑
z∈Z(A)

∑
U⊆V(A)
|U |=k

(∏
i∈U

∣∣∆P
(
zi | zPa(i)

)∣∣) ∏
j∈V(A)\U

P
(
zj | zPa(j)

) .
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First, we upper bound each term considered in the outer-most sum. Towards this, let U = {Vx1 , Vx2 , . . . , Vxk
} to be a subset

of vertices that appears in the inner sum. Here, x1 < x2 < . . . < xk and, as mentioned previously, the indexing of the
vertices respects a topological ordering over the causal graph. In the derivation below, we will split the sum into k parts,∑

z[1:x1]

∑
z(x1:x2]

. . .
∑

z(xk:N]
, and individually bound the marginalized probability distribution.

∑
z∈Z(A)

∑
U⊆V(A)
|U |=k

(∏
i∈U

∣∣∆P
(
zi | zPa(i)

)∣∣) ∏
j∈V(A)\U

P
(
zj | zPa(j)

)

≤
∑

U⊆V(A)
|U |=k

∑
z∈Z(A)

ηk

 ∏
j∈V(A)\U

P
(
zj | zPa(j)

) (via Lemma 2,
∣∣∆P

(
zi | zPa(i)

)∣∣ ≤ η)

=
∑

U⊆V(A)
|U |=k

ηk
∑

z[1:x1]∈Z[1:x1](A)

 ∏
j1∈V[1:x1)(A)

P
(
zj1 | zPa(j1)

) ∑
z(x1:x2]∈Z(x1:x2](A)

 ∏
j2∈V(x1:x2)(A)

P
(
zj2 | zPa(j2)

) . . .

∑
z∈Z(xi:xi+1](A)

 ∏
ji∈V(xi:xi+1)(A)

P
(
zji | zPa(ji)

) . . .
∑

z(xk:N]∈Z(xk:N](A)

 ∏
jk∈V(xk:N](A)

P
(
zjk | zPa(jk)

) (1)

The last term in the above expression can be bounded as follows

∑
z(xk:N]∈Z(xk:N](A)

 ∏
j∈V(xk:N](A)

P
(
zj | zPa(j)

) =
∑

z(xk:N]∈Z(xk:N](A)

Pdo(A)

[
V(xk:N ](A) = z(xk:N ]|Pa(V(xk:N ](A))

]
= Pdo(A)

[
VN = 1|Pa

(
V(xk:N ](A)

)]
≤ 1.

For all other terms, we have the following inequality

∑
z∈Z(xi:xi+1](A)

 ∏
j∈V(xi:xi+1)(A)

P
(
zj | zPa(j)

)
=

∑
zxi+1

∈{0,1}

∑
z(xi:xi+1)∈Z(xi:xi+1)(A)

 ∏
j∈V(xi:xi+1)(A)

P
(
zj | zPa(j)

)
=

∑
zxi+1

∈{0,1}

∑
z(xi:xi+1)∈Z(xi:xi+1)(A)

Pdo(A)

[
V(xi:xi+1)(A) = z(xi:xi+1)|Pa

(
V(xi:xi+1)(A)

)]
≤

∑
zxi+1

∈{0,1}

1

= 2.

Substituting in (1), we get

∑
z∈Z(A)

∑
U⊆V(A)
|U |=k

(∏
i∈U

∣∣∆P
(
zi | zPa(i)

)∣∣) ∏
j∈V(A)\U

P
(
zj | zPa(j)

) ≤
∑

U⊆V(A)
|U |=k

(2η)
k
=

(
N

k

)
(2η)

k



Therefore, the sum
∑

z∈Z(A) |Lz| satisfies

∑
z∈Z(A)

|Lz| ≤
N∑

k=2

(
N

k

)
(2η)

k

=

N∑
k=0

(
N

k

)
(2η)

k − 2Nη − 1

= (1 + 2η)N − 2Nη − 1

≤ e2Nη − 2Nη − 1

≤ 1 + 2Nη + (2Nη)2 − 2Nη − 1 (with η ≤ 1
2N )

≤ 4N2η2.

The lemma stands proved.

Lemma 4. For estimates obtained via a covering intervention set I, as in Algorithm 1, the following event holds with
probability at least

(
1− 2

T

)
: ∣∣∣∣∣∣

∑
z∈Z(A)

Hz

∣∣∣∣∣∣ ≤
√

N |I| log |A|T
T

for all A ∈ A.

Proof. The definition of Hz gives us∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

z∈Z(A)

∑
i∈V(A)

∆P
(
zi | zPa(i)

) ∏
j∈V(A),j ̸=i

P
(
zj | zPa(j)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈V(A)

∑
z∈Z(A)

∆P
(
zi | zPa(i)

) ∏
j∈V(A),j ̸=i

P
(
zj | zPa(j)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑

i∈V(A)

∑
z[1:i]∈

Z[1:i](A)

∆P
(
zi | zPa(i)

) ∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

) ∑
z(i:N]∈

Z(i:N](A)

∏
k∈V(i:N](A)

P
(
zk | zPa(k)

)∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑

i∈V(A)

∑
z[1:i]∈

Z[1:i](A)

∆P
(
zi | zPa(i)

) ∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

) ∑
z(i:N]∈

Z(i:N](A)

Pdo(A)

[
V(i:N ](A) = z(i:N ] | Pa

(
V(i:N ](A)

)]∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑

i∈V(A)

∑
z[1:i]∈

Z[1:i](A)

∆P
(
zi | zPa(i)

) ∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

)
Pdo(A)

[
VN = 1 | Pa

(
V(i:N ](A)

)]∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑

i∈V(A)

∑
zi∈{0,1}

∑
z[1:i)∈

Z[1:i)(A)

∆P
(
zi | zPa(i)

) ∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

)
Pdo(A)

[
VN = 1 | Pa

(
V(i:N ](A)

)]∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑

i∈V(A)

∑
zi∈{0,1}

∑
zPa(i)∈

ZPa(i)(A)

∆P
(
zi | zPa(i)

) ∑
zAc(i)∈

ZAc(i)(A)

∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

)
Pdo(A)

[
VN = 1 | Pa

(
V(i:N ](A)

)]∣∣∣∣∣∣∣∣



Recall that Ac(i) = [1, i) \ Pa(i) and write

ci(zi, zPa(i)) :=
∑

zAc(i)∈
ZAc(i)(A)

∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

)
Pdo(A)

[
VN = 1 | Pa

(
V(i:N ](A)

)]
(2)

Also, as a shorthand for zi = 1 and zi = 0 we will write 1i and 0i, respectively. With these notations, we have∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

i∈V(A)

∑
zi∈{0,1}

∑
zPa(i)∈ZPa(i)(A)

∆P
(
zi | zPa(i)

)
ci(zi, zPa(i))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈V(A)

∑
zPa(i)∈ZPa(i)(A)

∆P
(
1i | zPa(i)

) (
ci(1i, zPa(i))− ci(0i, zPa(i))

)∣∣∣∣∣∣
(since ∆P

(
1i | zPa(i)

)
= −∆P

(
0i | zPa(i)

)
)

Since I is a covering intervention set, for each pair (i, zPa(i)), there exists an intervention I ∈ I such that intervening do(I)
provides a sample from the conditional probability distribution P[Vi = 1 | Pa(Vi) = zi]. Hence, Line 2 of the algorithm
provides at least T

|I| independent samples from the conditional distribution P[Vi = 1 | Pa(Vi) = zi]. We write the sth

sample for this conditional distribution by Ys(i, zPa(i)). Now, we have

∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
∑

i∈V(A)

∑
zPa(i)∈

ZPa(i)(A)

|I|
T

T/|I|∑
s=1

Ys(i, zPa(i))− P
(
1i | zPa(i)

) (ci(1i, zPa(i))− ci(0i, zPa(i)))

∣∣∣∣∣∣∣∣
We will apply Hoeffding’s inequality (Lemma 1) to bound the above expression. Note that in this expression, besides
Ys(i, zPa(i))-s, all the other terms are deterministic. In particular, we show in Claim 5 (stated and proved below) that∑

zPa(i)∈ZPa(i)(A)(c(1i, zPa(i))− c(0i, zPa(i)))
2 ≤ 1, for all i. Hence, for any A ∈ A, Lemma 1 gives us

P

∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣ ≥ ε

 ≤ 2 exp

(
−Tε2

|I|
∑

i∈V(A)

∑
zPa(i)∈ZPa(i)(A)(ci(1i, zPa(i))− ci(0i, zPa(i)))2

)

≤ 2 exp

(
−Tε2

|I| |V(A)|

)
(via Claim 5)

≤ 2 exp

(
−Tε2

|I| N

)
.

Setting ε =
√

N |I| log (|A|T )
T and taking union bound over all A ∈ A, gives us the required probability bound. This

completes the proof of the lemma.

We next establish the claim used in the proof of Lemma 4.

Claim 5. ∑
zPa(i)∈ZPa(i)(A)

(c(1i, zPa(i))− c(0i, zPa(i)))
2 ≤ 1.

Proof. The definition of c(zi, zPa(i)) (see equation (2)) gives us

|c(1i, zPa(i))− c(0i, zPa(i))|

=

∣∣∣∣ ∑
z∈ZAc(i)(A)

∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

)
Pdo(A)

[
V[i+1:N ](A) = z[i+1:N ] | Pa

(
V[1:i](A)

)
= (z[1:i) ∪ 1i)

]
−



∑
z∈ZAc(i)(A)

∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

)
Pdo(A)

[
V[i+1:N ](A) = z[i+1:N ] | Pa

(
V[1:i](A)

)
= (z[1:i) ∪ 0i)

]∣∣∣∣
=

∣∣∣∣ ∑
z∈ZAc(i)(A)

∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

)(
Pdo(A)

[
V[i+1:N ](A) = z[i+1:N ] | Pa(V[1:i](A)) = (z[1:i) ∪ 1i)

]
−

Pdo(A)

[
V[i+1:N ](A) = z[i+1:N ] | Pa(V[1:i](A)) = (z[1:i) ∪ 0i)

])∣∣∣∣
≤

∑
z∈ZAc(i)(A)

∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

) ∣∣∣∣Pdo(A)

[
V[i+1:N ](A) = z[i+1:N ] | Pa(V[1:i](A)) = (z[1:i) ∪ 1i)

]
−

Pdo(A)

[
V[i+1:N ](A) = z[i+1:N ] | Pa(V[1:i](A)) = (z[1:i) ∪ 0i)

]∣∣∣∣
≤

∑
z∈ZAc(i)(A)

∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

)
= Pdo(A)

[
VPa(i)(A) = zPa(i)

]
.

Hence, under intervention A ∈ A, we have∑
zPa(i)∈ZPa(i)(A)

(c(1i, zPa(i))− c(0i, zPa(i)))
2 ≤

∑
zPa(i)∈ZPa(i)(A)

|c(1i, zPa(i))− c(0i, zPa(i))|

≤
∑

zPa(i)∈ZPa(i)(A)

Pdo(A)

[
VPa(i)(A) = zPa(i)

]
≤ 1.

This completes the proof of the claim.

B REGRET ANALYSIS FOR SEMI MARKOV BAYESIAN NETWORKS (SMBNS)

We introduce the notion of pseudo parents of a vertex in an SMBN graph G, which we will use throughout the proof.
Recall that V denotes the set of vertices, and they conform to a topological ordering. We assume that each c-component Ci

maintains the ordering. For an intervention A, consider any c-component C ∈ C(A) with vertices (U1, U2, . . . , Um), the
pseudo parents of a vertex Uj is defined as

Pa′(j) := Pa({U1, U2, . . . Uj}) ∪ {U1, U2, . . . Uj−1} (3)

For any SMBN graph with in-degree at most d and c-components of size at most ℓ, the size |Pa′(j)| is at most dℓ + ℓ.
Furthermore, note that the set Pa′(j) will always precede the vertex Vj in any topological ordering of the graph.

The next lemma shows that the distribution of any c-component conditioned on its parents, PzPa(C)
(zC), can be factorized

into the distribution of individual vertices conditioned on its pseudo parents. This allows us to extend the techniques used for
the regret analysis of fully observable graphs (Section 3.1) to the case of SMBNs. Intuitively, one can view the factorization
of an SMBN (under an intervention A) as a factorization over a fully observable graph where each vertex Vj has the set
Pa′(j) as its parents.

Lemma 6. For any intervention A and any c-component C ∈ C(A), consisting of vertices {U1, U2 . . . Um}, we have

PzPa(C)
(zC) =

∏
j∈C

PA

(
zj | zPa′(j)

)
Here Pa′(j) denotes the set of pseudo parents as defined in equation (3).



Proof. First, note that intervening on parent vertices of a c-component (under intervention A) is the same as conditioning on
them. Specifically,

PzPa(C)
(zC) = PA

(
zC | zPa(C)

)
Further, the chain rule of conditional probability gives us

PA

(
zC | zPa(C)

)
=
∏
j∈C

Pdo(A)

[
Uj = zj | Pa(C) = zPa(C), (U1 . . . Uj−1) = z(U1...Uj−1)

]
Next, we use the notion of d-separation (see [Pearl, 2009] ) to argue that conditioning on just the set Pa′(j) is sufficient.
In particular, note that the set Y = Pa({Uj+1 . . . Um}) is d-separated from vertex Uj by the set X = Pa({U1 . . . Uj}) ∪
({U1 . . . Uj−1}). This is due to the fact that all paths from a vertex in Y to Uj are either blocked by a collider vertex
in {Uj+1 . . . Um} (and the collider vertex is not included X), or the path is blocked by a vertex in X . This implies that
conditioned on X , Uj is independent of all vertices in Y [Pearl, 2009] . Formally, we write

Pdo(A)

[
Uj = zj | Pa(C) = zPa(C), (U1 . . . Uj−1) = z(U1...Uj−1)

]
= Pdo(A)[Uj = zj | Pa(U1 . . . Uj−1) = zPa(U1...Uj),Pa(Uj+1 . . . Um) = zPa(Uj+1...Um), (U1 . . . Uj−1) = z(U1...Uj−1)]

= Pdo(A)

[
Uj = zj | Pa(U1 . . . Uj−1) = zPa(U1...Uj), (U1 . . . Uj−1) = z(U1...Uj−1)

]
(since Pa({U1 . . . Uj}) ∪ {U1 . . . Uj−1} d-separates Uj from Pa({Uj+1 . . . Um}))

= Pdo(A) [Uj = zj | Pa′(j)] (by definition of Pa′(j))

Therefore,

PzPa(C)
(zC) = PA

(
zC | zPa(C)

)
=
∏
j∈C

Pdo(A)

[
Vj = zj | Pa′(j) = zPa′(j)

]
=
∏
j∈C

PA

(
zj | zPa′(j)

)
This completes the proof of the lemma.

Now, recall that the estimate µ̂(A) can be written as

µ̂ (A) =
∑

z∈Z(A)

∏
Ci∈C(A)

P̂zPa(Ci)
(zCi)

=
∑

z∈Z(A)

∏
i∈C(A)

(
PA

(
zCi | zPa(Ci)

)
+∆PA

(
zCi | zPa(Ci)

))
= µ(A) +

∑
z∈Z(A)

( ∑
Ci∈C(A)

∆PA

(
zCi | zPa(Ci)

) ∏
Cj∈C(A),j ̸=i

PA

(
zCj | zPa(Cj)

)
+

∑
U⊆C(A)
|U |=2

( ∏
Ci∈U

∆PA

(
zCi | zPa(Ci)

)) ∏
Cj∈C(A)\U

PA

(
zCj | zPa(Cj)

)+

∑
U⊆C(A)
|U |=3

( ∏
Ci∈U

∆PA

(
zCi | zPa(Ci)

)) ∏
Cj∈C(A)\U

PA

(
zCj | zPa(Cj)

)+ · · ·

)
(expanding product terms)

Here, ∆P () denotes the error in the estimate of the conditional probabilities. Let Lz represent all the product entries in the



expansion that include more than one error term ( ∆P ()). Specifically,

Lz =

|C(A)|∑
k=2

∑
U⊆C(A)
|U |=k

( ∏
Ci∈U

∆PA

(
zCi

| zPa(Ci)

)) ∏
Cj∈C(A)\U

PA

(
zCj

| zPa(Cj)

)

=

|C(A)|∑
k=2

∑
U⊆C(A)
|U |=k

( ∏
Ci∈U

∆PA

(
zCi

| zPa(Ci)

)) ∏
C∈C(A)\Ci,

j∈C

PA

(
zj | zPa′(j)

) (via Lemma 6)

We further represent all the entries with a single ∆P () term as

Hz =
∑

Ci∈C(A)

∆PA

(
zCi

| zPa(Ci)

) ∏
Ck∈C(A)

k ̸=i

PA

(
zCk

| zPa(Ck)

)
=

∑
Ci∈C(A)

∆PA

(
zCi

| zPa(Ci)

) ∏
j∈V(A)\Ci

PA

(
zj | zPa′(j)

)
(4)

Here, the last equality follows from Lemma 6. Hence, we have

µ̂(A)− µ(A) =
∑

z∈Z(A)

(Hz + Lz) (5)

We will establish upper bounds on the sums of Lzs and Hzs in Lemma 8 and Lemma 9, respectively. These lemmas show
that the sum of the H terms dominates the sum of L terms. Furthermore, these bounds imply that the estimated reward µ̂(A)
is sufficiently close to the true expected reward µ(A) for each intervention A ∈ A.

Lemma 7. For estimates obtained via a covering intervention set I, as in Algorithm 1, write E to denote the event that

|∆PzPa(Ci)
(zCi) | ≤

√
|I|(ℓd+ℓ+log(NT ))

T for all c-components Ci ∈ C(A) and for all A ∈ A. Then, Pr {E} ≥
(
1− 2

T

)
.

Proof. Since I is a covering intervention set (see Defintion 2), for each distribution PzPa(i)
(zCi

), we have at least T
|I|

independent samples. Also, note that the total number of distributions to be estimated is at most 2(ℓd+ℓ)N . This follows
from the fact that each c-component—under any intervention—is a subset of a c-component in the original graph G, and the
number of c-components in G is at most N . Hence, the number of possible distinct c-components (across all intervention) is
at most N2ℓ. Furthermore, each c-component can have at most ℓd parents with at most 2ℓd distinct binary assignments to
the parents.

With this count in hand, we invoke Lemma 1, with ε =
√

|I|(log (2ℓd+ℓNT ))
T and apply the union bound over all (zCi

, zPa(Ci))
pairs. This gives us the desired probability bound and completes the proof of the lemma.

Lemma 8. For estimates obtained via a covering intervention set I, the following event holds with probability at least
(1− 2

T ): ∑
z∈Z(A)

|Lz| ≤ 4ℓ(Nη)2 for all A ∈ A.

Here, parameter η =
√

|I|(ℓd+ℓ+log(NT ))
T and T is moderately large.

Proof. We use the fact that each error term in Lz satisfies the bound stated in Lemma 7. Moreover, we use the graph
structure to marginalize variables that do not appear in the error terms. The idea is to split the sum

∑
z∈Z(A) into∑

z[1:x1]

∑
z(x1:x2]

. . .
∑

z(xk:N]
, where {x1, x2 . . . , xk} denotes all the indices in C(A) that show up as ∆P () in the



expression for Lz.

∑
z∈Z(A)

|Lz| ≤
∑

z∈Z(A)

|C(A)|∑
k=2

∑
U⊆C(A)
|U |=k

( ∏
Ci∈U

∣∣∆PA

(
zCi

| zPa(Ci)

)∣∣) ∏
Cj∈C(A)\U

PA

(
zCj

| zPa(Cj)

)

=

|C(A)|∑
k=2

∑
z∈Z(A)

∑
U⊆C(A)
|U |=k

( ∏
Ci∈U

∣∣∆PA

(
zCi | zPa(Ci)

)∣∣) ∏
Cj∈C(A)\U

PA

(
zCj | zPa(Cj)

)

≤
|C(A)|∑
k=2

∑
U⊆C(A)
|U |=k

∑
z∈Z(A)

ηk

 ∏
Cj∈C(A)\U

PA

(
zCj

| zPa(Cj)

) (via Lemma 7,
∣∣∆PA

(
zCi

| zPa(Ci)

)∣∣ ≤ η)

First, we upper bound each term considered in the outer-most sum. Towards this, let U denote the set of c-components
that show up as ∆P (), we define X := ∪Ci∈UCi = {x1, x2, · · · , xm} where xi denotes the vertex Vxi

∈ V(A). Note that
since c-components are at most of size ℓ and for |U | = k, we have |X| ≤ ℓk. Now, using Lemma 6, we obtain

∑
U⊆C(A)
|U |=k

∑
z∈Z(A)

ηk

 ∏
Cj∈C(A)\U

PA

(
zCj

| zPa(Cj)

)

=
∑

U⊆C(A)
|U |=k

∑
z∈Z(A)

ηk

 ∏
j∈V(A)\X

PA

(
zj | zPa′(j)

)

=
∑

U⊆C(A)
|U |=k

ηk
∑

z[1:x1]∈Z[1:x1](A)

 ∏
j∈V[1:x1)(A)

PA

(
zj | zPa′(j)

) ∑
z(x1:x2]∈Z(x1:x1](A)

 ∏
j∈V(x1:x2)(A)

PA

(
zj | zPa′(j)

) . . .

∑
z∈Z(xi:xi+1](A)

 ∏
i∈V(xi:xi+1)(A)

PA

(
zj | zPa′(j)

) . . .
∑

z(xk:N]∈Z(xk:N](A)

 ∏
j∈V(xk:N](A)

PA

(
zj | zPa′(j)

) (6)

The last term in the above expression can be bounded as follows

∑
z(xk:N]∈Z(xk:N](A)

 ∏
i∈V(xk:N](A)

PA

(
zj | zPa′(j)

) =
∑

z(xk:N]∈Z(xk:N](A)

Pdo(A)

[
V(xk:N ](A) = z(xk:N ]|Pa′(V(xk:N ](A))

]
= Pdo(A)

[
VN = 1|Pa′

(
V(xk:N ](A)

)]
≤ 1.

For all the other terms, we have the following bound

∑
z∈Z(xi:xi+1](A)

 ∏
i∈V(xi:xi+1)(A)

PA

(
zj | zPa′(j)

)
=

∑
zxi+1

∈{0,1}

∑
z(xi:xi+1)∈Z(xi:xi+1)(A)

 ∏
i∈V(xi:xi+1)(A)

PA

(
zj | zPa′(j)

)
=

∑
zxi+1

∈{0,1}

∑
z(xi:xi+1)∈Z(xi:xi+1)(A)

Pdo(A)

[
V(xi:xi+1)(A) = z(xi:xi+1)|Pa

′ (V(xi:xi+1)(A)
)]

≤
∑

zxi+1
∈{0,1}

1

= 2.



Substituting in (6), we get

∑
U⊆C(A)
|U |=k

∑
z∈Z(A)

ηk

 ∏
Cj∈C(A)\U

PA

(
zCj

| zPa(Cj)

) ≤
∑

U⊆C(A)
|U |=k

ηk 2ℓk (since |X| ≤ ℓk)

=

(
N

k

)(
2ℓη
)k

Therefore, the sum
∑

z∈Z(A) |Lz| satisfies

∑
z∈Z(A)

|Lz| ≤
N∑

k=2

(
N

k

)(
2ℓη
)k

=

N∑
k=0

(
N

k

)(
2ℓη
)k − 2ℓNη − 1

= (1 + 2ℓη)N − 2ℓNη − 1

≤ e2
ℓNη − 2ℓNη − 1

≤ 1 + 2ℓNη + (2ℓNη)2 − 2ℓNη − 1 (with η ≤ 1
2ℓN

)

≤ 4ℓN2η2

The lemma stands proved.

Lemma 9. For estimates obtained via a covering intervention set I, the following event holds with probability at least
1− 2

T : ∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣ ≤
√

N 4ℓ 2d |I| log (|A|T )
T

for all A ∈ A.

Proof. Equation (4) gives us∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

Ci∈C(A)

∑
z∈Z(A)

∆PA

(
zCi | zPa(Ci)

) ∏
j∈V(A)\Ci

PA

(
zj | zPa′(j)

)∣∣∣∣∣∣ .
Let X := {x1, x2 · · ·xm} be the vertices in a c-component Ci considered in the outer summation. Furthermore, for ease of
exposition, write (xk : xk+1)

′ := (xk : xk+1) \ Pa(Ci), i.e., the set (xk : xk+1)
′ excludes the parents of the c-component

Ci. We have∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣
=

∣∣∣∣∣ ∑
Ci∈C(A)

∑
zPa(Ci)

∈
ZPa(Ci)

(A)

∑
zCi

∈
ZCi

(A)

∆PA

(
zCi

| zPa(Ci)

) ∑
z[1:x1)′∈

Z[1:x1)′ (A)

∏
j1∈V[1:x1)(A)

P
(
zj1 | zPa′(j1)

)
∑

z(x1:x2)′∈
Z(x1:x2)′ (A)

∏
j2∈V(x1:x2)(A)

PA

(
zj2 | zPa′(j2)

)
. . .

∑
z(xk:xk+1)′∈

Z(xk:xk+1)′ (A)

∏
j2∈V(xk:xk+1)(A)

PA

(
zjk | zPa′(jk)

)
. . .

∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
∑

Ci∈C(A)

∑
zPa(Ci)

∈
ZPa(Ci)

(A)

∑
zCi

∈
ZCi

(A)

∆PA

(
zCi

| zPa(Ci)

)
ci
(
zCi

, zPa(Ci)

)
∣∣∣∣∣∣∣∣∣ .



Here,

ci(zCi , zPa(Ci)) :=∑
z[1:x1)′∈

Z[1:x1)′ (A)

∏
j1∈V[1:x1)(A)

PA

(
zj | zPa′(j1)

) ∑
z(x1:x2)′∈

Z(x1:x2)′ (A)

∏
j2∈V(x1:x2)(A)

PA

(
zj2 | zPa′(j2)

)
· · ·

∑
z(xk:xk+1)′∈

Z(xk:xk+1)′ (A)

∏
jk∈V(xk:xk+1)(A)

PA

(
zjk | zPa′(jk)

)
· · ·

∑
z(xm:N]′∈

Z(xm:N]′ (A)

∏
jm∈V(xk:xk+1)(A)

PA

(
zjm | zPa′(jm)

)

We show in Claim 10 (proved below) that ci(zCi , zPa(Ci)) ≤ 1. Therefore,

∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣
∑

Ci∈C(A)

∑
zPa(Ci)

∈
ZPa(Ci)

(A)

∑
zCi

∈
ZCi

(A)

∆P
(
zCi

| zPa(Ci)

)
)

∣∣∣∣∣∣∣∣∣ (7)

Since I is a covering intervention set, for each pair (Ci, zPa(Ci)), there exits an intervention I ∈ I such that intervening
do(I) provides a sample for the distribution P[VCi

| do(Pa(Ci) = zPa(Ci))]. Hence, we have at least T
|I| samples for the

distribution P[VCi | do(Pa(Ci) = zPa(Ci))]. We represent the sth sample for the distribution by indicator random variable
Ys(zCi , zPa(Ci)) which takes value one when VCi = zCi , else its zero. Hence, inequality (7) reduces to

∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣
∑

Ci∈V(A)

∑
zPa(Ci)

∈
ZPa(Ci)

(A)

|I|
T

T/|I|∑
s=1

 ∑
zCi

∈ZCi
(A)

Ys(zCi
, zPa(Ci))− PA

(
zCi

| zPa(Ci)

)
∣∣∣∣∣∣∣∣∣

In the above expression, the term
∑

zCi
∈ZCi

(A) Ys(zCi
, zPa(Ci))−PA

(
zCi

| zPa(Ci)

)
is an independent random quantity

bounded between [−2|Ci|, 2|Ci|]. We now apply Heoffding’s inequality (Lemma 1)

Pdo(A)

∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣ ≥ ε

 ≤ 2exp

(
−Tε2

2|I|
∑

Ci∈C(A)

∑
zPa(i)∈zPa(i)

22|Ci|

)

≤ 2exp

(
−Tε2

2|I|
∑

Ci∈C(A)

∑
zPa(i)∈zPa(i)

22ℓ

)
≤ 2exp

(
−Tε2

2|I|N2ℓd · 22ℓ

)

Setting ε =
√

2N |I| 2ℓd 4ℓ log (|A|·T )
T and taking union bound over all of A ∈ A, gives us the required probability bound.

This completes the proof of the lemma.

We next establish the claim used in the proof of Lemma 9.

Claim 10.
ci(zCi

, zPa(Ci)) ≤ 1.

Proof. It holds that

ci(zCi , zPa(Ci)) =∑
z[1:x1)′∈

Z[1:x1)′ (A)

∏
j1∈V[1:x1)(A)

PA

(
zj | zPa′(j)

) ∑
z(x1:x2)′∈

Z(x1:x2)′ (A)

∏
j2∈V(x1:x2)(A)

PA

(
zj2 | zPa′(j2)

)
· · ·

∑
z(xk:xk+1)′∈

Z(xk:xk+1)′ (A)

∏
jk∈V(xk:xk+1)(A)

PA

(
zjk | zPa′(jk)

)
· · ·

∑
z(xm:N]′∈

Z(xm:N]′ (A)

∏
jk∈V(xk:xk+1)(A)

PA

(
zjk | zPa′(jk)

)



We can upper bound each term in the above expression as shown below,∑
z(xk:xk+1)′∈

Z(xk:xk+1)′ (A)

∏
jk∈V(xk:xk+1)(A)

PA

(
zjk | zPa′(jk)

)

=
∑

z(xk:xk+1)′∈
Z(xk:xk+1)(A)

Pdo(A)

[
V(xk:xk+1)(A) = z(xk:xk+1)|Pa′(xk : xk+1)

]
= Pdo(A)

[
V(xk:xk+1)∩Pa(Ci)(A) = z(xk:xk+1)∩Pa(Ci)|Pa

′(xk : xk+1)
]

≤ 1

Substituting this in the expression for ci(zCi
, zPa(Ci)), we get the required bound.

Next, we restate and prove Theorem 2.

Theorem 1. Let G be any given causal graph over N vertices and with c-components of size at most ℓ. Also, let the in-degree
of the vertices in G be at most d. Then, for any (moderately large) time horizon T and given any covering intervention set I
of G, Algorithm 1 achieves simple regret

RT = O

(√
N 2d 4ℓ |I| log (|A|T )

T

)
.

Hence, using Lemma 5, we obtain the following bound on the simple regret

RT = O

(√
N (3d 8d)ℓ log |A|

T
log T

)
.

Proof. Lemma 5 implies that, with probability at least
(
1− 1

T

)
, the set I is indeed a covering intervention set for the graph

G. We combine this guarantee with Lemmas 8 and 9. In particular, with probability at least
(
1− 5

T

)
, we have, for all A ∈ A:

|µ(A)− µ̂(A)| =

∣∣∣∣∣∣
∑

z∈Z(A)

(Hz + Lz)

∣∣∣∣∣∣
≤
√

N 4ℓ 2d |I| log (|A|T )
T

+
4ℓN2|I|(ℓd+ ℓ+ log (NT ))

T

≤ 2

√
N 4ℓ 2d |I| log(|A|T )

T
(For T ≳ N3)

Let AT be the output after T rounds of interventions, i.e., AT = argmaxA∈A µ̂(A). In addition, let A∗ =
argmaxA∈A µ(A) be the optimal intervention. Hence, with probability at least 1− 5

T we have,

µ(A∗)− µ(AT ) ≤ 4

√
N 4ℓ 2d |I| log(|A|T )

T
(8)

This gives the desired upper bound on the simple regret, RT :

RT = E [µ(A∗)− µ(AT )] ≤

(
4

√
N 4ℓ 2d |I| log(|A|T )

T

)(
1− 5

T

)
+

5

T
≤ 5

√
N 4ℓ 2d |I| log(|A|T )

T
.

For SMBNs, since the size of the covering intervention set satisfies |I| = (3d)ℓ · 2ℓd(logN + 2ℓd+ log T ) (see Lemma 5),
we also have the following explicit form of the simple regret bound

RT = O

(√
N (3d 8d)ℓ log |A|

T
log T

)
.

The theorem stands proved.
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