
Lifelong Bandit Optimization: No Prior and No Regret

Felix Schur*1 Parnian Kassraie*1 Jonas Rothfuss1 Andreas Krause1

1ETH Zurich, Switzerland

A PSEUDO-CODES TO ALGORITHMS

Algorithm 1 META-KGL

Require: Data from previous tasks Dexp
1:s , threshold parameter ω > 0

β̂ ← minβ∈Rsd L (β;Dexp
1:s) ▷ solves Eq. (1)

Ĵ ← {j ≤ p | ∥β̂(j)∥2 ≥ ω
√
s}

k̂s ← 1
|Ĵ|

∑
j∈Ĵ kj

Algorithm 2 LIBO

Require: n,m ∈ N, 0 < ω < c1, BASEBO
k̂0 ←

∑p
j=1

1
pkj

for s ∈ {1, . . . ,m} do
Dexp

s ← ∅ ▷ Dataset for kernel prediction
Ds ← ∅ ▷ Dataset for the base bandit algorithm
for i ∈ {1, . . . , n} do

if i ≤
√
n

s1/4
then ▷ Forced exploration with rate

√
n/s1/4

Sample xs,i uniformly from X
Play action xs,i and observe ys,i
Dexp

s ← Dexp
s ∪ {(xs,i, ys,i)} ▷ Add to kernel prediction dataset

else
xs,i ← BASEBO(k̂s−1) ▷ Select action using base bandit algorithm
Play action xs,i and observe ys,i

end if
Ds ← Ds ∪ {(xs,i, ys,i)}
Update BASEBO using Ds ▷ Update base bandit algorithm

end for
k̂s ← META-KGL(Dexp

1:s , ω) ▷ Update k̂ using META-KGL and Dexp
s

end for

*Equal contribution.

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

Algorithm 3 F-LIBO

Require: n,m ∈ N, 0 < ω < c1, BASEBO
k̂0 ←

∑p
j=1

1
pkj

for s ∈ {1, . . . ,m} do
Dexp

s ← ∅ ▷ Dataset for kernel prediction
Ds ← ∅ ▷ Dataset for the base bandit algorithm
for i ∈ {1, . . . , n} do

if i ≤
√
n then ▷ Forced exploration with rate

√
n

Sample xs,i uniformely from X
Play action xs,i and observe ys,i
Dexp

s ← Dexp
s ∪ {(xs,i, ys,i)} ▷ Add to kernel prediction dataset

else
xs,i ← BASEBO(k̂s) ▷ Select action using base bandit algorithm
Play action xs,i and observe ys,i

end if
Ds ← Ds ∪ {(xs,i, ys,i)}
Update BASEBO using Ds ▷ Update base bandit algorithm

end for
k̂s ← F-META-KGL(Dexp

1:s , ω) ▷ Update k̂ using F-META-KGL and Dexp
s

end for

Algorithm 4 F-META-KGL

Require: n,m ∈ N, data for each task Ds, ω > 0, α ∈ [0, 1]
count1, . . . , countp ← 0
for s ∈ {1, . . . ,m} do

β̂s ← minβ∈Rd L (β;Dexp
s)

for j ∈ {1, . . . , p} do
countj ← countj + 1{∥β̂(j)

s ∥2 ≥ ω}
end for

end for
Ĵ ← {j ≤ p | countj ≥ mα}
k̂ ← 1

|Ĵ|

∑
j∈Ĵ kj

B EXTENDED LITERATURE REVIEW

In this section, we present an overview of works that consider learning a potentially low-dimensional reward function by
leveraging data of similar bandit tasks.

Linear Contextual Bandits with Shared Representation. The common assumption here is that the reward function
for all s ∈ [m], is linear fs(x) = ⟨θs,x⟩ where θs = Bws. The matrix B ∈ Rd×r is a shared representation matrix and
r ≪ d is an intrinsic dimension. This assumption becomes more intuitive if we re-write the reward as fs(x) = ⟨ws,B

Tx⟩,
which implies that there exists a mapping B : Rd → Rr that produces a low-dimensional representation of the actions. Our
reward assumption implies that there exists a sparse matrix S ∈ Rd×d⋆

which satisfies fs(x) = ⟨θs,STϕ(x)⟩ and screens
the relevant features ϕj with j ∈ J⋆. The intrinsic dimension r then corresponds to |J⋆|.

Recent work on shared representation learning, often consider the contextual setting, where at every step of the bandit
problem, actions may only be chosen from a set As,t. Once the action is chosen, a noisy reward is observed. Regarding the
occurrence of the tasks, two scenarios are often studied. The multi-task setting where all the tasks are solved concurrently,
and the lifelong setting where the tasks arrive consecutively. Table 1 summarizes these efforts in terms of the obtained regret
bounds. Here, Õ hides polylogarithmic factors. With the exception of [Hu et al., 2021], these works either 1) require forced
exploration to fulfill sufficient exploration assumptions (SE) similar to Assumption 3.2, or 2) design a greedy algorithm
assuming that the actions in set As,t are sampled from a diverse context distribution (DC) which gives free exploration [c.f.
Bastani et al., 2021]. This suggests that for minimax optimality, either the algorithm has to explore, or the presented context

should induce exploration for free. To better understand the tightness of the results in Table 1, we recall that the oracle solver
which has knowledge of the representation matrix B, has a lower-bound of R⋆(n) = Ω(

√
rn log n log k), when |As,t| = k

[Li et al., 2019]. If As,t is an ellipsoid, the lower-bound achievable by the oracle is Ω(r
√
n) [Li et al., 2021]. Clearly, for

r ≪ d, the algorithms of Hu et al. [2021], Cella and Pontil [2021], and Cella et al. [2022] do not converge to the oracle
solver as m→∞, since R(m,n)/m ̸→ R⋆(n).

As,t r Tasks Expected Lifelong Regret Base Policy Assumptions

Yang et al. [2021] finite known conc. Õ
(
m
√
rn+

√
rdnm

)
Greedy DC

ellipsoid known conc. Õ
(
mr
√
n+ d3/2r

√
nm
)

ETC SE

Hu et al. [2021] compact known conc. Õ
(
m
√
drn+ d

√
rnm

)
OFUL -

Cella et al. [2022] finite unknown seq. Õ
(
mr
√
n+ r

√
dnm

)
Greedy DC

Cella and Pontil [2021] finite unknown seq./conc. Õ
(
mr
√
n
)

Greedy DC & SE

Yang et al. [2022] compact known seq. Õ
(
mr
√
n+ d

√
rnm

)
ETC SE

LIBO (Ours) compact unknown seq. Õ
(
mr
√
n+m3/4

√
n
)

any SE

Table 1: Overview of recent work on representation learning for contextual linear bandits. Oracle lower-bound is R⋆(m,n) =
Ω (mr

√
n) for infinite action set, and R⋆(m,n) = Ω

(
m
√
rn log n log k

)
for finite set. Polylog terms are not included.

Bayesian Bandits with Shared Prior Distributions. Alternatively, some works consider a Bayesian reward model,
but without any assumption on sparsity, or low-dimensional representations. Let fs(x) = ⟨θs,x⟩ where θs are i.i.d. from
N (µ,Σ) and the parameters (µ,Σ) are shared across all tasks. Peleg et al. [2022] assume that (µ,Σ) are unknown, and
estimate it using the exploratory action-reward pairs collected during the first m0 tasks. The suggested meta-algorithm
can be wrapped around any Quasi-Bayesian base policy, such as Thomspon Sampling [Thompson, 1933] or Information
Directed Sampling [Russo and Van Roy, 2014], however, the resulting algorithm over-explores as indicated by the Õ(md)
term in the regret bound (See Table 2).

Taking a hierarchically Bayesian approach, Basu et al. [2021] and Hong et al. [2022] further assume that µ ∼ N (µ0,Σ0)
where µ0 is unknown, but both covariance matrices Σ and Σ0 are known. Prior distribution of µ is updated after each task,
according to the evidence collected during the task. Both papers design a meta-algorithm with Thomspon Sampling as the
base solver. While Basu et al. [2021] suffers from over-exploration, Hong et al. [2022] does not require any exploration.
Indeed, if Σ the covariance matrix between the actions is known, it helps with inferring rewards of other actions, and reduces
the need for uniform exploration.

An overview is given in Table 2, here R⋆(m,n) indicates the Bayesian lifelong regret of the oracle agent who has knowledge
of (µ,Σ). Note that Theorem 4.1 gives slightly stronger result, which is a high-probability bound over the regret. Here,
we have taken the average to make it comparable with the Bayes regret reported in other works. As m grows, the average
single-task regret is upper bounded by R(m,n)/m, implying that only Hong et al. [2022] and LIBO can converge to the
oracle solver.

Σ/Σ0 sparse Tasks Bayesian Regret Policy Exp

Basu et al. [2021] known no seq. Õ
(
R⋆(m,n) +

√
dnm+md

)
TS yes

Peleg et al. [2022] unknown no seq. Õ
(
(1 + d3/

√
m)R⋆(m,n) +md

)
any QB yes

Hong et al. [2022] known no seq. Õ
(
R⋆(m,n) +

√
dmn+ d3/2

)
TS no

known no conc. Õ
(
R⋆(m,n) +

√
dmn+md3/2

)
TS yes

LIBO (Ours) - yes seq. Õ
(
R⋆(m,n) +m3/4

√
n+ (mn)1/3 log(md)

)
any yes

Table 2: Overview of recent work on meta-learning Bayesian priors for linear bandits . All works consider compact action
set, except for Basu et al. [2021] which requires a finite set of actions selected from Rd. The regret of the oracle solver is
denoted by R⋆(m,n).

Overall Landscape of Research. We merge the two lines of work in Table 3, to give an overview of ongoing efforts on
meta-learning for linear bandits and the important properties of each method. Column |At| shows if the model holds for
compact action sets, or only finite ones. Column “sparse” and “learns r” denote whether the model aims for sparse solution,
and if it requires knowledge of the true sparsity r or preferably, it learns it. Column “ learns Σ/Σ0” only applies to Bayesian
method, where some assume the covariance matrix of θs is known, and some estimate it from data. Column “Tasks” shows
if the method considers simultaneous or sequentially appearing bandit tasks. Column “O-opt” refers to oracle optimality, and
has a checkmark only if R(m,n)/m→ R⋆(n). Column “MS Cost” shows the cost of model selection/meta-learning. In
particular, shows whether the additional regret, incurred due to not knowing the true representation/features, is logarithmic
in dimension d or is it polynomial. Column “Policy” shows the base BO solvers that can be paired with the meta-learning
algorithm, “any” indicates that the method can work with any (linear) policy, and “any QB” refers to Quasi-Bayesian
methods. Column ”Ass.” shows the assumptions of the method on diversity of data, SE indicates Sufficient Exploration
type assumptions, and DC refers to Diverse Context assumptions. Column ”Has no uniform draws” shows if the algorithm
requires forces exploration or not.

|At| Sparse
Learns

r
Learns
Σ/Σ0

Tasks O-opt MS cost Policy Ass.
Has no
unif.

draws

Yang et al. [2021] k ✓ ✗ - conc ✓ poly(d) greedy DC ✗

∞ ✓ ✗ - conc ✓ poly(d) ETC SE ✗

Hu et al. [2021] ∞ ✓ ✗ - conc ✗ poly(d) OFUL - ✓

Cella and Pontil [2021] k ✓ ✓ - both ✗ log(d) greedy
DC
SE ✗

Cella et al. [2022] k ✓ ✓ - seq ✗ poly(d) greedy DC ✓

Yang et al. [2022] ∞ ✓ ✗ - conc ✓ poly(d) ETC SE ✗

Basu et al. [2021] k ✗ - ✗ seq ✗ poly(d) TS SE ✗

Peleg et al. [2022] ∞ ✗ - ✓ seq ✗ poly(d) any QB SE ✗

Hong et al. [2022] ∞ ✗ - ✗ seq ✓ poly(d) TS - ✓

∞ ✗ - ✗ conc ✗ poly(d) TS SE ✗

LIBO (Ours) ∞ ✓ ✓ - seq ✓ log(d) any SE ✗

F-LIBO (Ours) ∞ ✓ ✓ - seq ✓ log(d) any SE ✗

Table 3: Collective pro and cons of related works: LIBO gives an overall pareto-optimal solution. Refer to the corresponding
paragraph in Appendix B for information on meaning of each column. Table 1 presents a concise version.

C GENERALITY OF THE KERNEL ASSUMPTION

In Section 2, we claim that, the average of kernels formulation, i.e.

k⋆(·, ·) = 1

|J⋆|
∑
j∈J⋆

kj(·, ·)

is without loss of generality equivalent to assuming a linear combination,

k⋆(·, ·) =
∑
j∈J⋆

αjkj(·, ·).

Here, we formally show this claim. Assume there exist α1, . . . , αp ∈ R and kernels k1, . . . , kp such that

k⋆(x,x′) =
∑
j∈J⋆

αjkj(x,x
′), ∀x,x′ ∈ X .

Let f ∈ Hk⋆ , then there exists β1 ∈ Rd1 , . . . , βp ∈ Rdp such that for all x ∈ X

f(x) =
∑
j∈J⋆

√
αjβ

⊤
j ϕj(x).

Define mj := max{k(x,x) | x ∈ X}, β̃j := pmjβj
√
αj and k̃j := kj/mj for all j ∈ {1, . . . , p}, then

f(x) =
1

p

∑
j∈J⋆

β̃⊤
j ϕj(x)

and therefore f ∈ Hk̃ for

k̃⋆(x,x′) =
1

|J⋆|
∑
j∈J⋆

kj(x,x
′).

This shows that the corresponding Reproducing Kernel Hilbert Spaces are equivalent, i.e. the same functions reside in both,
while the norm is scaled. Therefore, we can assume, without loss of generality, that the base kernels are normalized and that
the true kernel is an average of base kernels.

D CONSISTENCY OF META-KGL (PROOF OF THEOREM 3.3)

We start by proving the necessary lemmas. During this section we assume a slightly more general setting. More precisely,
we assume that we have ns ≤ n samples in task s, which means that the total samples size of the meta-dataset is
N = Nm := |Dexp| =

∑m
s=1 ns.

Definition D.1 (sub-Gaussian random variables). Let X be a random variable. We call X a σ sub-Gaussian random variable
if E[X] = 0 and

P[|X| ≥ t] ≤ 2 exp

(
− t2

2σ2

)
. (D.1)

Lemma D.2 (Theorem 6.3.2 of Vershynin [2018]). Let ϵ1, . . . , ϵn be independent, zero mean, unit variance sub-Gaussian
random variables. Define ϵ = (ϵ1, . . . , ϵn). Let A ∈ Rm×n and t ≥ 0. Then

P
(∣∣∣∥Aϵ∥2 − ∥A∥F

∣∣∣ ≥ t
)
≤ exp

(
− t2

2∥A∥22

)
.

Corollary D.3. Let ϵ1, . . . , ϵn be i.i.d. σ sub-Gaussian random variables and define ϵ = (ϵ1, . . . , ϵn). Let A ∈ Rm×n and
t ≥ σ

√
tr(AAT). Then

P (∥Aϵ∥2 ≥ t) ≤ exp

−
(
t/σ −

√
tr(AAT)

)2
2∥AAT ∥2

 .

Proof. The standard deviation of an σ sub-Gaussian random variable is smaller equal σ. Therefore

P (∥Aϵ∥2 ≥ t) = P
(
∥Aϵ∥2/

√
V ar(ϵ1) ≥ t/

√
V ar(ϵ1)

)
≤ P

(
∥Aϵ∥2/

√
V ar(ϵ1) ≥ t/σ

)
.

It holds that ∥A∥F =
√
tr(AAT). Define ϵ̃ = ϵ/

√
V ar(ϵ1). We have

P (∥Aϵ∥2 ≥ t) ≤ P
(
∥Aϵ̃∥2 − ∥A∥F ≥ t/σ −

√
tr(AAT)

)
≤ P

(
|∥Aϵ̃∥2 − ∥A∥F | ≥ t/σ −

√
tr(AAT)

)
.

Using Lemma D.2 and noting that ∥A∥22 = ∥AAT ∥2 yields the desired result.

Lemma D.4. Consider the model in Eq. (1) with σ sub-Gaussian i.i.d. noise. Then, for λN
4σ >

√
tr(Φ(j)(Φ(j))T) with

probability at least

1−
p∑

j=1

exp

−
(

λN
4σ −

√
tr(Φ(j)(Φ(j))T)

)2
2∥Φ(j)(Φ(j))T ∥2

we have for any solution β̂ of Eq. (1)

1

N
∥Φ(β̂ − β⋆)∥22+

λ

2

p∑
j=1

∥β̂(j) − β⋆(j)∥2 ≤

2λ
∑
j∈J⋆

min
(
∥β̂(j) − β⋆(j)∥2, ∥β⋆(j)∥2

)
.

Proof. This proof is inspired by the proof of Lemma 3.1 in Lounici et al. [2011].
For all solutions β̂ of Eq. (1)

β̂ = argmin
β∈Rdm

1

N
∥Φβ⋆ + ϵ−Φβ∥22 + λ

p∑
j=1

∥β(j)∥2.

Therefore for all β ∈ Rdm

1

N
∥Φβ⋆ + ϵ−Φβ̂∥22 + λ

p∑
j=1

∥β̂(j)∥2 ≤
1

N
∥Φβ⋆ + ϵ−Φβ∥22 + λ

p∑
j=1

∥β(j)∥2.

This yields

1

N
∥Φ(β̂ − β)∥22 ≤

1

N
∥Φ(β − β⋆)∥22 +

2

N
ϵTΦ(β̂ − β)

+ λ

p∑
j=1

(
∥β(j)∥2 − ∥β̂(j)∥2

)
.

And in particular if β = β⋆, then,

1

N
∥Φ(β̂ − β⋆)∥22 ≤

2

N
ϵTΦ(β̂ − β⋆)

+ λ

p∑
j=1

(
∥β⋆(j)∥2 − ∥β̂(j)∥2

)
.

By Corollary D.3 and union bound we have jointly for all j ≤ p with probability at least

1−
p∑

j=1

exp

−
(

λN
4σ −

√
tr(Φ(j)(Φ(j))T)

)2
2∥Φ(j)(Φ(j))T ∥2

that

∥(ϵTΦ)(j)∥2 ≤
λN

4
.

Therefore, by Cauchy-Schwarz,

ϵTΦ(β̂ − β⋆) ≤
p∑

j=1

∥(ϵTΦ)(j)∥2∥β̂(j) − β⋆(j)∥2

≤ λN

4

p∑
j=1

∥β̂(j) − β⋆(j)∥2.

This implies that

1

N
∥Φ(β̂ − β⋆)∥22 ≤

λ

2

p∑
j=1

∥β̂(j) − β⋆(j)∥2 + λ

p∑
j=1

(
∥β⋆(j)∥2 − ∥β̂(j)∥2

)
.

Therefore

1

N
∥Φ(β̂ − β⋆)∥22+

λ

2

p∑
j=1

∥β̂(j) − β⋆(j)∥2 ≤

λ

p∑
j=1

(
∥β̂(j) − β⋆(j)∥2 + ∥β⋆(j)∥2 − ∥β̂(j)∥2

)
and since β⋆(j) = 0 for all j /∈ J⋆

1

N
∥Φ(β̂ − β⋆)∥22+

λ

2

p∑
j=1

∥β̂(j) − β⋆(j)∥2 ≤

2λ
∑
j∈J⋆

min
(
∥β̂(j) − β⋆(j)∥2, ∥β⋆(j)∥2

)
.

This proves the statement.

Lemma D.5. Let Assumption 3.1 hold. If β̂ is a solution of Eq. (1) then we have for λN
4σ >

√
tr(Φ(j)(Φ(j))T) with

probability at least

1−
p∑

j=1

exp

−
(

λN
4σ −

√
tr(Φ(j)(Φ(j))T)

)2
2∥Φ(j)(Φ(j))T ∥2

that ∑

j /∈J⋆

∥β̂(j) − β⋆(j)∥2 ≤ 3
∑
j∈J⋆

∥β̂(j) − β⋆(j)∥2,

and
p∑

j=1

∥β̂(j) − β⋆(j)∥2 ≤
8λm

κ̄2
, (D.2)

where

κ̄ :=

√
m√
N

∥Φ(β̂ − β⋆)∥2∑
j∈J⋆ ∥β̂(j) − β⋆(j)∥2

. (D.3)

Proof. Lemma D.4 implies
p∑

j=1

∥β̂(j) − β⋆(j)∥2 ≤ 4
∑
j∈J⋆

∥β̂(j) − β⋆(j)∥2 (D.4)

and therefore ∑
j /∈J⋆

∥β̂(j) − β⋆(j)∥2 ≤ 3
∑
j∈J⋆

∥β̂(j) − β⋆(j)∥2,

which yields the first statement of Lemma D.5.
Again, by the first statement of Lemma D.4, we have with probability at least

1−
p∑

j=1

exp

−
(

λN
4σ −

√
tr(Φ(j)(Φ(j))T)

)2
2∥Φ(j)(Φ(j))T ∥2

that

∥Φ(β̂ − β⋆)∥2 ≤
√
2λN

√∑
j∈J⋆

∥β̂(j) − β⋆(j)∥2. (D.5)

Therefore ∑
j∈J⋆

∥β̂(j) − β⋆(j)∥2 ≤
∑

j∈J⋆ ∥β̂(j) − β⋆(j)∥2
∥Φ(β̂ − β⋆)∥2

∥Φ(β̂ − β⋆)∥2

≤
∑

j∈J⋆ ∥β̂(j) − β⋆(j)∥2
∥Φ(β̂ − β⋆)∥2

√
2λN

√∑
j∈J⋆

∥β̂(j) − β⋆(j)∥2.

Solving this yields ∑
j∈J⋆

∥β̂(j) − β⋆(j)∥2 ≤
2λm

κ̄2
,

and by Eq. (D.4) we have
p∑

j=1

∥β̂(j) − β⋆(j)∥2 ≤ 4
∑
j∈J⋆

∥β̂(j) − β⋆(j)∥2

≤ 8λm

κ̄2
.

Definition D.6 (compatibility variable). Let

S :=
{
(J, b) ⊂ P({1, . . . , p})× (Rd\{0})

∣∣∣ |J | ≤ s⋆,
∑
j /∈J

∥b(j)∥2 ≤ 3
∑
j∈J

∥b(j)∥2
}
.

For n, d ∈ N and Φ ∈ RN×d we define κ(Φ) by

κ(Φ) := inf
(J,b)∈S

√
m√
N

∥Φb∥2∑
j∈J ∥b(j)∥2

.

and call it the compatibility variable of Φ.

Remark D.7. It holds that κ ≤ κ̄.

Corollary D.8. Let 0 < ω < c1 and let β̂ is a solution of Eq. (1) with

λ ≤ ω̄κ2

8
√
m
,

where ω̄ := min{ω, c1 − ω}. Then we have for λN
4σ >

√
tr(Φ(j)(Φ(j))T) with probability at least

1−
p∑

j=1

exp

−
(

λN
4σ −

√
tr(Φ(j)(Φ(j))T)

)2
2∥Φ(j)(Φ(j))T ∥2

that

1√
m

p∑
j=1

∥β̂(j) − β⋆(j)∥2 ≤ ω̄. (D.6)

If additionally Assumption 3.1 holds, then we have with the same probability for

Ĵ :=
{
j ∈ {1, . . . , p}

∣∣∣ ∥β̂(j)∥2 > ω
√
m
}

that

Ĵ = J⋆.

Proof. The first statement follows directly from Lemma D.5.
Assume j ∈ J⋆. Then by Assumption 3.1

∥β̂(j)∥2 >
√
m
(
c1 − ∥β̂(j) − β⋆(j)∥2

)
≥
√
m(c1 − ω̄) ≥ ω

√
m,

which implies J⋆ ⊂ Ĵ . Assume j /∈ J⋆, then

∥β̂(j)∥2 ≤ ∥β̂(j) − β⋆(j)∥2 + ∥β⋆(j)∥2 ≤ ω̄
√
m ≤ ω

√
m,

which implies Ĵ ⊂ J⋆

Remark D.9. Choosing ω optimally yields ω = ω̄ = c1/2.

Proof of Theorem 3.3. Note that Φ(j) ∈ RN×mdj is block-diagonal. Since by assumption kj(x, x
′) ≤ 1,∀j ≤ p we have

tr
(
(Φ(j))TΦ(j)

)
= tr

(
Φ(j)(Φ(j))T

)
=

m∑
s=1

ns∑
i=1

kj

(
x
(s)
i , x

(s)
i

)
≤ N,

and

∥(Φ(j))TΦ(j)∥2 = ∥Φ(j)(Φ(j))T ∥2

≤ max
s≤m

tr
(
Φ(j)

s (Φ(j)
s)T

)
≤ max

s≤m

ns∑
i=1

kj

(
x
(s)
i , x

(s)
i

)
≤ n.

Corollary D.8 yields the result.

E LIFELONG ANALYSIS (PROOF OF THEOREM 4.1)

We start by proving a generic variant of Theorem 4.1, from which we can obtain the theorem in the main text as a corollary.

Theorem E.1. Assume that the true reward functions f1, . . . , fm satisfy ∥fi∥Hk⋆ ≤ B for some constant B > 0. Assume
{ns}s∈N is a non-increasing sequence with ns ≤ n,∀s. Define Nm :=

∑m
s=1 ns. Let ν be a distribution on XN independent

of ϵ1, . . . , ϵm. Let V ∼ ν be the random vector used for forced exploration. Let Φ̃s ∈ RNs×md be the data matrix obtained
by forced exploration. Assume the forced exploration distribution ν and {kj}j≤p are such that, with probability at least
1− δ/4, there exists cκ > 0 such that κ(Φ̃s) ≥ cκ,∀s ≤ m. Assume further that BASEBO using the true kernel function
for m tasks with n interactions with independent noise achieves with probability at least 1− δ/2 cumulative regret lower
than R⋆(m,n) in the worst-case. Then, for m0 ∈ N and 0 < δ < 1, if

Nm0 ≥
2n1 log(4mp/δ)

(
√

Nm/m
c1c2κ
32σ − 1)2

,

with probability at least 1− δ LIBO achieves

R(m,n) ≤ 2Bm0n+ 2BNm +R⋆(m,n).

Proof. Denote by C := {v | κ(Φ̃s(v)) ≥ cκ,∀s ≤ m} the set of data points such that κ is lower bounded by cκ. By
assumption we have P[V ∈ C] ≥ 1− δ/4. Denote by Ĵs ⊂ {1, . . . , p} the sparsity structure predicted by LIBO after the
first s tasks. Note that Φ̃(j)

s ∈ Rnsm×mdj is block-diagonal. Since by assumption kj(x, x
′) ≤ 1,∀j ≤ p we have

tr((Φ̃(j)
s)T Φ̃(j)

s) = tr(Φ̃(j)
s (Φ̃(j)

s)T) =

m∑
s=1

ns∑
i=1

kj(x
(s)
i , x

(s)
i) ≤ N,

and

∥(Φ̃(j)
s)T Φ̃(j)

s ∥2 = ∥Φ̃(j)
s (Φ̃(j)

s)T ∥2
≤ max

s≤m
tr(Φ(j)

s (Φ(j)
s)T)

≤ max
s≤m

ns∑
i=1

kj(x, x)

≤ max
s≤m

ns

= n1.

Since V is independent of ϵ1, . . . , ϵm, we have by Corollary D.8 for all s and v′ ∈ C

P
[
Ĵs = J⋆ | V = v′

]
≥ 1− p exp

− Ns

2n1

(√
Ns

s

c1c
2
κ

32σ
− 1

)2
 .

By union bound and since Ns

s is non-increasing by assumption we have for m0 ≤ m

P
[
∀m ≥ s ≥ m0, Ĵs = J⋆ | V = v′

]
≥ 1−

m∑
s=m0

p exp

− Ns

2n1

(√
Ns

s

c1c
2
κ

32σ
− 1

)2

≥ 1−mp exp

−Nm0

2n1

(√
Nm

m

c1c
2
κ

32σ
− 1

)2
 ,

where we defined Ns :=
∑s

i=1 ni. If m0 ∈ N is large enough such that

Nm0
≥ 2n1 log(4mp/δ)

(
√

Nm/m
c1c2κ
32σ − 1)2

,

then for all v′ ∈ C

P
[
∀m ≥ s ≥ m0, Ĵs = J⋆ | V = v′

]
≥ 1− δ/4.

By assumption we have

P [V ∈ C] ≥ 1− δ/4.

Because V is independent of the noise

P
[
∃m ≥ s ≥ m0, Ĵs ̸= J⋆

]
=

∫
P
[
∃m ≥ s ≥ m0, Ĵs ̸= J⋆ | V = v

]
pV (v)dv

=

∫
C

P
[
∃m ≥ s ≥ m0, Ĵs ̸= J⋆ | V = v

]
pV (v)dv+∫

Cc

P
[
∃m ≥ s ≥ m0, Ĵs ̸= J⋆ | V = v

]
pV (v)dv

≤ P[V ∈ Cc] + P[V ∈ C]δ/2

≤ δ/4 + δ/4 = δ/2.

For all tasks that happen after task m0 we have jointly with probability at least 1− δ/2 that Ĵs = J⋆.
Denote by r(k, s) the regret that the base bandit algorithm achieves after n interactions with kernel k in task s. By assumption

P[
∑m

s=m0
r(k⋆, s) ≤ R⋆(n,m−m0)] ≥ 1− δ/2. Denote by k̂s the predicted kernel for task s. By union bound

P

[
m∑

s=m0

r(k̂s, s) ≤ O(R⋆(m,n))

]
≥ P

[
∀m0 ≤ s ≤ m, k̂s = k⋆ and

m∑
s=m0

r(k̂s, s) ≤ O(R⋆(m−m0, n))

]

≥ 1− P

[
m∑

s=m0

r(k⋆s, s) > O(R⋆(m−m0, n))

]
− P [∃m0 ≤ s ≤ m, k⋆s ̸= k⋆]

≥ 1− δ

Therefore it holds with probability at least 1− δ

R(m,n) ≤ m0nL+ LNm +R⋆(m−m0, n).

Here, the first term is an upper bound of the regret in the first m0 tasks. The other terms are an upper bound on the reward
for the other m−m0 tasks. They can be divided into the regret obtained by forced exploration and the regret obtained by
the base bandit task. By Lemma E.2 we know that the maximum instantaneous regret L is bounded by 2B. Therefore

R(m,n) ≤ m0nL+ LNm +R⋆(m−m0, n)

≤ 2Bm0n+ 2BNm +R⋆(m,n).

Lemma E.2. Let k be a kernel with k(x, x′) ≤ 1,∀x, x′ ∈ X and let f ∈ Hk with ∥f∥k ≤ B, then for all x ∈ X

|f(x)| ≤ B.

Proof. By the reproducing property, we have

|f(x)| = |⟨f(·), k(x, ·)⟩k|
≤ ∥f∥Hk

k(x, x)

≤ B.

A clarification is due, regarding the exact number of exploratory steps taken. In the algorithm design and in the main text,
we require that during every task s, purely exploratory actions are taken at every step i where i ≤ ns. The number of
exploratory steps has to be an integer, while the proposed rate of ns =

√
n/s1/4 may not be an integer. Therefore, the

i ≤ ns condition implies that only the first ⌊ns⌋ steps will be exploratory. In our proofs so far, we have assumed that at least
a total of Nm0

=
∑m0

s=1 ns exploratory action are chosen, which may be well larger than
∑m0

s=1⌊ns⌋. To resolve this gap,
we accumulate the non-integer remainder ns − ⌊ns⌋ in a variable r. Whenever r becomes larger than 1, we increase the
number forced exploration queries by 1 to ñs = ⌊ns⌋+ ⌊r⌋. At every task s, we force exactly ñs ∈ N exploratory actions,
where (ñ1, . . . , ñs) is calculated as described in Algorithm 5. Then to ensure that Nm0 exploratory datapoint are available,
we calculate the smallest m̃0 which satisfies:

m̃0∑
s=1

ñs ≥ Nm0

It is straightforward to show that by construction of Algorithm 5, m0 ≤ m̃0 ≤ m0+1. In other words, by taking exploratory
actions according to ñs (which is an integer) we reqiure at most 1 additional task to fulfill the lower bound on the total
number of required exploratory actions. In the next two corollaries we give a lower bound on the m̃0 which satisfies the
required dataset size Nm0

.

Algorithm 5 Forced Exploration Rate to Integer number of Exploratory Steps

Require: The sequence of (n1, . . . , nm)
r ← 0 ▷ r is the sum of fractional residue
for s ∈ {1, . . . ,m} do

r ← r + ns − ⌊ns⌋ ▷ Add the fractional part of ns to the residue sum
ñs ← ⌊ns⌋+ ⌊r⌋ ▷ If the residue sum is over 1, then add 1 to ⌊ns⌋
r ← r − ⌊r⌋

end for
Output: (ñ1, . . . , ñm)

Corollary E.3. Assume the setting of Theorem E.1. Set the rate

ns =
√
n

for all s ∈ N, and choose the integer number of forced exploration steps according to Algorithm 5. Then, for all 0 < δ < 1,
with probability at least 1− δ

R(m,n) ≤ O
(
B log(mp/δ)

√
n
)
+ 2mB

√
n+R⋆(m,n).

Proof. Taking actions at a ns =
√
n rate via Algorithm 5, we can ensure that after m̃0 many tasks the condition of

Theorem E.1 on Nm0 is met, where

2 log(4mp/δ)

(n1/4 c1c2κ
32σ − 1)2

≤ m̃0 ≤
2 log(4mp/δ)

(n1/4 c1c2κ
32σ − 1)2

+ 1.

Then the proof directly from Theorem E.1 with n1 =
√
n, Nm = m

√
n.

Corollary E.4. Assume the setting of Theorem E.1. Set the rate

ns =

√
n

s1/4

for all s ∈ N, and choose the explicit integer number of forced exploration steps according to Algorithm 5. Then, for all
0 < δ < 1, with probability at least 1− δ

R(m,n) ≤ O
(
Bn1/3 log3/4(mp/δ)m1/3 +B

√
nm3/4

)
+R⋆(m,n).

Proof. We have

Nm =

m∑
s=1

√
n

s1/4
= Θ

(√
nm3/4

)
Choose

m̃0 = Θ

(
log(4mp/δ)(√

n
m1/4

c1cκ
32σ − 1

)2
)4/3

and take exploratory actions according to Algorithm 5 then,

Nm0
≥ 2n1 log(4mp/δ)

(
√

Nm/m
c1c2κ
32σ − 1)2

.

By Theorem E.1, since n1 =
√
n, for all 0 < δ < 1, with probability at least 1− δ LIBO achieves

R(m,n) ≤ 2Bm0n+ 2BNm +R⋆(m,n)

≤ O
(
Bn1/3 log3/4(mp/δ)m1/3 +B

√
nm3/4

)
+R⋆(m,n).

E.1 BACKGROUND ON GP-UCB

To solve task s, GP-UCB first constructs confidence sets for fs(x) based on the history {(xs,t, ys,t)t≤i} to balance
exploration and exploitation at any step i. For any x ∈ X , the set Ci−1(x) defines an interval to which f(x) belongs with
high probability such that,

P (∀x ∈ X : f(x) ∈ Ci−1(x)) ≥ 1− δ.

Given a kernel k, GP-UCB builds sets of the form

Ci−1(k;x) = [µi−1(k;x)− νiσi−1(k;x), µi−1(k;x) + νiσi−1(k;x)]

where the exploration coefficient νi depends on the desired confidence level 1− δ, and is often treated as a hyper-parameter
of the algorithm. The functions µi−1 and σi−1 set the center and width of the confidence set as

µi−1(k;x) = kT
i−1(x)(Ki−1 + λ2

ucbI)
−1yi−1

σ2
i−1(k;x) = k(x,x)− kT

i−1(x)(Ki−1 + λ2
ucbI)

−1ki−1(x)

where λucb is a regularizer, yi−1 = [ys,t]t<i is the vector of observed values, ki−1(x) = [k(x,xs,t)]t<i, and Ki−1 =
[k(xs,t,xs,t′)]t,t′<i is the kernel matrix. GP-UCB then chooses an action that maximizes the upper confidence bound, i.e.

xs,i = argmax
x∈X

µi−1(x) + νiσi−1(x).

The acquisition function balances exploring uncertain actions and exploiting the gained information via parameter νi.
Chowdhury and Gopalan [2017] show that following this policy, and using k⋆ as the kernel function, yields a regret of

R⋆(n) = O
(
Bd⋆
√
n log n

d⋆ +
√
nd⋆ log n

d⋆ log 1
δ

)
.

E.2 LIFELONG REGRET OF GP-UCB PAIRED WITH LIBO (PROOF OF COROLLARY 4.2)

Definition E.5 (maximum information gain). The maximum information gain after t observations of GP-UCB with kernel k
and parameter λucb is defined by

γt(k) = max
x1,...,xt∈X

1

2
log det

(
I + λ−2

ucbKt

)
,

where
(Kt)ij = (ΦTΦ)ij = k(xi,xj).

Theorem E.6 (Theorem 3 of Chowdhury and Gopalan [2017]). Let k be a kernel and f ∈ Hk, where Hk is the RKHS
corresponding to kernel k. Let δ ∈ (0, 1), ∥f∥k ≤ B and assume the errors ϵt are conditionally σ-sub-Gaussian. Running
GP-UCB with λucb = 1 + 2/n for n steps we have with probability at least 1− δ that

R(n) = O(B
√
nγn(k) +

√
nγn(k)(γn(k) + log(1/δ)))

Corollary E.7. Let ks be kernels and fs ∈ Hks
, where Hks

is the RKHS corresponding to kernel ks. Let δ ∈ (0, 1),
∥fs∥ks

≤ B and assume the errors ϵs,t are i.i.d. σ-sub-Gaussian. Assume further that ks are σ(ϵ1, . . . , ϵs−1)-measurable.
Running GP-UCB with λucb = 1 + 2/n for m tasks, each with n steps, we have with probability at least 1− δ that jointly
for all s ∈ {1, . . . ,m}

Rs(n) = O(B
√

nγn(k) +
√

nγn(k)(γn(k) + log(1/δ)))

where Rs(n) denotes the reward in task s after n interactions. In particular

R⋆(m,n) ≤ O
(
m
√

nγn(k)(B +
√

γn(k) + log(1/δ))
)
.

Proof. We will adapt the proof of Theorem 1 in Chowdhury and Gopalan [2017].
Let ϵs1, . . . , ϵ

s
n be the noise of task s. Define a function

s(t) =

m∑
j=1

j1{(j−1)n+1≤t≤jn}

and a filtration on {1, . . . ,mn}

Ft = σ(ϵ1,1, . . . , ϵ1,n, ϵ2,1, . . . , ϵ2,n, . . . , ϵs(t),1, . . . , ϵs(t),t−(s(t)−1)n).

Further define for task s a filtration on {1, . . . , n}

Fs
t = σ(ϵs,1, . . . , ϵs,t).

Similar to the proof of Theorem 1 in Chowdhury and Gopalan [2017] define for t ∈ {1, . . . , n}, g : X → R and
l1, . . . , ln ∈ N

Mg,n
t (s) = exp

(
(ϵs,1:t)

T g1:t,l −
σ2

2
∥g1:t,l∥22

)
where

g1:t,l := [g(x1) + l1, . . . , g(xt) + lt]
T .

Further let N1, . . . , Nn i.i.d. with distribution N (0, κ) and independent of Fs
n and let hs be a random function distributed

according to the Gaussian Process measure GPX (0, ks) and independent of F s
n and N1, . . . , Nn. Define

Mt(s) = E[Mhs,N
t (s) | Fs

n].

Now by the proof of Theorem 1 of Chowdhury and Gopalan [2017] we have that for all s ∈ {1, . . . ,m}, t ∈ {1, . . . , n} and
all stooping times τs with respect to the filtration Fs

t

E[Mτs(s)] ≤ 1. (E.1)

Given stopping times τ1, . . . , τm on F1
t , . . . ,Fm

t we construct a stopping time τ on Ft

τ(ω) = min{mn ≥ t ≥ 1 | τs(t)(ω) = t− (s(t)− 1)n}. (E.2)

We need to show that τ is a stopping time with respect to the filtration Ft. We have

{ω | τ(ω) = t} =

 ⋂
s<s(t)

{ω | τs(ω) > n}

 ∩ {ω | τs(t)(ω) = t− (s(t)− 1)n}.

It holds that {ω | τs(ω) > n} = {ω | τs(ω) ≤ n}c ∈ Fs
n ⊂ Fsn and {ω | τs(t)(ω) = (s(t)−1)n−t} ∈ Fs(t)

t−(s(t)−1)n ⊂ Ft.
This impies that {ω | τ(ω) = t} ∈ Ft and therefore τ is a stopping time with respect to Ft. Define

Mt = M(s(t)−1)n−t(s(t)).

We have that Mt = M(s(t)−1)n−t(s(t)) is measurable with respect to Fs(t)
(s(t)−1)n−t ⊂ Ft, which means Mt is Ft-adapted.

Let τ be a stopping time constructed as in Equation E.2. Then by Equation E.1

E[Mτ] ≤ 1.

Define for t ∈ {1, . . . , n} and s ∈ {1, . . . ,m}

Bs
t (δ) =

{
ω | ∥ϵs,1:t∥2((Ks

t +κI)−1+I)−1 > 2 log
(√

det((1 + κ)I +Ks
t)/δ

)}
,

where Ks
t the design matrix for task s. Further define

τs(ω) = min{t ∈ {1, . . . , n} | ω ∈ Bs
t (δ)}

and let τ be the corresponding stopping time on Ft. It holds by the proof of Theorem 1 of Chowdhury and Gopalan [2017]
that

Mt(s) =
exp

(
1
2∥ϵs,1:t∥

2
((Ks

t +κI)−1+I)−1

)
√
det((1 + κ)I +Ks

t)

and therefore

Mt =

exp

(
1
2∥ϵs(t),1:t−(s(t)−1)n∥2

((K
s(t)

t−(s(t)−1)n
+κI)−1+I)−1

)
√
det((1 + κ)I +K

s(t)
t−(s(t)−1)n)

.

Putting things together yields

P

 ⋃
s≤m,t≤n

Bs
t (δ)

 = P [τ ≤ mn]

= P

[
τ ≤ mn, ∥ϵs(τ),1:τ−(s(τ)−1)n∥2((Ks(τ)

τ +κI)−1+I)−1
>

2 log

(√
det((1 + κ)I +K

s(τ)
τ−(s(τ)−1)n/δ

)]
= P [τ ≤ mn,Mτ > 1/δ]

≤ P [Mτ > 1/δ]

≤ E[Mτ]δ = δ.

Now follow the steps of the proof of Theorem 2 of Chowdhury and Gopalan [2017] and the claim follows.

Lemma E.8. Let k : X×X → R be a kernel with d(k) ∈ N dimensional feature map and assume k(x, x′) = ϕ(x)Tϕ(x′) ≤
1,∀x, x′ ∈ X . Then the maximum information gain of GP-UCB with kernel k and regularization parameter λucb satisfies

γn(k) ≤
1

2
d(k) log(1 +

λ−2
ucbn

d(k)
).

Proof. This proofs follows the arguments of Vakili et al. [2021] and Kassraie et al. [2022]. We have that Kn = ΦnΦ
T
n and

by the Weinstein-Aronszajn identity

1

2
log det(In + λ−2

ucbKn) =
1

2
log det(Id(k) + λ−2

ucbΦ
T
nΦn)

≤ 1

2
d(k) log

(
tr(I + λ−2

ucbΦ
T
nΦn)/d

(k)
)

≤ 1

2
d(k) log

(
1 +

λ−2
ucb

d(k)
tr(ΦT

nΦn)

)
.

Now

tr(ΦT
nΦn) =

n∑
i=1

tr(ϕ(xi)ϕ(xi)
T)

=

n∑
i=1

tr(ϕ(xi)
Tϕ(xi))

= n

and therefore

1

2
log det(In + λ−2

ucbKn) ≤
1

2
d(k) log

(
1 +

λ−2
ucbn

d(k)

)
.

Corollary E.9. Assume we are in the setting of Corollary E.3 with GP-UCB as the base bandit algorithm and λucb = 1+2/n.
Then, for all 0 < δ < 1, with probability at least 1− δ,

R(m,n) = O
(
Bmd⋆

√
n log n

d⋆ +m
√
nd⋆ log n

d⋆ log 1
δ +B

√
n(m+ log(mp/δ))

)
.

Proof. By Corollary E.7 and Lemma E.8 we have with high probability

R⋆(m,n) = O

(
m
√
n

(
(B + log(1/δ))

√
1

2
d⋆ log

(
1 +

n3

d⋆(n+ 2)2

)
+

1

2
d⋆ log

(
1 +

n3

d⋆(n+ 2)2

)))

= O
(
Bmd⋆

√
n log n

d⋆ +m
√
nd⋆ log n

d⋆ log 1
δ

)
where d⋆ := d(k

⋆) =
∑

j∈J⋆ dj . And using Corollary E.3 we have with high probability

R(m,n) ≤ O
(
B log(mp/δ)

√
n+mB

√
n
)
+R⋆(m,n)

= O
(
Bmd⋆

√
n log n

d⋆ +m
√
nd⋆ log n

d⋆ log 1
δ +Bm

√
n

)
.

Corollary E.10. Assume we are in the setting of Corollary E.4 with GP-UCB as the base bandit algorithm and λucb =
1 + 2/n. Then, for all 0 < δ < 1, with probability at least 1− δ,

R(m,n) = O
(
Bmd⋆

√
n log n

d⋆ +m
√
nd⋆ log n

d⋆ log 1
δ +Bn1/3 log3/4(mp/δ)m1/3 +B

√
nm3/4

)
.

Proof. The proof is the same as the proof for Corollary E.9, except that we use Corollary E.4 in place of Corollary E.3.

Remark E.11. Compare the results of Theorem 4.1 with the default alternative: not learning k and just setting k̂ =∑p
j=1

1
pkj . We would then only get a bound of the form

R(m,n) ≤ O
(
mB̂
√
n log(n)d

)
,

where B = ∥f∥k̂ = p
s⋆B and d =

∑p
j=1 dj ≥ n, which is not sublinear in n.

E.3 FORCED EXPLORATION LOWER BOUND (PROOF OF PROPOSITION 4.3)

Assumption E.12. Assume there exists cc, cod > 0

m

N
(ΦTΦ)i,i ≥ cd, ∀i ∈ {1, . . . ,md}

and

m

N
(ΦTΦ)i,j < cod, ∀i ̸= j ∈ {1, . . . ,md}.

Lemma E.13. Let Assumption E.12 be satisfied. Then κ ≥
√
cd/s⋆ − 5cod.

Proof. Let (b, J) ∈ S. We have by definition of S

(√
m√
N

∥Φb∥2∑
j∈J ∥b(j)∥2

)2

=
m

N

bT (ΦTΦ)b(∑
j∈J ∥b(j)∥2

)2
≥ m

N

∑m
s=1

∑
i,j∈J b

(i)
s (ΦTΦ)i,jb

(j)
s(∑

j∈J

√∑m
s=1(b

(j)
s)2

)2

− 4
m

N

∑m
s=1

∑
i∈J,j∈Jc |b(i)s (ΦTΦ)i,jb

(j)
s |(∑

j∈J

√∑m
s=1(b

(j)
s)2

)(∑
j /∈J

√∑m
s=1(b

(j)
s)2

)

By Assumption E.12

m

N

∑m
s=1

∑
i,j∈J b

(i)
s (ΦTΦ)i,jb

(j)
s(∑

j∈J

√∑m
s=1(b

(j)
s)2

)2 ≥
m∑
s=1

∑
i∈J

b
(i)
s c2b

(i)
s(∑

j∈J

√∑m
s=1(b

(j)
s)2

)2

−
∑m

s=1

∑
i ̸=j,i,j∈J |b

(i)
s codb

(j)
s |(∑

j∈J

√∑m
s=1(b

(j)
s)2

)2 .

Since for q > 0 using ∥ · ∥1 ≤
√
s∥ · ∥2

m∑
s=1

∑
i∈J

b
(i)
s c2b

(i)
s(∑

j∈J

√∑m
s=1(b

(j)
s)2

)2 ≥ c2

m∑
s=1

∑
i∈J

(b
(i)
s)2

s⋆
(√∑

j∈J

∑m
s=1(b

(j)
s)2

)2 =
c2
s⋆

and using Cauchy-Schwarz to prove ∑
k,l

(xkyl)
2 ≥

∑
k,l

(xkyl)(ykxl)

which implies √∑
k,l

(xkyl)2 ≥
∑
l

|xlyl|

we get

∑m
s=1

∑
i ̸=j,i,j∈J |b

(i)
s codb

(j)
s |(∑

j∈J

√∑m
s=1(b

(j)
s)2

)2 = cod

∑m
s=1

∑
i ̸=j,i,j∈J |b

(i)
s ||b(j)s |∑

i,j∈J

√∑
k,l(b

(i)
l b

(j)
k)2

≤ cod

∑m
s=1

∑
i ̸=j,i,j∈J |b

(i)
s ||b(j)s |∑

i,j∈J

∑m
s=1 |b

(i)
s ||b(j)s |

≤ cod.

Also ∑m
s=1

∑
i∈J,j∈Jc |b(i)s codb

(j)
s |(∑

j∈J

√∑m
s=1(b

(j)
s)2

)(∑
j /∈J

√∑m
s=1(b

(j)
s)2

)
= cod

∑m
s=1

∑
i∈J,j∈Jc |b(i)s ||b(j)s |∑

i∈J,j∈Jc

√∑
k,l(b

(i)
l b

(j)
k)2

= cod

∑m
s=1

∑
i∈J,j∈Jc |b(i)s ||b(j)s |∑

i∈J,j∈Jc

∑m
s=1 |b

(i)
s b

(j)
s |

= cod.

Therefore
√
m√
N

∥Φb∥2∑
j∈J ∥b(j)∥2

≥
√

c2/s− 5cod.

Proposition E.14. Let µ be the Lebesgue measure and d = p. Assume that ϕi ∈ L2
µ(X), i ∈ {1, . . . , p} are orthogonal

and satisfy ∥ϕi∥L2
µ(X)/Vol(X) ≥ z, for all i ∈ {1, . . . , p}. Assume also that ki(x, x) = ϕi(x)

2 ≤ 1 for all x ∈ X . Choose
x1, . . . ,xn i.i.d. uniformly from X and let

Φs :=
[
ϕ(x1) . . . ϕ(xn)

]T ∈ Rn×d ∀s ≤ m.

Then with probability at least 1− δ Assumption E.12 is satisfied with

cd =

(
z −

√
1

2n
log(4d/δ)

)
and

cod =

√
2

n
log

(
4d2

δ

)
.

Proof. For the second, let X be a random variable uniformly distributed on X and denote by vi := ϕi(x1:n) the ith column
of Φs. It holds that

E[ϕi(x)
2] =

1

Vol(X)

∫
X
ϕi(x)

2dµ(x) ≥ z, ∀i ≤ d.

Therefore

E[∥vi∥22] = E

[
n∑

i=1

ϕi(xi)
2

]
≥ nz.

By union bound and Höffding’s inequality

P
[
∃i ≤ d,

∣∣∥vi∥22 − E
[
∥vi∥22

]∣∣ ≥ ϵ
]
≤ 2d exp(−2ϵ2

n
)

or

P

[
∃i ≤ d,

∣∣∥vi∥22 − E
[
∥vi∥22

]∣∣ ≥√n

2
log(

4d

δ
)

]
≤ δ.

Therefore with probability at least 1− δ/2 for all i ≤ d

∥vi∥22 ≥ E
[
∥vi∥22

]
−
√

n

2
log(

4d

δ
) ≥ nz −

√
n

2
log(

4d

δ
).

BASEBO
(i > ns)

Environment

Forced Exploration
(i ≤ ns)

α-majority Voting
∀1 ≤ j ≤ p

Threshold Group Lasso

k̂s−1

xs,i

fs(xs,i) + ϵs,i

Dexp
s

Ĵs

Ĵ1
, Ĵ2

, . . . , Ĵs−1

Figure 1: F-LIBO visualized. The yellow boxes corresponds to modules of F-META-KGL.

Further, for i ̸= j

E[ϕi(x)ϕj(x)] =
1

Vol(X)

∫
X
ϕi(x)ϕj(x)dµ(x) = 0,

since ϕi and ϕj are orthogonal in L2
µ(X). By assumption ϕi(x) ≤ 1,∀i ≤ d,∀x ∈ X and by Höffding’s inequality

P[|⟨vi, vj⟩| ≥ ϵ] ≤ 2 exp(− ϵ2

2n
).

and therefore for 0 ≤ δ ≤ 1

P

[
∃i ̸= j, |⟨vi, vj⟩| ≥

√
2n log

(
4d2

δ

)]
≤ δ/2.

We derived that with probability at least 1− δ

(ΦTΦ)ii/n ≥ c2 =
(
z −

√
log(4d/δ)/2n

)
and for i ̸= j

(ΦTΦ)ij/n <

√
2

n
log

(
4d2

δ

)
.

Corollary E.15. Assume the setting of Proposition E.14. Then

κ ≥

√
z/s⋆ −

√
log(4d/δ)/(2s⋆) + 50 log(4d2/δ)

n
= O(1).

F FEDERATED ANALYSIS (PROOF OF THEOREM 5.1)

Recall that in the federated setting, each client minimizes the following loss locally.

β̂s,prvt := argmin
βs∈Rd

L (βs;Dexp
s) (F.1)

= argmin
βs∈Rd

1

ns
∥ys −Φsβs∥22 + λ

p∑
j=1

∥βs
(j)∥2.

In this section, for simplicity we refer to the solution as β̂s. We may further omit the subscript s, whenever it can be
determined from the context. For our federated analysis, we require a slightly stronger version of the Beta-min assumption.

Assumption F.1 (Beta-min federated). Assume there exists c1,f > 0 such that for all s ≤ m and j ∈ J⋆

∥β⋆(j)
s ∥2 ≥ c1,f .

Remark F.2. Note that Assumption F.1 implies Assumption 3.1.

F.1 CONSISTENCY OF THE META-LEARNED KERNEL

In this section we prove the equivalent of Theorem 3.3 in the federated setting.

Theorem F.3 (Consistency of F-META-KGL). Let ω ∈ (0, c1,f) and ω̄ := min{ω, c1,f − ω}. Let Assumption F.1 hold. Let
ns = n

¯
,∀s ≤ m and assume n

¯
is large enough to satisfy ω̄ > (

√
log(p/ᾱ) + 1)32σ/(

√
n
¯
c2κ), where ᾱ := max{α, 1− α}.

Assume that Φs ∈ Rn
¯
×d satisfy Assumption 3.2 with cκ for s = 1, . . . ,m. Let β̂ be a solution of Equation F.1 with

regularization parameter λ = ω̄c2κ/8. Then Ĵf is a consistent estimator in n
¯

and m, that is

lim
n
¯
→∞

P
[
Ĵf = J⋆

]
= 1 and lim

m→∞
P
[
Ĵf = J⋆

]
= 1.

We start by proving the necessary lemmas.

Lemma F.4. Let β̂ is a solution of equation F.1 and

λ ≤ ω̄κ2

8
,

where ω̄ := min{ω, c1,f − ω} for 0 < ω < c1,f . Then we have for λns

4σ >

√
tr(Φ

(j)
s (Φ

(j)
s)T) with probability at least

1− pmax
j≤p

exp

−
(

λns

4σ −
√
tr(Φ

(j)
s (Φ

(j)
s)T)

)2

2∥Φ(j)
s (Φ

(j)
s)T ∥2

that

p∑
j=1

∥β̂(j)
s − β⋆(j)

s ∥2 ≤ ω̄. (F.2)

If additionally Assumption F.1 holds, then we have with the same probability for

Ĵs,f =
{
j ∈ {1, . . . , p}

∣∣∣ ∥β̂(j)
s ∥2 > ω

}
that

Ĵs,f = J⋆.

Proof. Follows directly from Corollary D.8 with m = 1.

Lemma F.5 (Chernoff-Höffding bound). Let X1, . . . , Xn be i.i.d Bernoulli random variables with E[Xi] = pi. Define
p := 1

n

∑n
i=1 pi, then for t < np,

P

[
n∑

i=1

Xi ≤ t

]
≤ exp

(
−n
(
t

n
log

(
t

np

)
+ (1− t/n) log

(
1− t/n

1− p

)))
≤ exp

(
−n (p− t/n)2

2p(1− p)

)
.

Lemma F.6. Let 0 < w < c1,f and let β̂s be the solution of equation F.1 for tasks s ≤ m and λ ≤ ω̄κ2

8 . Define for
j ∈ {1, . . . , p}

Qj =
{
s ∈ {1, . . . ,m}

∣∣ ∥β̂(j)
s ∥2 > w

}
and for α > 0

Ĵf =
{
j ∈ {1, . . . , p}

∣∣ |Qj | > mα
}
. (F.3)

Define for s ∈ {1, . . . ,m}

vs := 1− pmax
j≤p

exp

−
(

λns

4σ −
√
tr(Φ

(j)
s (Φ

(j)
s)T)

)2

2∥Φ(j)
s (Φ

(j)
s)T ∥2

and

v :=
1

m

m∑
s=1

vs.

Assume that λns

4σ >

√
tr(Φ

(j)
s (Φ

(j)
s)T),∀s ≤ m and v > ᾱ := min{α, 1− α}. Then

P
[
J⋆ = Ĵf

]
≥ 1− p exp

(
−m (v − ᾱ)2

2v(1− v)

)
.

Proof. Recall that ϵs = [ϵs,i]
n
i=1. Since ϵ1, . . . , ϵm are independent,

1{∑p
j=1 ∥β̂(j)

1 −β
⋆(j)
1 ∥2≤ω̄

}, . . . ,1{∑p
j=1 ∥β̂(j)

m −β
⋆(j)
m ∥2≤ω̄

}
are independent and Bernoulli distributed with coefficient

P

[
p∑

s=1

∥β̂(j)
s − β⋆(j)

s ∥2 ≤ ω̄

]
≥ vs,

where we used Lemma F.4 and set ω̄ := min{ω, c1,f − ω}. If j ∈ J⋆ and ∥β̂(j)
s − β

⋆(j)
s ∥2 < ω̄, then by Assumption F.1

∥β̂(j)
s ∥2 > c1,f − ∥β̂(j)

s − β⋆(j)∥2 ≥ c1,f − ω̄ ≥ ω,

which implies J⋆ ⊂ Ĵ . If j /∈ J⋆ and ∥β̂(j)
s − β

⋆(j)
s ∥2 < ω̄, then

∥β̂(j)
s ∥2 ≤ ∥β̂(j)

s − β⋆(j)
s ∥2 + ∥β⋆(j)

s ∥2 ≤ ω̄ ≤ ω.

We have by Lemma F.5 and for v > ᾱ,

P
[
Ĵf = J⋆

]
≥ P [∀j ∈ J⋆, |Qj | ≥ m/x;∀j /∈ J⋆, |Qj | < m/x]

≥ P

[
∀j /∈ J⋆,

m∑
s=1

1{
∥β̂(j)

s ∥2≤w
} ≥ m/x;∀j ∈ J⋆,

m∑
s=1

1{
∥β̂(j)

s ∥2>w
} ≥ m/x

]

≥ P

[
∀j ∈ {1, . . . , p},

m∑
s=1

1{
∥β̂(j)

s −β
⋆(j)
s ∥2≤ω̄

} ≥ mmin{α, 1− α}

]

≥ P

[
m∑
s=1

1{∑p
j=1 ∥β̂(j)

s −β
⋆(j)
s ∥2≤ω̄

} ≥ mᾱ

]

≥ 1− exp

(
−m

(
ᾱ log

(ᾱ
v

)
+ (1− ᾱ) log

(
1− ᾱ

1− v

)))
≥ 1− exp

(
−m (v − ᾱ)2

2v(1− v)

)
.

(F.4)

Proof of Theorem F.3. Assume the setting of Lemma F.6 and that there exists cκ > 0 such that κ ≥ cκ. Set λ =
ω̄c2κ
8 ,

ns = n
¯
,∀s ≤ m and assume λ

√
n
¯

4σ > 1 and v = 1− p exp(−(λ√n
¯
/4σ − 1)2/2) > ᾱ.

Note that Φ(j)
s ∈ RN×mdj is block-diagonal. Since by assumption kj(x, x

′) ≤ 1,∀j ≤ p, we have

∥(Φ(j)
s)TΦ(j)

s ∥2 ≤ tr((Φ(j)
s)TΦ(j)

s) = tr(Φ(j)
s (Φ(j)

s)T) =

n∑̄
i=1

kj

(
x
(s)
i , x

(s)
i

)
≤ n

¯
.

Lemma F.6 yields the result.

F.2 LIFELONG REGRET OF F-LIBO (PROOF OF THEOREM 5.1)

We start by stating Theorem 5.1 more rigorously.

Theorem F.7. Assume that the true reward functions f1, . . . , fm satisfy ∥fi∥Hk⋆ ≤ B for some constant B > 0. Let n̄ be
the number of times forced exploration is used in each task. Let ν be a distribution on X n̄m independent of ϵ1, . . . , ϵm. Let
V ∼ ν be the random vector used for forced exploration. Let Φ̃s ∈ Rn̄×md be the data matrix obtained by forced exploration
in task s. Set λ = ω̄c2κ/8. Assume the forced exploration distribution ν and {kj}j≤p are such that, with probability at least
1− δ/4, there exists cκ > 0 such that κ(Φ̃s) ≥ cκ,∀s ≤ m. Assume further that the base bandit algorithm using the true
kernel function achieves on m tasks with independent noise with probability at least 1− δ/2 cumulative regret lower than
R⋆(n,m). Define

v := 1− p exp

(
−1

2

(
ω̄c2κ
√
n̄

32σ
− 1

)2
)
.

and assume for all s ≤ m

v ≥ ᾱ,
ω̄c2κ
√
n̄

32σ
> 1. (F.5)

Then with probability at least 1− δ, LIBO (using F-META-KGL to predict the kernel) achieves

R(m,n) ≤ O (Bn log(mp/δ)/n̄+Bmn̄) +R⋆(n,m).

Proof. Similar to the proof of Theorem E.1 we have by Equation F.4 for all s and v′ ∈ C

P
[
Ĵs = J⋆ | V = v′

]
≥ 1− p exp

(
−s
(
ᾱ log

(ᾱ
v

)
+ (1− ᾱ) log

(
1− ᾱ

1− v

)))
.

By union bound we have for m0 ≤ m

P
[
∀m ≥ s ≥ m0, Ĵs = J⋆ | V = v′

]
≥ 1−

m∑
s=m0

p exp

(
−s
(
ᾱ log

(ᾱ
v

)
+ (1− ᾱ) log

(
1− ᾱ

1− v

)))
≥ 1−mp exp (−m0 (q − (1− ᾱ) log (1− v))) ,

where q := ᾱ log (ᾱ) + (1− ᾱ) log (1− ᾱ). Set

m0 =

⌈
log(4mp/δ)

q̄ + (1− ᾱ)(w̄c2κ
√
n̄/32σ − 1)2/2

⌉
,

where q̄ := q − (1− ᾱ) log(p). Following the same steps as in the proof of Theorem E.1 we get

R(m,n) ≤ O (m0nL+ Lmn̄) +R⋆(n,m−m0)

≤ O (2Bm0n+ 2Bmn̄) +R⋆(n,m)

≤ O (Bn log(mp/δ)/n̄+Bmn̄) +R⋆(n,m).

Corollary F.8. Assume the setting of Theorem F.7 and set n̄ =
√
n. Then with probability at least 1− δ we have

R(m,n) ≤ O
(
B
√
n(log(mp/δ) +m)

)
+R⋆(n,m).

F.3 PERFORMANCE OF GP-UCB PAIRED WITH F-LIBO

Corollary F.9. Assume we are in the setting of Corollary F.8 with GP-UCB as the base bandit algorithm and λucb = 1+2/n.
Then, for all 0 < δ < 1, with probability at least 1− δ,

R(m,n) = O
(
Bmd⋆

√
n log n

d⋆ +m
√
nd⋆ log n

d⋆ log 1
δ +B

√
n(m+ log(mp/δ))

)
.

Proof. The proof is the same as the proof for Corollary E.9, except that we use Corollary F.8 in place of Corollary E.3.

G EXPERIMENT DETAILS

For the synthetic experiments, we initiate the algorithms with ω = c1/2. For all experiments, the exploration coefficient
of the GP-UCB algorithm is set to νi = 10 and λucb = 0.1. Experiment are all repeated 20 times for difference random
seeds, and the plots show the corresponding standard error. The remaining experiment settings are detailed in the following
subsections.

G.1 OFFLINE DATA EXPERIMENTS

We generate the reward functions f1, ..., f30 from the synthetic environment. Corresponding to each fs, we generate a
data set Ds of size n = 10 by sampling points xs,1, . . . ,xs,n i.i.d from a uniform distribution U(X) over the domain
X = [0, 1] and collecting the corresponding noisy function values ys,i = fs(xs,i) + ϵ, where the noise is samples from
N (0, σ2 = 0.01). We initiate META-KGL with the lasso regularization parameter of λ = 0.25 and F-META-KGL with
λ = 0.015. For F-META-KGL, we set the majority vote threshold to α = 0.25.

G.2 LIFELONG DATA EXPERIMENTS

For experiments using synthetic data, we set n = 100, and for the experiments on GLMNET data, there are n = 144 BO
steps in each task. To run LIBO on the synthetic environment we set λ = 0.5 and for F-LIBO we set λ = 0.2. On the
GMLNET environment, we instantiate LIBO with ω = 0.25 and λ = 0.015, and F-META-KGL with α = 0.25, ω = 10−6,
λ = 2.6× 10−6.

G.3 FURTHER EXPERIMENTS WITH SYNTHETIC DATA

0 5 10 15 20 25 30
Number of used tasks (m)

0

200

400

600

800

1000

1200

1400

Si
ng

le
-ta

sk
 R

eg
re

t R
(n

)

Naive (kfull)
Oracle (k)
LiBO
F-LiBO

0 5 10 15 20 25 30
Number of used tasks (m)

200

400

600

800

1000

Si
ng

le
-ta

sk
 R

eg
re

t R
(n

)

Naive (kfull)
Oracle (k)
LiBO
F-LiBO

Figure 2: Single task cumulative regret of GP-UCB with meta-learned kernel k̂ on an increasing number of meta-training
tasks. Left: base kernels constructed with 2-dimensional cosine basis. Right: base kernels constructed with 1-dimensional
Legendre polynomials. The BO performance with meta-leaned kernels quickly approaches oracle performance as the number
of meta-training task increases.

Offline Data Analogous to the offline data experiments in Section 6.1, we provide additional results for a two-dimensional
domain and Legendre polynomials instead of cosine bases in Figure 2. In particular, the left plot corresponds to X = [0, 1]2

as the domain and the first 50 2-dimensional cosine basis functions, i.e., ϕi,j(x) = cos(iπx1) cos(πx2),∀x ∈ X , as the
feature maps. For the right plot we choose X = [−1, 1] as the domain and use the first 50 Legendre Polynomials as the
feature maps.

Figure 2 shows that both meta-learners converge with increasing number of tasks to the oracle kernel. This holds for different
sets of base kernels and kernels with more than 1 input dimension. This empirically validates the theoretical findings of
Theorem 3.3 and Theorem F.3. Somewhat peculiar is that we can observe oscillating behavior for the federated algorithm
(yellow). This is a result of discrete nature of the voting system. The the total of number of tasks is a multiple of α the value
|Ĵs| is large, while for points directly after that |Ĵs| are small. With increasing number of tasks the discretization has a lesser
impact on the kernel estimation and the amplitude of the oscillations decreases.

0 250 500 750 1000 1250 1500 1750 2000
Total Steps

0

2500

5000

7500

10000

12500

15000

17500

20000

Lif
el

on
g

Re
gr

et
 R

(m
,n

)

Naive (kfull)
Oracle (k)
LiBO
F-LiBO

(a)

0 250 500 750 1000 1250 1500 1750 2000
Total Steps

0

2500

5000

7500

10000

12500

15000

17500

20000

Lif
el

on
g

Re
gr

et
 R

(m
,n

)

Naive (kfull)
Oracle (k)
LiBO
F-LiBO

(b)

0 250 500 750 1000 1250 1500 1750 2000
Total Steps

0

2500

5000

7500

10000

12500

15000

Lif
el

on
g

Re
gr

et
 R

(m
,n

)

Naive (kfull)
Oracle (k)
LiBO
F-LiBO

(c)

0 250 500 750 1000 1250 1500 1750 2000
Total Steps

0

2500

5000

7500

10000

12500

15000

Lif
el

on
g

Re
gr

et
 R

(m
,n

)

Naive (kfull)
Oracle (k)
LiBO
F-LiBO

(d)

Figure 3: Lifelong regret with cosine basis (a & b) and Legendre polynomials as feature maps (c & d). In the plots (a & c)
on the left, we use only the forced exploration data Dexp

1:s for meta-learning the kernel. For the plots (b & d) on the right,
D1:s, the data from all previous bandit interactions, is used. We observe that convergence is much faster when all interaction
data is used in LIBO and F-LIBO.

Lifelong Data We now present modifications of the lifelong BO experiments in Section 6.2. In particular, we consider
other base kernels as well as a modification of LIBO where we use all collected data for meta-learning k̂ instead of only
the forced exploration data Dexp

1:s . The results are depicted in Figure 3. Figure (a) and (b) correspond to 50 cosine basis
functions as feature maps for the base kernels. For Figure (c) and (d), we use the first 50 Legendre polynomials as feature
maps. The plots on the left (i.e. Fig. a, c) are generated with LIBO and F-LIBO, as presented in Algorithm 2 and 3, where
only the forced exploration data is used for meta-learning. The plots on the right (i.e. Fig. b, d) correspond to a modified
version of LIBO and F-LIBO where we use D1:s, i.e., all previous bandit interactions, to meta-learn the kernel.

Generally, we observe that LIBO and F-LIBO substantially outperform the naive method which uses all base kernels.
The gray vertical lines in Figure 3 indicate the beginning of a new task. We see that for every new task all algorithms

initially experiences high regret, but, over time, as reward estimation improves, the cumulative regret flattens. As the rate
of single-task convergence is dependent on the kernel, we see that differences in the performance between the algorithms
emerge. When running LIBO, over time, forced exploration decreases and the estimated kernel converges to the true kernel.
This means that, over time, the behavior of the agent using the LIBO estimator becomes indistinguishable form the agent
using the oracle kernel. This is evident from 3 (a) as the slope of the single-task cumulative regret of the meta-agent (green)
becomes the same as for the oracle agent (blue). In the federated case (yellow), while the estimated kernel also converges
to the true kernel, the more restrictive setting forces us to use a constant exploration rate (see Algorithm 3 and Section 5)
which means that the behavior of the federated meta-learner is always slightly sub-optimal. This can be observed by noting
that the slope of the single-task cumulative regret of the federated meta-learner (yellow) is higher compared to the oracle
agent even after the estimated kernel converges to the true kernel.

When we adjust LIBO and F-LIBO to use all available data to predict the kernel instead of only using Dexp
1:s , the lifelong

regret decreases. As we would expect, using more data for meta-learning the kernel speeds up the convergence of k̂ to k∗

which, in turn, makes the BO runs more efficient. In practice, using the data from all interactions, not just the ones obtained
by forced exploration, seems to be the best choice. From a theoretical perspective, this comes with additional technical
challenges, as we point out in Section 4.2.

	Pseudo-codes to Algorithms
	Extended Literature Review
	Generality of the Kernel Assumption
	Consistency of Meta-KGL (Proof of)
	Lifelong Analysis (Proof of)
	Background on GP-UCB
	Lifelong Regret of GP-UCB Paired with LiBO (Proof of)
	Forced Exploration Lower Bound (Proof of)

	Federated Analysis (Proof of)
	Consistency of the Meta-learned Kernel
	Lifelong Regret of F-LiBO (Proof of)
	Performance of GP-UCB paired with F-LiBO

	Experiment Details
	Offline Data experiments
	Lifelong Data Experiments
	Further Experiments with Synthetic Data

