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Abstract

This supplementary material recalls some tensor operations (Section 1) used throughout the paper and random
tensor theory tools presented in Section 2. The main proofs are then presented in Section 3. Finally, some extensions
of our results to a more general data model are discussed in Section 4.

1 TENSOR OPERATIONS

We briefly recall in this section some tensor notations and operations that are used throughout the paper.

Inner product and norm: The inner product of two same-sized order k tensors X,Y ∈ Rp1×···×pk is the sum of the
products of their entries and is denoted as ⟨X,Y⟩ =

∑
i1,...,ik

Xi1···ikYi1···ik . In particular, the norm ∥X∥ of X ∈ Rp1×···×pk

is ∥X∥2 = ⟨X,X⟩.

Rank-one tensors An order k tensor X ∈ Rp1×···×pk is said to be a rank-one tensor if it can be written as the outer
product of k vectors a1, . . . ,ak, i.e., X =

⊗k
j=1 aj = a1 ⊗ · · · ⊗ ak, where the outer product

⊗k
i=1 ai is defined such

that
(⊗k

j=1 aj

)
i1...ik

=
∏k

j=1(aj)ij , i.e., each element of the rank-one tensor is the product of the elements of the

corresponding vectors.

Tensor multiplication: The j-mode (matrix) product of a tensor X ∈ Rp1×···×pk with a matrix M ∈ Rm×pj is denoted
X ×j M and is a tensor of size p1 × · · · × pj−1 × m × pj+1 × · · · × pk. Element-wise, the j-mode (matrix) product
is defined as (X ×j M)i1···ij−1kij+1···ik =

∑pj

ij=1 Xi1···ikMkij . Similarly, the j-mode (vector) product or contraction
of an order k tensor X ∈ Rp1×···×pk with a vector v ∈ Rpj is also denoted as X ×j v and results in a tensor of
order k − 1 of dimension p1 × · · · × pj−1 × pj+1 × · · · × pk. Element-wise, the j-mode contraction is defined as
(X ×j v)i1···ij−1ij+1···ik =

∑pj

ij=1 Xi1···ikvij , which basically consists in computing the inner product of each mode-j fiber
with the vector v.

Tensor Rank and the CANDECOMP/PARAFAC Decomposition (CPD): The CP decomposition [Hitchcock, 1927,
Landsberg, 2012] produces a decomposition of a tensor X ∈ Rp1×···×pk into a sum of rank-one tensors, i.e., X =∑r

i=1

⊗k
j=1 a

(i)
j . The rank of X denoted rank(X) is defined as the smallest possible integer r for which X decomposes as

above.
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2 RANDOM TENSOR THEORY

The random tensor theory consists of generalizing classical random matrix theory [Marčenko and Pastur, 1967, Baik et al.,
2005] to random tensor models. The first line of research on this topic was proposed by Montanari and Richard [2014] who
introduced the concept of tensor PCA. Afterward, many works have focused on the analysis of symmetric random tensors
[Perry et al., 2020, Lesieur et al., 2017, Handschy, 2019, Jagannath et al., 2020, Goulart et al., 2021]. However, symmetric
random tensor models have limited applications in machine learning since real data structures do not necessarily have such
symmetric properties. In a very recent work by Seddik et al. [2021], a study of asymmetric spiked random tensors have been
carried out. It considers an observed k-order tensor T of the form

T = β

k⊗
j=1

uj +
1√∑k
i=1 pi

Z ∈ Rp1×···×pk , (1)

where uj ∈ Rpj for j ∈ [k] are unitary vectors, Z is a random tensor with i.i.d. N (0, 1) entries and β > 0 is a parameter
controlling the signal-to-noise ratio (SNR). The study has provided asymptotic evaluation of λ and ⟨uj ,vj⟩ with λ

⊗k
j=1 vj

being the best rank-one approximation of T given by the maximum likelihood estimator (MLE) as

argmin
λ>0,{vj | ∥vj∥=1, j∈[k]}

∥∥∥∥∥∥T − λ

k⊗
j=1

vj

∥∥∥∥∥∥
2

F

. (2)

This study was carried out in the high-dimensional regime, where pj → ∞ with pj∑k
i=1 pi

→ cj ∈ [0, 1]. Precisely, Seddik
et al. [2021] provided the following results which will be subsequently applied in order to assess the performance of the
learning algorithms studied in the present work.

2.1 k-ORDER SPIKED RANDOM TENSORS

Theorem 2.1 (Theorem 8 in [Seddik et al., 2021]). As pj → ∞ with pj∑k
i=1 pi

→ cj ∈ [0, 1], for k ≥ 3, there exists βs such
that for β > βs, {

λ
a.s.−−→λ∞(β),

|⟨uj ,vj⟩|
a.s.−−→ qj(λ

∞(β)),

where λ∞(β) satisfies1 f(λ∞(β), β) = 0 with f(z, β) = z + g(z) − β
∏k

j=1 qj(z), qj(z) =
√
1− g2

i (z)

ci
, gj(z) =

g(z)+z
2 −

√
4cj+(g(z)+z)2

2 and g(z) being the unique solution to g(z) =
∑k

j=1 gj(z).

In essence, for an SNR β large enough, Theorem 2.1 predicts a non-zero correlation between the signal components (i.e.,
the uj’s) and their estimated counterparts (i.e., the vj’s) by the MLE. We refer the reader to [Seddik et al., 2021] for a more
detailed discussion.

2.2 CUBIC SPIKED RANDOM TENSORS

In the case of cubic tensors, i.e., k = 3 and all the tensor dimensions are equal (p1 = p2 = p3), λ∞ and qj(λ
∞) in Theorem

2.1 have closed form expressions in terms of β.

Corollary 2.2 (Corollary 3 in [Seddik et al., 2021]). As pj → ∞, for β > 2
√
3

3 ,λ
a.s.−−→λ∞(β) =

√
β2

2 + 2 +
√
3
√

(3β2−4)3

18β ,

|⟨uj ,vj⟩|
a.s.−−→ q̄(β),

with q̄(β) =

√
9β2−12+

√
3

√
(3β2−4)3

β +

√
9β2+36+

√
3

√
(3β2−4)3

β

6
√
2β

.
1We will sometimes omit the dependence on β for simplicity.



2.3 SPIKED RANDOM MATRICES

For k = 2, the model in (1) becomes a so-called spiked random matrix which has been extensively studied using random
matrix theory [Baik et al., 2005, Benaych-Georges and Nadakuditi, 2011, Capitaine et al., 2009, Péché, 2006, Ben Arous
et al., 2021]. Theorem 2.1 covers also such models by not letting all tensor dimensions go to infinity which yields the
following corollary.

Corollary 2.3 (Corollary 5 in [Seddik et al., 2021]). As p1, p2 → ∞ with p1

p1+p2
→ c ∈ [0, 1], for β > 4

√
c(1− c),λ

a.s.−−→λ∞(β) =
√
β2 + 1 + c(1−c)

β2 ,

|⟨u1,v1⟩|
a.s.−−→ 1

κ(β,c) , |⟨u2,v2⟩|
a.s.−−→ 1

κ(β,1−c) ,

where κ(β, c) = β
√

β2(β2+1)−c(c−1)
(β4+c(c−1))(β2+1−c) .

3 MAIN PROOFS

3.1 POOF OF THEOREM 3.1

Recall w = vec(W), X = Mat(X), p =
∑k

j=1 pj and P =
∏k

j=1 pj , hence w = 1√
npXy. Denoting x̃i = Mat(X̃i)

for some X̃i ∈ Ca with a ∈ {1, 2} independent of the training data X, the decision function write as fR(x̃i) = w⊤x̃i =∑d
j=1 wj x̃ij . Thus, by Lyapunov’s central limit theorem [Billingsley, 2008], the decision function has a Gaussian distribution

for large n, we, therefore, need to compute its expectation and variance.

Computation of E[fR(x̃i)]: Let µ = vec(M), then x̃i = (−1)aµ+ zi with zi ∼ N (0, IP ) and

E[fR(x̃i)] =
1

√
np

E
[
y⊤X⊤x̃i

]
=

1
√
np

y⊤yµ⊤(−1)aµ = (−1)a
√

n

p
∥µ∥2 = (−1)a

√
n

p
∥M∥2.

Computation of E[f(xi)
2]:

E
[
f(xi)

2
]
= E

[
1

np
y⊤X⊤x̃ix̃

⊤
i Xy

]
= E

[
1

np
y⊤X⊤Xy

]
+ E

[
1

np
y⊤X⊤µµ⊤Xy

]
= E1 + E2.

Since X = µy⊤ +Z with Z = [z1, . . . ,zn] = Mat(Z) ∈ Rd×n, we have

E1 =
1

np
∥µ∥2∥y∥4 + 1

np
E
[
y⊤Z⊤Zy

]
=

n

p
∥M∥2 + P

p
,

E2 =
1

np
y⊤yµ⊤µµ⊤µy⊤y +

1

np
E
[
y⊤Z⊤µµ⊤Zy

]
=

1

np
∥y∥4∥µ∥4 + 1

np
tr
(
E
[
Zyy⊤Z⊤]µµ⊤) ,

where E
[
Zyy⊤Z⊤] = E

[
(
∑n

i=1 yizi)
(∑n

i=1 yiz
⊤
i

)]
=
∑n

i=1 y
2
i E
[
ziz

⊤
i

]
= nIP . Therefore,

E
[
fR(x̃i)

2
]
=

n

p
∥M∥2 + P

p
+

n

p
∥M∥4 + 1

p
∥M∥2,

and the term 1
p∥M∥2 vanishes for large values of p under Assumption 2.2. In particular, the variance of f(xi) is given by

E
[
fR(x̃i)

2
]
− E [fR(x̃i)]

2
= n

p ∥M∥2 + P
p for large values of p.

3.2 POOF OF THEOREM 3.3

Denote M = γ
⊗k

j=1 uj where uj =
µj

∥µj∥ , as such ∥M∥ = γ. Therefore, from the definition of the weight tensor and

further denoting β = ∥M∥
√

n
p , W expresses as

W = β

k⊗
j=1

uj +
1
√
p

Z̃. (3)



The best rank-one approximation λ
⊗k

j=1 vj (with the vj’s being unitary vectors) of W is given by the MLE as

argmin
λ>0,{vj | ∥vj∥=1, j∈[k]}

∥∥∥∥∥∥W − λ

k⊗
j=1

vj

∥∥∥∥∥∥
2

F

.

As in Section 3.1, for a new test datum X̃i = (−1)aM + Z̃i, the decision function fTR(X̃i) is a Gaussian random variable,
the mean of which expresses as follows.

E
[
fTR(X̃i)

]
= E

〈λ k⊗
j=1

vj , X̃i

〉 = E

(−1)a∥M∥λ
k∏

j=1

⟨uj ,vj⟩

→ (−1)a∥M∥λ∞(β)

k∏
j=1

qj(λ
∞(β)),

by Theorem 2.1. Moreover, the variance of fTR(X̃i) expresses as

Var
[
fTR(X̃i)

]
= E

〈λ k⊗
j=1

vj , Z̃i

〉2
 = E

λ2

 ∑
i1,...,ik

k∏
j=1

(vj)ij (Z̃i)i1,...,ik

2


= E

λ2
∑

i1,...,ik,i′1,...,i
′
k

k∏
j=1

(vj)ij (Z̃i)i1,...,ik

k∏
j=1

(vj)i′j (Z̃i)i′1,...,i′k


= E

λ2
∑

i1,...,ik

k∏
j=1

(vj)
2
ij (Z̃i)

2
i1,...,ik

 = E

λ2
∑

i1,...,ik

k∏
j=1

(vj)
2
ij E[(Z̃i)

2
i1,...,ik

| Z]

 = E[λ2] → λ∞(β)2,

since E[(Z̃i)
2
i1,...,ik

| Z] = 1 and
∑

i1,...,ik

∏k
j=1(vj)

2
ij
=
∏k

j=1 ∥vj∥2 = 1.

3.3 POOF OF THEOREM 3.5

The equivalent random matrix model writes as

X̃ =

√
n

d+ n
vec(M)ȳ⊤ +

1√
d+ n

Mat(Z) ∈ Rd×n,

where ȳ = y/
√
n and the normalization by

√
P + n is considered for convenience. Let ŷ be the right singular vector of X̃

corresponding to its largest singular value. Then evoking Corollary 2.3, the asymptotic alignment under Assumption 2.2 is
given as

|⟨ŷ, ȳ⟩| a.s.−−→α = κ

(
∥M∥

√
n

P + n
,

n

P + n

)−1

.

Moreover, ŷ decomposes as

ŷ = αȳ + σw,

where w ∈ Rn is a random vector, orthogonal to ȳ and of unit norm. Since ŷ is of unit norm, σ satisfies 1 = α2 + σ2, as
such σ =

√
1− α2. Finally, the Gaussianity of the entries of ŷ is obtained thanks to similar arguments as in [Couillet and

Benaych-Georges, 2016].

3.4 POOF OF THEOREM 3.6

The equivalent random tensor model writes as

X̃ =

√
n

p+ n
M ⊗ ȳ +

1√
p+ n

Z ∈ Rp1×···×pk×n,



where ȳ = y/
√
n. As such X̃ is a spiked random tensor of order k+ 1. As in Section 3.3, we need to express the asymptotic

alignment between ŷ and ȳ with ŷ being the (k + 1)-th mode component of the rank-one tensor approximation of X̃, which
is straightforwardly obtained thanks to Theorem 2.1, applied to a (k + 1)-th order tensor of dimensions p1 × · · · × pk × n,
yielding

|⟨ŷ, ȳ⟩| a.s.−−→α = qk+1

(
λ∞

(
∥M∥

√
n

p+ n

))
,

where qk+1(·) and λ∞(·) are defined in Theorem 2.1.

4 LOW-RANK DATA MODEL WITH ORTHOGONAL COMPONENTS

Our results generalize to a more complex model of the following form. Suppose that the Xi’s are distributed in two classes
C1 and C2 (of cardinality n1 and n2 respectively), such that for Xi ∈ Ca with a ∈ 1, 2,

Xi =

ra∑
ℓ=1

k⊗
j=1

µ
(a)
j,ℓ + Zi ∈ Rp1×···×pk , (4)

where Zi is a random tensor with i.i.d. standard Gaussian entries, µ(a)
j,ℓ ∈ Rpj are independent from Zi such that

⟨µ(a)
j,ℓ1

,µ
(a)
j,ℓ2

⟩ = δℓ1ℓ2 . That is, the data tensors Xi have a rank-ra (with ra being small) structure with orthogonal components.

4.1 SUPERVISED SETTING

Let us denote Ma =
∑ra

ℓ=1

⊗k
j=1 µ

(a)
j,ℓ . In a supervised setting, it is convenient to center the data by subtracting2 1

2 (M1+M2)
from each data sample which yields tensors of the form

Xi = (−1)a (M1 − M2) + Zi, (5)

where M1 − M2 is clearly a low-rank tensor (of rank r1 + r2) with orthogonal components. Stacking all the data samples Xi

in a data tensor X ∈ Rp1×···×pk×n, the ∞-Ridge classifier has weights tensor of the form

W =
1

√
np

X ×k+1 y =

√
n

p
M +

1
√
p

Z̃, (6)

where Z̃ = 1√
n

∑n
i=1 yiZi and M = M1 −M2 =

∑r1+r2
ℓ=1

⊗k
j=1 µj,ℓ is a rank-(r1 + r2) tensor. Therefore, the Tensor-Ridge

classifier for this case relies on a low-rank approximation of W of rank r1 + r2 which might be performed using tensor
power iteration with deflation procedure. We, therefore, have the following theorem characterizing the performance of the
Tensor-Ridge classifier in this case.

Theorem 4.1 (Performance of the Tensor-Ridge classifier for data model in (5)). Under Assumption 2.2, for X̃i ∈ Ca with
a ∈ {1, 2} independent from the training set X,

1√∑r1+r2
ℓ=1 σ2

ℓ

(
fTR(X̃i)−ma

) D−→N (0, 1),

where ma = (−1)a
∑r1+r2

ℓ=1 σℓµℓ

∏k
j=1 qj(σℓ, µℓ

√
n
p ) where µℓ = ∥

⊗k
j=1 µj,ℓ∥ and σℓ satisfies f(σℓ, µℓ

√
n
p ) =

0. qj and f are defined in Theorem 2.1. Furthermore, the misclassification error verifies with probability one

P
(
(−1)agCP(X̃i) < 0 | X̃i ∈ Ca

)
−Q

(
|ma|√∑r1+r2
ℓ=1 σ2

ℓ

)
→ 0.

Proof. The proof strategy is the same as for theorem 3.3.

2In real scenarios one would first estimate the Ma’s with their empirical estimates through tensor decomposition.



4.2 UNSUPERVISED SETTING

The generalization to the unsupervised setting is more challenging since the data tensor X for the model in (4) does not
follow a CP decomposition but rather a block-term decomposition [Rontogiannis et al., 2021] which is more challenging to
analyze theoretically and is therefore left for a future investigation.
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