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Abstract

Under a simplified data model, this paper provides
a theoretical analysis of learning from data that
have an underlying low-rank tensor structure in
both supervised and unsupervised settings. For the
supervised setting, we provide an analysis of a
Ridge classifier (with high regularization parame-
ter) with and without knowledge of the low-rank
structure of the data. Our results quantify analyti-
cally the gain in misclassification errors achieved
by exploiting the low-rank structure for denoising
purposes, as opposed to treating data as mere vec-
tors. We further provide a similar analysis in the
context of clustering, thereby quantifying the ex-
act performance gap between tensor methods and
standard approaches which treat data as simple
vectors.

1 INTRODUCTION

The current era of artificial intelligence tackles learning
tasks leveraging millions or even billions of data. These data
lie in high-dimensional spaces and often come from mul-
tiple modes, such as multiple modalities, multiple sensors,
multiple sources, multiple types, and multiple (space, time,
frequency, etc.) domains. In other words, these data can
naturally be seen as tensors, in which vectors and matrices
are simply the 1-mode and 2-mode versions.

Tensors are a natural way to store data and their inner geo-
metric structure is richer than the one-dimensional and the
two-dimensional algebra [Landsberg, 2012]. In particular,
unlike matrices, low-rank tensor factorization is essentially
unique under mild assumptions when the number of modes
is greater than three. Their ubiquity in numerous applica-
tions makes them increasingly important [Sun et al., 2014],
leading to a growing interest in tensor data analysis in the
statistical learning community.

A large part of previous works on tensor theory applied to
machine learning problems assume a low-rank representa-
tion of input data [Anandkumar et al., 2014, Kadmon and
Ganguli, 2019] and estimate this representation using as
main ingredient the CANDECOMP/PARAFAC decomposi-
tion (CPD; Hitchcock [1927]). Indeed, the low-rank tensor
structure is a natural sparsity hypothesis in the modeling
of real data seen through high-dimensional inputs [Kolda
and Bader, 2019]. However, faced with tensor-structured
data, a simple and commonly used approach consists in ne-
glecting the tensor structure and reshaping them into a set
of vectors, to which a classical machine learning algorithm
is then applied. In this work, we aim at analyzing simple
machine-learning methods and quantifying their exact theo-
retical performances when neglecting versus considering the
low-rank structure, thereby quantifying the theoretical gap
between tensor methods and their vectorized counterparts.

In the literature, the low-rank tensor structure has been con-
sidered for example in tensor regression in a supervised
setting [Zhou et al., 2013] or clustering in an unsupervised
setting [Sun and Li, 2019]. The tensor structure has been
shown to enhance the performance of learning models as a
key ingredient of more complex learning architectures e.g.
for multi-modal data or multi-spectral images [Liang et al.,
2019, Chen et al., 2020], or in the design of advanced neural
network architectures by replacing the flattening operation
in fully connected layers of a Convolutional Neural Network
by CPD-based operations [Kossaifi et al., 2020].

On top of the performance gain shown by Kossaifi et al.
[2020], the reduction of the number of parameters needed
to describe the learned model is also significant. Indeed,
the gain in the size of the parameter space can be seen
when the data samples are k-order tensors and have for
example a rank-one underlying structure. In this case, if the
dimensions of the tensor are p1 × · · · × pk, the dimension
of the parameter space can be significantly reduced from∏k
j=1 pj to

∑k
j=1 pj .

All this literature motivates the analysis of learning algo-
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rithms when processing low-rank tensor structured data.
To do so, we consider a simple framework where data are
supposed to be low-rank tensors perturbed by some addi-
tive noise. The proposed framework directly extends the
fundamental settings of binary classification in the vec-
tor case Mignacco et al. [2020], Wang and Thrampoulidis
[2022]. Then, based on some random tensor theory tools
(recalled in Section 2 of the supplementary material), we
characterize the theoretical performance of linear methods
(in both supervised and unsupervised settings) with and with-
out incorporating the knowledge of the low-rank structure.
We show analytically that the incorporation of this knowl-
edge allows us to considerably improve the performance
of the studied methods, in particular when the amount of
training samples is limited or equivalently when data are
high-dimensional. Thus, exploiting the structure of the data
allows for obtaining equivalent performance with far fewer
samples.

In this work, we limit our attention to a simple, tractable
framework where data are generated as rank-one tensors
with additive Gaussian noise (see Section 2). The main
contributions brought by this paper are two-fold:

1. We first consider a supervised learning setting where
we provide a theoretical analysis of a Ridge classi-
fier with and without incorporating the low-rank ten-
sor structure of the data; see Section 3.1. The results
extend the known misclassification in a vector case.
Importantly, we show that the clever usage of a low-
rank structure allows for significant improvement in
classification performance, which is further quantified.

2. We also consider an unsupervised setting by analyz-
ing a linear clustering approach and a low-rank tensor
counterpart (Section 3.2). Our analysis provides the
theoretical conditions for which efficient clustering
is possible both theoretically and algorithmically. In
passing, we precisely quantify the performance gap
between linear versus tensor-based clustering, thereby
demonstrating the superiority of the latter in the con-
sidered setting.

To the best of our knowledge, few works in the literature
were focused on the exact characterization of the perfor-
mance of ML methods when processing tensor data with
low-rank structures, even under our considered setting. This
paper suggests new directions to fill in this gap leveraging on
recent advances in random tensor theory (RTT). We demon-
strate how RTT allows for the exact characterization of the
performance of the considered methods while confirming
practical insights about learning from low-rank tensor data.
In particular, our results highlight that it takes fewer training
samples to achieve better performances when the low-rank
tensor structure of the data is leveraged.

Notations: [n] denotes the set {1, . . . , n}. Scalars are de-
noted by lowercase letters as a, b, c. Vectors are denoted by
bold lowercase letters as a, b, c. Matrices are denoted by
bold uppercase letters asA,B,C. Tensors are denoted as
A,B,C. Ti1,...,id denotes the entry (i1, . . . , id) of the tensor
T. The inner product between two order-d tensors A and B is
denoted 〈A,B〉 =

∑
i1,...,id

Ai1...idBi1...id . The `2-norm of
A is denoted ‖A‖ =

√
〈A,A〉. For any vectors u1, . . . ,ud,

contractions of a tensor A are denoted by A(u1, . . . ,ud) =∑
Ai1...idu1i1 . . . udid . The notation

⊗k
i=1 vi stands for the

tensor outer product between the vectors v1, . . . ,vk with
[
⊗k

i=1 vi]i1...ik =
∏k
j=1 vjij . Mati(T) denotes the matrix

obtained by unfolding the tensor T w.r.t. its i-th mode. T×iu
denotes the contraction of the tensor T on the vector u
through mode i. Q(x) = 1√

2π

∫∞
x
e−

t2

2 dt corresponds to

the Gaussian tail function. a.s.−−→ stands for the almost sure
convergence and D−→ for the convergence in distribution.
Sd−1 stands for the unit sphere in dimension d. We refer
the reader to the supplementary material for definitions of
tensor notations.

2 STATISTICAL DATA MODEL

Let us start from the classical prototypical model for the
binary classification with the covariate x ∈ Rp belonging
to one of the two classes C1 or C2:

x = (−1)aµ+ z ∈ Rp (1)

with a = 1 for class C1 or a = 2 for class C2 (thus,
class centroids are ±µ ∈ Rp), and random noise z ∈ Rp.
The optimal estimation procedures and rates in this model
were studied extensively in the literature. Recent works
of Mignacco et al. [2020] and Wang and Thrampoulidis
[2022] showed that asymptotically the optimal misclassi-
fication error behaves as Q

(
m
σ

)
with m =

√
n
p ‖µ‖

2 and

σ =
√

n
p ‖µ‖2 + 1, where n is a sample size.

In this work, we aim to extend the fundamental result above
to more complex tensor-structured data. Let the observed
samples be n independent tensors X1, . . . ,Xn each of order
k and of dimension p1×· · ·×pk. We denote the dimensions
p =

∑k
j=1 pj and P =

∏k
j=1 pj . We suppose that the Xi’s

are distributed in two classes C1 and C2 (of cardinality n1
and n2 respectively – that is n = n1 + n2), such that for
Xi ∈ Ca with a ∈ {1, 2},

Xi = (−1)a
k⊗
j=1

µj + Zi ∈ Rp1×···×pk , (2)

where Zi is a random tensor with i.i.d. standard Gaussian
entries, µj ∈ Rpj for j ∈ [k] are independent from the Zi’s
and M =

⊗k
j=1 µj stands for the outer product between

all the µj’s. Here, the rank-1 tensor term represents the in-
formative part of the data, while Zi models corruption by
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additive noise. In the context of supervised binary classi-
fication, we are further given a vector of labels y ∈ Rn
such that yi = −1 for Xi ∈ C1 and yi = 1 for Xi ∈ C2.
Importantly, the model for the vector case (1) is a particular
instance of the tensor model (2) with k = 1.

Note that in this formulation, the noise variance is assumed
constant, and the difficulty of the classification problem is
controlled by the between-class distance ‖M‖. Specifically,
when ‖M‖ = 0 the classification is impossible whereas
when ‖M‖ is very large the classification becomes trivial.
We also highlight that the classical high dimensional statis-
tical model corresponds to the case k = 1, and we consider
a more general setting by taking any k ≥ 1.

We denote the observed data tensor X = [X1, . . . ,Xn] ∈
Rp1×···×pk×n by concatenating all the Xi along the (k+1)-
th mode of dimension n. X expresses in tensor form as

X = M⊗ y + Z, (3)

where Z = [Z1, . . . ,Zn] ∈ Rp1×···×pk×n. Given the rank-
one structure of the tensor mean M, the outer product M⊗y
results in a rank-one tensor of order k+1. As such, the data
tensor X is a rank-one spiked random tensor model of order
k + 1, where the signal part is M⊗ y and Z corresponds to
the noise part.

Remark 2.1 (On the data model). Note that the RTT anal-
ysis presented below (following [Seddik et al., 2021a]) ex-
tends trivially to a more general (rank-r) data model of the
form

∑r
i=1

⊗k
j=1 µ

(i)
j + Z as long as the µ(i)

j ’s are orthog-
onal and r of order O(1). On the other hand, for arbitrary
µ

(i)
j ’s, the analysis is non-trivial – see the end of Section 3.1

and the supplementary material for more details.

Throughout the following sections, we assume a high-
dimensional regime, i.e., the number of training samples n
scales linearly with the tensor dimensions pj while ‖µj‖
remains constant.

Assumption 2.2 (Growth rate). For all j ∈ [k], pjn = On(1)
and ‖µj‖ = On(1)1.

This is a classical assumption in learning theory and ran-
dom matrix theory [Pennington and Worah, 2017, Louart
et al., 2018, Ali and Couillet, 2017, Mai and Couillet, 2018,
Tiomoko et al., 2020, Seddik et al., 2021b], which considers
that the feature size scales linearly with the number of sam-
ples. Indeed, such scaling coincides with the case k = 1 in
Assumption 2.2. Moreover, Assumption 2.2 is more realistic
from the practical viewpoint in scenarios where a limited
amount of samples is available, contrary to classical statis-
tical settings which make the assumption that pi is fixed
while n→∞.

1The notation a = On(1) means that a converges to a constant
not depending on n if n → ∞.

3 MAIN RESULTS

3.1 SUPERVISED SETTING

Given the training data tensor X in (3) and the correspond-
ing labels vector y, a simple learning approach consists in
reshaping X into a data matrix X ≡ Matk+1(X) ∈ Rn×P

with P =
∏k
j=1 pj , and then training a Ridge classifier with

some regularization parameter γ ≥ 0, i.e.,

min
w
‖y −Xw‖2 + γ‖w‖2, (4)

the solution of which writes explicitly as w∗ =(
X>X + γI

)−1
X>y. Since the two classes correspond-

ing to the data model in (2) are only separable through their
means (−M and M) and have the same covariance, we con-
sider the study of the Ridge classifier for γ � ‖X>X‖which
we refer to as∞-Ridge classifier2. Therefore, the∞-Ridge
classifier consists in projecting the data matrix X on the
labels y as3

w =
1
√
np
X>y, (5)

where we recall that p =
∑k
j=1 pj , for which the decision

function (for a new datum X̃i ∈ Ca) is given by fR(X̃i) =
〈w, vec(X̃i)〉. This is equivalent in tensor notations to

fR(X̃i) = 〈W, X̃i〉
C1
≶
C2

0, W ≡ 1
√
np

X×k+1 y. (6)

As such, the∞-Ridge classifier does not leverage the low-
rank tensor structure of the underlying data model and treats
the data as mere vectors. Our first result consists in character-
izing the theoretical performance of the∞-Ridge classifier
for the data model in (3):

Theorem 3.1 (Performance of the∞-Ridge classifier). Un-
der Assumption 2.2, for X̃i ∈ Ca with a ∈ {1, 2} indepen-
dent from the training set X,

1

σ

(
fR(X̃i)−ma

) D−→N (0, 1),

where ma = (−1)a‖M‖2
√

n
p and σ =

√
n
p ‖M‖2 +

P
p .

Moreover, the misclassification error verifies with probabil-
ity one P

(
(−1)afR(X̃i) < 0 | X̃i ∈ Ca

)
−Q

(
|ma|
σ

)
→ 0.

Proof. See supplementary material.

2Known as the matched filter classifier in some literature and
is proven to be optimal for the model in (2) when k = 1, as stated
in [Tiomoko et al., 2021].

3The normalization by
√
np is considered for convenience

and does not affect the performances of the considered methods.
Moreover, under Assumption 2.2 the quantities n and p are of the
same order which is equivalent to the standard normalization by n.
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Figure 1: Theoretical versus empirical histogram of the decision function fR(X̃i) for the∞-Ridge classifier as per The-
orem 3.1 (left) and for the Tensor-Ridge classifier as per Theorem 3.3 (right). We considered n = 200 training data
(n1 = n2 = 100) that are tensors of shape (15, 30, 20), distributed as the rank-one tensor model in (2) with the µj’s being
randomly sampled vectors from spheres such that ‖M‖ = 3.

Theorem 3.1 states that the performance of the ∞-Ridge
classifier depends solely on ‖M‖ and the dimension ratios n

p

and P
p . Note that in classical high dimension statistics (e.g.,

k = 1), the ratios n
p and P

p are constant as n→∞. While
in the actual tensor setting for k ≥ 2, the dimension P has
a polynomial growth in terms of n. Therefore, Theorem
3.1 is more general since it captures the behavior of both
regimes. Moreover, since the data are mean-wise centered
as per (2), the optimal classification is obtained by taking
the sign of the decision function which is also suggested
theoretically since the optimal threshold is m1+m2

2 = 0.
Figure 1 (left) provides a histogram of the decision function
of the∞-Ridge classifier and its theoretical density.

Tensor-based approach: To improve classification accu-
racy, ones needs to retrieve the rank-one structure M from
the data. This can be performed by denoising W, specifically
by replacing it with a low-rank tensor approximation, since
it is a noisy version of M. Precisely, from the definition of
W in (6) and X in (3),

W =

√
n

p

k⊗
j=1

µj +
1
√
p

Z̃, (7)

where Z̃ = 1√
n

Z ×k+1 y = 1√
n

∑n
i=1 yiZi. Since Z̃ is a

sum of n i.i.d. random tensors normalized by
√
n, then Z̃ is

also a random tensor with i.i.d. standard Gaussian entries.

Remark 3.2 (On the data distribution). Note that for the
above supervised learning setting, the Gaussianity assump-
tion on the Zi might be relaxed to any distribution with zero
mean and unit variance, for which Z̃ remains a random
tensor with i.i.d. standard Gaussian entries by the central
limit theorem.

W has the form of a spiked random tensor model which has
been studied in [Seddik et al., 2021a]. In order to extract

the hidden rank-one component of W, we consider the best
rank-one approximation of W which yields estimates of
the means components µj’s (if the classes are separable,
i.e., ‖M‖ is large enough) and then replace the weights W
in the decision function by such rank-one approximation.
Precisely, the best rank-one approximation of W can be
obtained by solving the following objective

(λ∗, {u∗i }ki=1) = argmin
λ∈R+,ui∈Spi−1

‖W− λ
k⊗
i=1

ui‖2F, (8)

which corresponds to the maximum likelihood estimator
(MLE). Computing the above MLE is NP-hard in the worst
case [Hillar and Lim, 2013]. However, it is possible to com-
pute consistent estimates of the rank-one components of W
in polynomial time, using tensor SVD4 [Ben Arous et al.,
2021, Seddik et al., 2021a] or tensor power iteration (Al-
gorithm 1) initialized with tensor SVD [Auddy and Yuan,
2022] which was shown to yield more accurate estimation
of the rank-one tensor M, provided that the difference be-
tween the class-wise means ‖M‖ is larger thanO

(
P

1
4 /p

1
2

)
as proved in [Seddik et al., 2021a, Auddy and Yuan, 2022].

In essence, extracting the rank-one component of W consists
of a denoising scheme which allows to considerably reduce
the variance of the decision function, thereby providing bet-
ter classification accuracy. Given the above MLE which we
denote λ∗

⊗k
i=1 u

∗
i , the Tensor-based∞-Ridge classifier,

which we refer to as Tensor-Ridge (TR), is defined for a new
datum X̃i ∈ Ca as

fTR(X̃i) =

〈
λ∗

k⊗
i=1

u∗i , X̃i

〉
C1
≶
C2

0. (9)

We introduce the following quantities in (10) from [Sed-
dik et al., 2021a] which describe the behavior of a k-order

4SVD applied to the unfolded tensor.

1861



0 2 4

0

0.2

0.4

‖M‖

M
is

cl
as

si
fic

at
io

n
er

ro
r

pi =(20, 15, 5), n =50

0 2 4

0

0.2

0.4

‖M‖

pi =(20, 15, 5), n =100

0 2 4

0

0.2

0.4

‖M‖

pi =(20, 15, 5), n =1000

Tensor-Ridge (Th.)
Oracle
∞-Ridge (Th.)
Tensor-Ridge (Sim.)
∞-Ridge (Sim.)

0 2 4

0

0.2

0.4

‖M‖

M
is

cl
as

si
fic

at
io

n
er

ro
r

pi =(10, 7, 5, 15, 13), n =50

0 2 4

0

0.2

0.4

‖M‖

pi =(10, 7, 5, 15, 13), n =100

0 2 4

0

0.2

0.4

‖M‖

pi =(10, 7, 5, 15, 13), n =1000

Figure 2: Theoretical versus empirical misclassification error of both ∞-Ridge classifier and Tensor-Ridge classifier
classifiers. We considered n training data as order k tensors of dimensions p1 × · · · × pk with k ∈ {3, 5} having a rank-one
structure as in (2) with the µj’s being randomly sampled vectors.

Algorithm 1 Tensor Power Iteration [Anandkumar et al.,
2014]

Require: An order k tensor W ∈ Rp1×···×pk and initializa-
tion components u0

1, · · · ,u0
k.

Output: Rank-one approximation of W.
(u1, · · · ,uk)← (u0

1, · · · ,u0
k)

while Not convergence do
for i ∈ [k] do
ui ← W(u1,...,ui−1,:,ui+1,...,uk)

‖W(u1,...,ui−1,:,ui+1,...,uk)‖
end for

end while

spiked random tensor model and shall be used subsequently.{
f(z, β) = z + g(z)− β

∏k
i=1 qi(z),

qi(z) =
√

1− g2i (z)

ci
,

(10)

where ci = limpi→∞
pi∑k

j=1 pj
and (g(z), gi(z)) are solu-

tions to the following system{
g(z) =

∑k
i=1 gi(z),

g2i (z)− (g(z) + z)gi(z)− ci = 0.
(11)

Essentially, it was proved in [Seddik et al., 2021a] that the
above equations are well defined for β greater than some
threshold βs = O(1). The latter corresponds basically to

the classes separability condition on ‖M‖ above which the
MLE in (8) starts to correlate with M.

Therefore, our following result characterizes the theoretical
performance of the Tensor-Ridge classifier based on the
above random tensor tools.

Theorem 3.3 (Performance of the Tensor-Ridge classifier).
Under Assumption 2.2, for X̃i ∈ Ca with a ∈ {1, 2} inde-
pendent from the training set X,

1

σ

(
fTR(X̃i)−ma

) D−→N (0, 1),

where ma = (−1)aσ‖M‖
∏k
j=1 qj (σ) and σ satisfies

f
(
σ, ‖M‖

√
n
p

)
= 0 where qj and f are defined in (10).

Furthermore, the misclassification error verifies with proba-
bility one P

(
(−1)afTR(X̃i) < 0 | X̃i ∈ Ca

)
−Q

(
|ma|
σ

)
→

0.

Sketch of proof. The proof relies on estimating the expec-
tation and the variance of the decision function fTR(X̃i)
for some X̃i ∈ Ca with a ∈ {1, 2} independent from
the training set X. Indeed, one finds that E fTR(X̃i) =

E
[
(−1)a‖M‖λ∗

∏k
j=1〈

µj

‖µj‖ ,u
∗
j 〉
]

where the quantities λ∗

and 〈 µj

‖µj‖ ,u
∗
j 〉 are estimated using (10) where λ∗ → σ with

σ satisfying f(σ, ‖M‖
√

n
p ) = 0 and 〈 µj

‖µj‖ ,u
∗
j 〉 → qj(σ).
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The variance of fTR(X̃i) is computed similarly and we find
Var[fTR(X̃i)] = σ2. See supplementary material for detailed
proof.

Remark 3.4 (On the assumptions). Theorem 3.3 requires
additional assumptions (e.g., Assumption 3 from [Seddik
et al., 2021a]). We highlight that this assumption is rather
technical and needs the introduction of various notions
(e.g., defining the block-wise contracted matrix introduced
by [Seddik et al., 2021a]). However, note that Assumption
3 therein is always satisfied by the maximum likelihood es-
timator when the SNR is larger than some O(1) constant.
In our notation the SNR corresponds to the quantity ‖M‖
which controls the difficulty of the classification problem.

Theorem 3.3 states that the performance of the Tensor-Ridge
classifier depends solely on ‖M‖ and the ratio p

n , and does
not depend on the dimension P as was the case for the∞-
Ridge classifier in Theorem 3.1. This highlights that the
variance σ2 for the Tensor-Ridge classifier remains constant
as n→∞. We can further observe this from Figure 1 which
shows that Tensor-Ridge yields a lower variance.

Figure 2 depicts the theoretical versus empirical misclassi-
fication error for both methods. It particularly shows that
the Tensor-Ridge classifier yields drastically better perfor-
mances (almost closer to the oracle which assumes perfect
knowledge of M) when n is small, or alternatively when the
dimension of data is high. Note that the empirical curves for
the Tensor-Ridge classifier are obtained with tensor power
iteration initialized with tensor SVD, and thus converges in
polynomial time if ‖M‖ is larger than O

(
P

1
4 /p

1
2

)
as dis-

cussed previously. In particular, the last line in Figure 2 high-
lights this phenomenon, where we can see that the power
iteration does not always converge when we increase the
tensors order.

Moreover, Figure 3 depicts the misclassification error of
both methods varying the ratio p/n and ‖M‖. It shows that
the Tensor-Ridge classifier performs better for large values
of p/n in theory (second plot from the left). More inter-
estingly, the third plot depicts the computationally possible
performance which corresponds to the algorithmic threshold
‖M‖ ≥ O

(
P

1
4 /p

1
2

)
, thereby highlighting the superiority

of the tensor-based approach even algorithmically. The last
plot corresponds to perfect knowledge of M and provides
an insight about the effect of the noise component in the
considered data model.

Generalization to higher-rank data: Our results general-
ize to a more complex model of the following form. Suppose
that the Xi’s are distributed in two classes C1 and C2 (of car-
dinality n1 and n2 respectively), such that for Xi ∈ Ca with

a ∈ 1, 2,

Xi =
ra∑
`=1

k⊗
j=1

µ
(a)
j,` + Zi ∈ Rp1×···×pk , (12)

where Zi is a random tensor with i.i.d. standard Gaussian
entries, µ(a)

j,` ∈ Rpj are independent from Zi such that

〈µ(a)
j,`1

,µ
(a)
j,`2
〉 = δ`1`2 . That is, the data tensors Xi have

a rank-ra (with ra being independent of the dimensions pi)
structure with orthogonal components.

Let us denote Ma =
∑ra
`=1

⊗k
j=1 µ

(a)
j,` the mean tensor of

class Ca. In a supervised setting, it is convenient to center
the data by subtracting5 1

2 (M1+M2) from each data sample
which yields tensors of the form

Xi = (−1)a (M1 −M2) + Zi, (13)

where M1−M2 is clearly a low-rank tensor (of rank r1+r2)
with orthogonal components. Stacking all the data samples
Xi in a data tensor X ∈ Rp1×···×pk×n, the∞-Ridge classi-
fier has weights tensor of the form

W =
1
√
np

X×k+1 y =

√
n

p
M +

1
√
p

Z̃, (14)

where Z̃ = 1√
n

∑n
i=1 yiZi and M = M1 − M2 =∑r1+r2

`=1

⊗k
j=1 µj,` is a rank-(r1 + r2) tensor. Therefore,

the Tensor-Ridge classifier for this case relies on a low-
rank approximation of W of rank r1 + r2 which can be
obtained through standard tensor decomposition methods
(e.g., tensor deflation [Ge et al., 2021]). We, therefore, have
the following theorem characterizing the performance of the
Tensor-Ridge classifier in this more general case.

Theorem 3.5 (Performance of the Tensor-Ridge classifier
for data model in (13)). Under Assumption 2.2, for X̃i ∈ Ca
with a ∈ {1, 2} independent from the training set X,

1√∑r1+r2
`=1 σ2

`

(
fTR(X̃i)−ma

) D−→N (0, 1),

where ma = (−1)a
∑r1+r2
`=1 σ`µ`

∏k
j=1 qj(σ`) where

µ` = ‖
⊗k

j=1 µj,`‖ and σ` satisfies f(σ`, µ`
√

n
p ) =

0. qj and f are defined in (10). Furthermore, the
misclassification error verifies with probability one

P
(
(−1)afTR(X̃i) < 0 | X̃i ∈ Ca

)
− Q

(
|ma|√∑r1+r2
`=1 σ2

`

)
→

0.

Proof. The proof strategy is the same as for Theorem 3.3.

5In real scenarios one would first estimate the Ma’s with their
empirical estimates through tensor decomposition.
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Figure 3: Theoretical misclassification error in terms of the signal strength ‖M‖ and the ratio p/n for three order tensors of
size (p, p, p). For both∞-Ridge and Tensor-Ridge as per Theorems 3.1 and 3.3 respectively. The third plot from the left
corresponds to polynomial time Tensor-Ridge which is possible for ‖M‖ larger than O(p 1

4 ) while the last plot corresponds
to oracle classifier which assumes perfect knowledge of M.

3.2 UNSUPERVISED SETTING

In a setting where only n training samples X1, . . . ,Xn are
provided without their corresponding labels, one would rely
on unsupervised learning to cluster them into classes. Given
the data model in (3), a simple unsupervised learning ap-
proach [Ng et al., 2002] consists in unfolding X into a n×P
matrix as

X = Matk+1(X) = y vec(M)> +Matk+1(Z), (15)

then estimating the labels y through the dominant eigenvec-
tor of the Gram matrixXX> denoted ŷ, which coincides
with the dominant left singular vector ofX . The theoretical
performance of this linear spectral method is given by the
following theorem.

Theorem 3.6 (Performance of linear spectral clustering).
Let ŷ be the right singular vector ofX corresponding to its
largest singular value. The estimated class for the datum Xi
is given as Ĉi = sign(ŷi). Then under Assumption 2.2,

1

σ

(√
nŷi − αyi

) D−→N (0, 1),

where α = κ
(
‖M‖

√
n

P+n ,
n

P+n

)−1
, σ =

√
1− α2 and

κ(β, c) = β
√

β2(β2+1)−c(c−1)
(β4+c(c−1))(β2+1−c) defined for β > (c(1−

c))
1
4 . Furthermore, the misclassification error is given with

probability one by Q
(

α√
1−α2

)
.

Proof. See supplementary material.

Theorem 3.6 states that the entries of the estimated left sin-
gular vector corresponding to the largest singular value of
X is a Gaussian random variable, whose mean and variance
depend on ‖M‖ and the ratio c = n

P+n . Essentially, in order

Linear (error= 6.3%) Tensor (error= 0.1%)

Figure 4: Left: the 2D projection space obtained by linear
clustering. Right: the 2D projection space by Tensor-based
clustering obtained through a rank-two CP decomposition
of X. We considered k = 2 and n1 = n2 = 500 and data
are tensors Xi of shape (15, 30, 20) generated as the model
in (2) with ‖M‖ = 3. The ellipses correspond to the theo-
retical means and fluctuations according to Theorems 3.6
and 3.7 respectively.

to obtain a non-zero correlation between ŷ and y, the signal

strength ‖M‖ must be greater than
4
√
c(1−c)√
c

. However, un-
der Assumption 2.2, the ratio n

P+n → 0 if n→∞, thereby
yielding a high misclassification error. Indeed, Figure 4
(left) depicts the 2D projection space corresponding to the
two largest eigenvectors of XX> along with its theoretical
mean and fluctuations as per Theorem 3.6. Note that the sec-
ond largest eigenvector ofXX> is not informative about
the classes. In fact, its entries have zero mean and variance
1/n, which is a classical result from random matrix theory
[O’Rourke et al., 2016].
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In contrast, extracting the rank-one structure of the data
tensor allows us to improve the classification performance.
Indeed, given the data model in (3), computing a rank-1 ap-
proximation of X and extracting the corresponding (k + 1)-
th mode component yields a better estimation of the labels
vector y. We precisely have the following theorem charac-
terizing the performance of the Tensor-based clustering.

Theorem 3.7 (Performance of Tensor-based clustering). Let
ŷ be the (k + 1)-th mode component of the rank-1 tensor
approximation of X. The estimated class for the datum Xi is
given as Ĉi = sign(ŷi). Then under Assumption 2.2,

1

σ

(√
nŷi − αyi

) D−→N (0, 1),

where α = qk+1 (λ
∗), σ =

√
1− α2 with qk+1(·) defined

by (10) for a tensor of order k+1 and λ∗ is the unique solu-
tion to f

(
λ∗, ‖M‖

√
n
p+n

)
= 0. Furthermore, the misclas-

sification error is given with probability one byQ
(

α√
1−α2

)
.

Proof. See supplementary material.

Remark 3.8. The generalization of the unsupervised setting
to the data model in (12) is more challenging since the data
tensor X, in this case, does not follow a CP decomposition
but rather a block-term decomposition [Rontogiannis et al.,
2021] which is more challenging to analyze theoretically
and is therefore left for a future investigation.

As for the linear clustering approach, the estimated labels
vector ŷ with tensor clustering has Gaussian entries centered
on the scaled labels y with a scaling factor α and fluctu-
ations depending on such α. However, now the clustering
performance depends on ‖M‖ and the ratio n

p+n , thereby
yielding the same clustering performance as n and p increase
at the same rate. Figure 4 (right) depicts the 2D projection
space obtained by a rank-two CP decomposition of X with
its theoretical mean and fluctuations as per Theorem 3.7.
From Figure 4 we clearly note that tensor-based cluster-
ing yields lower variance compared to the classical linear
approach, thereby allowing better clustering performance.
This improvement is relatively trivial given the knowledge
of the underlying rank-one structure, but our results allow
the exact characterization of the performance gap between
both methods.

To best illustrate the comparison between linear and Tensor-
based clustering, we depict the misclassification errors of
both methods in terms of ‖M‖ in Figure 5. Essentially, in
order to have a correlation between ŷ and y, the signal
strength ‖M‖ must be greater than some O(1) threshold
in theory. However, in order to estimate the label signal
in practice in polynomial time, ‖M‖ must be greater than
O
(
(P × n) 1

4 /(p+ n)
1
2

)
, which coincides with the phase
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Figure 5: Theoretical misclassification errors in terms of
the signal strength ‖M‖ for both linear and Tensor-based
clustering as per Theorems 3.6 and 3.7 respectively. We
considered n1 = n2 = 100 and data are tensors of shape
(15, 30, 10).

transition of linear clustering from Theorem 3.6. Impor-
tantly, Figure 5 depicts three different regions: (i) impos-
sible: it is information-theoretically impossible to recover
the clusters or even detect them, in the sense that any clus-
tering method output is provably independent of the true
classes; (ii) NP-hard: where there is no polynomial time
algorithm that can recover the labels signal, and (iii) pos-
sible: where recovery is possible in polynomial time (e.g.,
using tensor power iteration initialized with tensor SVD as
discussed previously). Figure 5 clearly highlights the benefit
of Tensor-based clustering upon linear clustering if the data
has an underlying low-rank structure. Notably, the perfor-
mances of the different approaches are accurately estimated
by Theorems 3.6 and 3.7.

4 CONCLUDING REMARKS

This paper has brought a theoretical analysis of learning
from tensor data that have a hidden low-rank structure. Both
analytical and empirical assessments suggest that a con-
siderable performance gain can be achieved by exploiting
such low-rank tensor structure when few training samples
are available and such gain is accurately quantified for the
considered statistical model in (2).

As such, the paper explicitly demonstrates the application
of random tensor theory to evaluate the performance of sim-
ple learning methods (such as the considered Tensor-Ridge
classifier), whose behavior was not so far theoretically un-
derstood. This paves the way for more systematic theoretical
analysis and improvement of sophisticated machine learn-
ing algorithms when dealing with tensor-structured data.
In particular, our present analysis can be extended for the
understanding of the CP-regressor [Zhou et al., 2013] which
basically consists of a Ridge regressor with low-rank tensor
prior, which is more adapted for low-rank tensor data with
covariance structure.
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