
Counting Background Knowledge Consistent Markov Equivalent Directed
Acyclic Graphs

Vidya Sagar Sharma1

1School of Technology and Computer Science, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India

Abstract

We study the problem of counting the number of
directed acyclic graphs in a Markov equivalence
class (MEC) that are consistent with background
knowledge specified in the form of the directions of
some additional edges in the MEC. A polynomial-
time algorithm for the special case of the problem,
when no background knowledge constraints are
specified, was given by Wienöbst, Bannach, and
Liśkiewicz (AAAI 2021), who also showed that
the general case is NP-hard (in fact, #P-hard). In
this paper, we show that the problem is neverthe-
less tractable in an interesting class of instances, by
establishing that it is “fixed-parameter tractable”:
we give an algorithm that runs in time O(k!k2n4),
where n is the number of nodes in the MEC and
k is the maximum number of nodes in any max-
imal clique of the MEC that participate in the spe-
cified background knowledge constraints. In par-
ticular, our algorithm runs in polynomial time in
the well-studied special case of MECs of bounded
tree-width or bounded maximum clique size.

1 INTRODUCTION

A graphical model is a combinatorial tool for expressing
dependencies between random variables. Both directed and
undirected versions have been used in the literature for mod-
eling different kinds of dependency structures. We study
graphical models represented by directed acyclic graphs
(DAGs), which represent conditional independence relations
and causal influences between random variables by direc-
ted edges [Pearl, 2009]. Such graphical models have been
used extensively for modeling causal relationships across
several fields, e.g., material science [Ren et al., 2020], game
theory [Kearns et al., 2001], and biology [Friedman, 2004,
Finegold and Drton, 2011].

It is well known that given access only to observational data,
the causal DAG underlying a system can only be determined
up to its “Markov equivalence class” (MEC) [Verma and
Pearl, 1990, Meek, 1995, Chickering, 1995]. Two DAGs
are said to be in the same MEC if they model exactly the
same set of conditional dependence relations between the
underlying random variables. Distinguishing between two
DAGs in the same MEC requires the use of interventional
data [Hauser and Bühlmann, 2012].

Finding the size of an MEC, therefore, becomes a question
of key interest. In particular, the size of an MEC quan-
tifies the uncertainty of the causal model given only ob-
servational data. The problem, along with a proposed al-
gorithm, was already mentioned by Meek [Meek, 1995,
Section 4.1], and has since then been the focus of a long
line of work [Madigan et al., 1996, He et al., 2015, He and
Yu, 2016, Bernstein and Tetali, 2017, Ghassami et al., 2019,
Talvitie and Koivisto, 2019, Ganian et al., 2020], which cul-
minated in a polynomial time algorithm for the problem by
Wienöbst et al. [2021].

Counting with background knowledge constraints In
applications, more information about the directions of edges
in the underlying DAG than that encoded in the MEC may
be available, for example, due to access to domain-specific
knowledge. Meek [1995] referred to this as background
knowledge and modeled it as a specification of the direc-
tions of some of the edges of the underlying DAG. Thus,
instead of finding the size of the whole MEC, one becomes
interested in counting those DAGs in the MEC that are
consistent with this specified background knowledge. An
algorithm for this problem can also be used as an indicator
of the efficacy of a particular intervention in pinning down
a DAG within an MEC, by measuring the ratio between the
size of the MEC and the number of those DAGs in the MEC
that are consistent with the extra background information
yielded by the intervention. Wienöbst et al. [2021] showed,
however, that in general, this problem is #P-complete (i.e.,
as hard as counting satisfying assignments to a Boolean for-

Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:1911–1920.

mula). Our goal in this paper is to circumvent this hardness
result when the specified background knowledge has some
special structure.

1.1 OUR CONTRIBUTIONS

We now formalize the above problem. Our input is an MEC
on n nodes, and we are given also the directions of another
s edges that are not directed in the MEC: we refer to the
set of these edges as the background knowledge, denoted
K. Our goal is to count the number of DAGs in the input
MEC that are consistent with the background knowledge K.
The above quoted result of Wienöbst et al. [2021] implies
that (under the standard P 6= NP assumption) there cannot
be an algorithm for solving this problem whose run-time is
polynomial in both n and s.

Main result The main conceptual contribution of this
paper is to define the following parameter which lets us
identify important special instances of the problem where
we can circumvent the above hardness result. Given the
set K of background knowledge edges, we define the max-
clique-knowledge k of K to be the maximum number of
vertices in any clique in the input MEC that are part of a
background knowledge edge that lies completely inside that
clique. In particular, k can be at most twice s, but it can
also be much smaller. Our main result (Theorem 3.2) is an
algorithm that counts the number of DAGs in the MEC that
are consistent with K, and runs in time O(k! · k2 · n4).

Discussion and evaluation In particular, the runtime of
our algorithm is polynomially bounded when the parameter
k above is bounded above by a constant, even if the actual
size s of the background knowledge is very large. For ex-
ample, since k is bounded above by the size of the largest
clique in the input MEC, it follows that our algorithm runs
in polynomial time in the well-studied special case (see, e.g.,
[Talvitie and Koivisto, 2019]) when the input MEC has con-
stant tree-width (and hence constant maximum-clique size).
We provide an empirical exploration of the run-time of our
algorithm, including of the phenomenon that it depends on
K only through k and not through s, in Section 6.

1.2 RELATED WORK

It is well known that an MEC can be represented as a par-
tially directed graph, known as an essential graph, with
special graph theoretic properties [Verma and Pearl, 1990,
Meek, 1995, Chickering, 1995, Andersson et al., 1997]. Ini-
tial approaches to the problem of computing the size of
an MEC by Meek [1995] and Madigan et al. [1996] built
upon ideas underlying this characterization. More recently,
He et al. [2015] evaluated a heuristic based on the parti-
tion of essential graphs into chordal components. Ghassami
et al. [2019] gave an algorithm that runs in polynomial time

for constant degree graphs, but where the degree of this
polynomial grows with the maximum degree of the graph.

Our algorithm can be seen as an example of a fixed para-
meter tractable (FPT) algorithm in the well-studied frame-
work of parameterized complexity theory [Cygan et al.,
2015]. Parameterized complexity offers an approach to at-
tack computationally hard problems (e.g. those that are NP-
hard or #P-hard) by separating the complexity of solving
the problem into two pieces – a part that depends purely
on the size of the input, and a part that depends only on
a well-chosen “parameter” ρ of the problem. An FPT al-
gorithm for a computationally hard problem has a runtime
that is bounded above by f(ρ) poly (n), where the degree of
the polynomial does not depend upon the parameter ρ, but
where the function f (which does not depend upon the input
size n) may potentially be exponentially growing. In our set-
ting, the underlying parameter is the max-clique-knowledge
of the background knowledge K.

Thus, the algorithm of Ghassami et al. [2019] cited above
is not an FPT algorithm. However, Talvitie and Koivisto
[2019] improved upon it by giving an FPT algorithm for
computing the size of an MEC (without background know-
ledge): for an undirected essential graph on n nodes whose
maximum clique is of size c, their algorithm runs in time
O(c!2cc2n). Finally, Wienöbst et al. [2021] presented the
first polynomial time algorithm for computing the size of
any MEC (again, without background knowledge). As dis-
cussed above, they also showed that counting Markov equi-
valent DAGs consistent with specified background know-
ledge is, in general, #P-complete.

We are not aware of any progress towards circumventing
this hardness result by imposing specific properties on the
specified background knowledge, and to the best of our
knowledge, this paper is the first to give a fixed parameter
tractable algorithm for the problem. Our algorithm is motiv-
ated by the techniques developed by Wienöbst et al. [2021].

2 PRELIMINARIES

We mostly follow the terminology and notation used by
Andersson et al. [1997] and Wienöbst et al. [2021] for no-
tions such as graph unions, chain graphs, directed and
undirected graphs, skeletons, v-structures, cliques, sep-
arators, chordal graphs, undirected connected chordal
graphs (which we will typically denote using the abbre-
viation UCCG), and clique trees. For completeness, we
provide detailed definitions in the Supplementary Material.

Notations. A graph G is a pair (V,E), where V is said to
be the set of vertices of G, and E ⊆ V × V is said to be the
set of edges of G. For u, v ∈ V , if (u, v), (v, u) ∈ E then
we say there is an undirected edge between u and v, denoted
as u − v. For u, v ∈ V , if (u, v) ∈ E, and (v, u) /∈ E
then we say there is a directed edge from u to v, denoted

1912

as u → v. For a graph G, we denote VG as the subset of
vertices of G, and EG as the set of vertices of G. A clique
is a set of pairwise adjacent vertices. We denote the set of
all maximal cliques of G by Π(G). For a set X , we denote
by #X (and sometimes by |X|), the size of X .

Markov equivalence classes. A causal DAG encodes a
set of conditional independence relations between random
variables represented by its vertices. Two DAGs are said to
belong to the same Markov equivalence class (MEC) if both
encode the same set of conditional independence relations.
Verma and Pearl [1990] showed that two DAGs are in the
same MEC if, and only if, both have (i) the same skeleton
and (ii) the same set of v-structures. An MEC can be rep-
resented by the graph union of all DAGs in it. Andersson
et al. [1997] show that a partially directed graph represent-
ing an MEC is a chain graph whose undirected connected
components (i.e., undirected connected components formed
after removing the directed edges) are chordal graphs. We
refer to these undirected connected components as chordal
components of the MEC. With a slight abuse of terminology,
we equate the chain graph with chordal components which
represents an MEC with the MEC itself, and refer to both
as an “MEC”.

AMO. Given a partially directed graph G, an orientation of
G is obtained by assigning a direction to each undirected
edge of G. Following Wienöbst et al. [2021], we call an
orientation of G an acyclic moral orientation (AMO) of G
if (i) it does not contain any directed cycles, and (ii) it has
the same set of v-structures as G. For an MEC G, we denote
the set of AMOs of G by AMO(G).

PEO and LBFS orderings. For an undirected graph, a
linear ordering τ of its vertices is said to be a perfect elimin-
ation ordering (PEO) of the graph if for each vertex v, the
neighbors of v that occur after v form a clique. A graph is
chordal if, and only if, it has a PEO [Fulkerson and Gross,
1965]. Rose et al. [1976] gave a lexicographical breadth-
first-search (LBFS) algorithm to find a PEO of a chordal
graph (see Algorithm 1 below for a modified version of
LBFS). Any ordering of vertices that can be returned by the
LBFS algorithm is said to be an LBFS ordering.

Representation of an AMO. Given a linear ordering τ
of the vertices of a graph G, an AMO of G is said to be
represented by τ if for every edge u → v in the AMO,
u precedes v in τ . Every LBFS ordering of a UCCG G
represents a unique AMO of G, and every AMO of a UCCG
G is represented by an LBFS ordering ofG (Corollary 1, and
Lemma 2 of Wienöbst et al. [2021]). For a maximal clique
C of G, we say that C represents an AMO α of G if there
exists an LBFS ordering that starts with C and represents
α. Similarly, for a permutation π(C) of a maximal clique
C of G, we say π(C) represents α if there exists an LBFS
ordering that starts with π(C) and represents α. We denote
by AMO(G, π(C)) and AMO(G,C), the set of AMOs of

G that can be represented by π(C) and C, respectively.

Canonical representation of AMO. For an AMO α of a
UCCG G, Wienöbst et al. [2021] define a unique clique
that represents α. We denote the clique as Cα, and say that
Cα canonically represents α. For the purposes of this paper,
we only need certain properties of the canonical represent-
ative Cα, and these are quoted in Lemma 4.7. However,
for completeness, we also give the definition of Cα in the
Supplementary Material.

a

b c

d

e f

1 2

3 4

5 6

7

MEC 1 MEC 2

Background Knowledge Max-clique Knowledge

Example 1 {a→ b, e→ d, f → d} 3

Example 2 {a→ b, e→ d} 2

Example 3 {1→ 2, 3→ 6} 2

Example 4 {1→ 2, 2→ 3, 1→ 3,

3→ 6, 4→ 6, 6→ 7}

3

Figure 1: Background Knowledge and Max-clique Know-
ledge: In MEC 1, there are 2 maximal cliques {a, b} and
{d, e, f}. In MEC 2, there are 3 maximal cliques {1, 2, 3, 4},
{3, 4, 5, 6} and {5, 6, 7}. Examples 1 and 2 are for MEC
1, and examples 3 and 4 are for MEC 2. In example 1, for
the maximal clique {d, e, f}, d and e are part of an edge
e→ d, and f is part of an edge f → d, i.e., all the nodes of
the clique is part of an edge of the background knowledge
such that both endpoints of the edge are inside the clique.
From the definition of clique knowledge, clique knowledge
of the clique {d, e, f} is 3. Similarly, clique knowledge of
the maximal clique {a, b} is 2. This shows the max-clique
knowledge of the background knowledge in example 1 for
MEC 1 is 3. Similarly, the max-clique knowledge of the
background knowledge in example 2 for MEC 1 is 2, and
the max-clique knowledge of the background knowledge in
examples 3 and 4 for MEC 2 are 2 and 3, respectively.

Background Knowledge and Clique-knowledge. For an
MEC represented by a partially directed graph G, back-
ground knowledge1 is specified as a set of directed edges

1Another way to represent background knowledge is by a

1913

K ⊆ EG [Meek, 1995]. A graph G is said to be consistent
with K if, for any edge u → v ∈ K, v → u /∈ EG (i.e.,
either u − v ∈ EG or u → v ∈ G). For a clique C of G,
clique-knowledge of K for C is defined as the number of
vertices of C that are part of a background knowledge edge
both of whose endpoints are in C. Max-clique-knowledge
of K for G is the maximum value of clique-knowledge over
all cliques of G.

We denote the set of AMOs ofG consistent with background
knowledgeK by AMO(G,K). Further, for any clique C and
any permutation π(C) of the vertices of C, we denote by
AMO(G, π(C),K) and AMO(G,C,K), respectively, the
set of K-consistent AMOs of G that can be represented by
π(C) and C.

3 MAIN RESULT

Andersson et al. [1997] show that a DAG is a member of
an MEC G if, and only if, it is an AMO of G. Thus, count-
ing the number of DAGs in the MEC represented by G is
equivalent to counting AMOs of G. We start with a formal
description of the algorithmic problem we address in this
paper.

Problem 3.1 (Counting AMOs with Background Know-
ledge). INPUT: (a) An MEC G (in the form of a chain
graph with chordal undirected components), (b) Background
Knowledge K ⊆ EG.

OUTPUT: Number of DAGs in the MEC G that are consist-
ent with K, i.e., #AMO(G,K).

As discussed in the introduction, a polynomial time al-
gorithm for the special case of this problem where K is
empty was given by Wienöbst et al. [2021], in the cul-
mination of a long line of work on that case. However, as
discussed in the Introduction, a hardness result proved by
Wienöbst et al. [2021] implies, under the standard P 6= NP
assumption, that there cannot be an algorithm for Prob-
lem 3.1 that runs in time polynomial in both n and |K|.

We, therefore, ask: what are the other interesting cases of
the problem which admit an efficient solution? We answer
this question with the following result.

Theorem 3.2 (Main result). There is an algorithm for Prob-
lem 3.1 which outputs #AMO(G,K) in time O(k!k2n4),
where k is the max-clique-knowledge value of K for G, and
n is the number of vertices in G.

In the formalism of parameterized algorithms [Cygan et al.,
2015], the above result says that the problem of counting

maximally partially directed acyclic graph (MPDAG). We do not
use MPDAGs in our paper because our run time depends only on
the number of directed background knowledge edges that generate
the MPDAG, and not on the (possibly much larger) number of
directed edges in the MPDAG.

AMOs that are consistent with background knowledge is
fixed parameter tractable, with the parameter being the max-
clique-knowledge of the background knowledge. This con-
trasts with the #P-hardness result of Wienöbst et al. [2021]
for the problem.

The starting point of our algorithm is a standard reduction
to the following special case of the problem.

Problem 3.3 (Counting Background Consistent AMOs
in chordal graphs). INPUT: (a) An undirected connected
chordal graph (UCCG) G, (b) Background Knowledge K ⊆
EG.

OUTPUT: Number of AMOs of G that are consistent with
K, i.e., #AMO(G,K).

Proposition 3.4. Let G be an MEC, and let K ⊆
EG be background knowledge consistent with G. Then,
#AMO(G,K) =

∏
H #AMO(H,K[H]), where the product

ranges over all undirected connected chordal componentsH
of the MEC G, and K[H] = {u→ v : u, v ∈ H , and u→
v ∈ K} is the corresponding background knowledge for H .

Proposition 3.4 reduces Problem 3.1 to Problem 3.3. The
proof of Proposition 3.4 follows directly from standard ar-
guments (a similar reduction to chordal components of an
MEC has been used in many previous works), and is given
in the Supplementary Material.

The rest of the paper is devoted to providing an efficient
algorithm for Problem 3.3. Our strategy builds upon the
recursive framework developed by Wienöbst et al. [2021].
In the first step, in Section 4, we modify the LBFS algorithm
presented by Wienöbst et al. [2021] to make it background
aware. This algorithm is used to generate smaller instances
of the problem recursively. Further, we modify the recursive
algorithm of Wienöbst et al. [2021] to use this new LBFS al-
gorithm. While building upon prior work, both steps require
new ideas to take care of the background information. In
particular, it is a careful accounting of the background know-
ledge K that requires the k! factor in the runtime, where k is
the max-clique-knowledge of the background knowledge. In
Section 5, we analyze the time complexity of the resulting
algorithm. Finally, Section 6 shows our experimental res-
ults. Due to space constraints, proofs of many lemmas and
theorems are provided in the Supplementary Material. For
most of the important results, we provide the proof sketch
in the main text.

4 THE ALGORITHM

In this section, we give an FPT algorithm Algorithm 3 that
solves Problem 3.3 using a parameter “max-clique know-
ledge” (Section 2). Algorithm 3 is a background aware
version of Algorithm 2 of Wienöbst et al. [2021], which
solved the special case of Problem 3.3 when there is no back-
ground knowledge. Similar to their algorithm, our algorithm

1914

uses a modified LBFS algorithm, Algorithm 1, which is a
background aware version of the modified LBFS algorithm
presented by them. The simple Algorithm 2, which counts
background knowledge consistent permutations of a clique,
is the new ingredient required in our final algorithm presen-
ted in Algorithm 3.

We start with the partitioning of the AMOs. In Section 2, we
saw that each AMO of a UCCG is canonically represented
by a unique maximal clique of the UCCG. We use this for
partitioning the AMOs.

Lemma 4.1. Let G be a UCCG, and K be a given back-
ground knowledge. Then #AMO(G,K) equals∑

C∈Π(G)

|{α : α ∈ AMO(G,K) and C = Cα}|. (1)

Here, {α : α ∈ AMO(G,K) and C = Cα} is the set of
K-consistent AMOs of G that are canonically represented
by a maximal clique C of G. To compute this, we first
compute the union of AMOs of G that are represented by
C. The following definition concerns objects from the work
of Wienöbst et al. [2021] that are relevant to construct the
union graph.

Definition 4.2 (Gπ(C), GC , CG(π(C) and CG(C), Wienöbst
et al. [2021], Definition 1). LetG be a UCCG, C a maximal
clique of G, and π(C) a permutation of C. Then, GC (re-
spectively, Gπ(C)) denotes the union of all the AMOs of G
that can be represented byC (respectively, by π(C)). CG(C)
(respectively, CG(π(C))) denotes the undirected connected
components of GC [VG \ C] (respectively, Gπ(C)[VG \ C]).

The structure of GC provides us the set of directed edges
in GC , which helps us to check the K-consistency of GC .
Since GC is the union of all the AMOs that can be repres-
ented by C, a directed edge in GC is a directed edge in all
the AMOs that can be represented by C. Thus, if any such
directed edge is not K-consistent then none of the AMOs
that can be represented by C can beK-consistent. And, if all
the directed edges of GC are K-consistent then we further
reduce our problem into counting K-consistent AMOs for
the undirected connected components of GC (Lemma 4.13).

In order to implement the above discussion, the main insight
required is the following definition.

Definition 4.3 (K-consistency of GC). Let G be a UCCG
and C a maximal clique in G. Given background knowledge
K about the directions of the edges of G, GC is said to be
K-consistent, if there does not exist a directed edge u →
v ∈ GC such that v → u ∈ K.

As discussed above, Definition 4.3 implies that for a max-
imal clique C of G, if GC is not K-consistent then there
exists no K-consistent AMO of G that is represented by C.

In other words, if GC is not K-consistent then

|{α : α ∈ AMO(G,K) and C = Cα}| = 0.

Then, from Lemma 4.1,

#AMO(G,K) =∑
C:GC isK-consistent

|{α : α ∈ AMO(G,K) and C = Cα}|.

We construct Algorithm 1 to check theK-consistency ofGC ,
for any maximal clique C of G. Wienöbst et al. [2021] give
a modified LBFS algorithm that for input a chordal graph
G, and a maximal clique C of G, outputs the undirected
connected components (UCCs) of CG(C). Their algorithm
outputs the UCCs of CG(C) in such a way that by knowing
the UCCs of CG(C), we can construct GC . We use this
fact and construct an LBFS algorithm Algorithm 1, which
also checks the K-consistency of GC . Algorithm 1 is a
background aware version of the LBFS algorithm given by
Wienöbst et al. [2021].2

We now describe our background-aware version of the mod-
ified LBFS algorithm: see Algorithm 1. We do not change
any line from the LBFS algorithm of Wienöbst et al. [2021].
The modifications we do in their LBFS algorithm are (a)
introduction of “flag”, at line 2, which is used to check the
K-consistency of GC , (b) lines 11-13, which is used to up-
date the value of “flag”, and (c) we also output the value
of “flag” with CG(C). The correctness of this modification
(stated formally in Lemma 4.5) is based on the following
observation which in turn uses ideas implicit in the work of
Wienöbst et al. [2021].

Observation 4.4 (Implicit in the work of Wienöbst et al.
[2021]). Let G be a UCCG, K be the known background
knowledge about G, and C be a maximal clique of G. For
input G,C, and K, suppose that at some iteration of Al-
gorithm 1, L = {X1, X2, . . . , Xl}. Then,

1. For any u ∈ C, and v /∈ C, if (u, v) ∈ EG then u→ v
is a directed edge in GC .

2. For u ∈ Xi, and v /∈ C ∪ X1 ∪ X2 ∪ . . . ∪ Xi, if
(u, v) ∈ EG then u→ v is a directed edge in GC .

3. For u, v ∈ Xi, for 1 ≤ i ≤ l, if (u, v) ∈ EG then u−v
is an undirected edge in GC .

4. For u, v ∈ C, u− v is an undirected edge in GC .

5. For any Xi ∈ L, every undirected connected compon-
ent of G[Xi] is an element of CG(C).

The following lemma encapsulates the correctness of Al-
gorithm 1.

2If Algorithm 1 is executed with C = K = ∅, the algorithm
performs a normal LBFS with corresponding traversal ordering τ ,
which is the reverse of a PEO of G.

1915

Algorithm 1: LBFS(G,C,K) (Background aware
LBFS, based on the modified LBFS of Wienöbst et al.
[2021])
Input :A UCCG G, a maximal clique C of G, and

background knowledge K ⊆ EG.
Output : (1, CG(C)): if GC is K-consistent,

(0, CG(C)): otherwise.
1 S ← sequence of sets initialized with (C, V \ C)
2 τ ← empty list, L ← empty list, flag← 1, Y ←

empty list
3 while S is non-empty do
4 X ← first non-empty set of S
5 v ← arbitrary vertex from X
6 if v is neither in a set in L nor in C then
7 Append X to the end of the list L.
8 Append undirected connected components of

G[X] to the end of Y .
9 end

10 Add vertex v to the end of τ .
11 if u→ v ∈ K for any u which is neither in a set in

L nor in C then
12 flag = 0;
13 end
14 Replace the set X in the sequence S by the set

X \ {v}.
15 N(v)← {x|x /∈ τ and v − x ∈ E}
16 Denote the current S by (S1, . . . , Sk).
17 Replace each Si by Si ∩N(v), Si \N(v).
18 Remove all empty sets from S.
19 end
20 return (flag, Y)

Lemma 4.5. Let G be a UCCG, C be a maximal clique
of G, and K be the known background knowledge about
G. For the input G,C, and K, if GC is not K-consistent
Algorithm 1 outputs (0, CG(C)) on line 20, else it returns
(1, CG(C)) on line 20.

For any maximal clique C of G such that GC is K-
consistent, to compute the size of the set of K-consistent
AMOs of G that are canonically represented by C, we fur-
ther partition the set based on the different permutations of
C. The simple Observation 4.6 below assists us in mapping
each AMO of the set to a unique permutation π(C) of C.

Observation 4.6. Let G be a UCCG, and α an AMO of G
that is represented by a maximal clique C of G. Then, there
exists a unique permutation π(C) of C that represents α.

By slightly extending the definition of the canonical rep-
resentation of an AMO by a clique, we say that an AMO
is canonically represented by π(C) if the AMO is rep-
resented by π(C), and also canonically represented by the
clique C. Then, Observation 4.6 implies that we can par-
tition the set of K-consistent AMOs that are canonically

represented by C into K-consistent AMOs that are canon-
ically represented by its permutations π(C), i.e., {α : α ∈
AMO(G, π(C),K) and C = Cα}. More formally,

|{α : α ∈ AMO(G,K) and C = Cα}| =∑
π(C)

|{α : α ∈ AMO(G, π(C),K) and C = Cα}|

To compute the size of K-consistent AMOs of G that are
canonically represented by π(C), we first have to go through
the necessary and sufficient conditions for a maximal clique
C of G to become Cα, for an AMO α of G.

Lemma 4.7 (Claims 1, 2 and 3 of Wienöbst et al. [2021]).
Let G be a UCCG. Wienöbst et al. [2021] fix a rooted clique
tree ofG to defineCα, for any AMO α ofG. Let T = (T,R)
be the rooted clique tree (with root R) of G on which Cα is
defined, for each AMO α of G. For an AMO α of G, and a
maximal clique C of G, C = Cα if, and only if,

1. There exists an LBFS ordering of G that starts with C,
and represents α, and

2. If π(C) is the permutation of C that represents α (from
Observation 4.6) then there does not exist any edge
Ci − Cj in the path in T from R to C such that π(C)
has a prefix Ci ∩ Cj .

The set FP(C, T) is defined to be the set of such forbidden
prefixes Ci ∩ Cj .

Definition 4.8 (FP (C, T), Definition 3 of Wienöbst et al.
[2021]). LetG be a UCCG, T = (T,R) a rooted clique tree
ofG,C a node in T andR = C1−C2− . . .−Cp−1−Cp =
C the unique path from R to C in T . We define the set
FP(C, T) to contain all sets of the form Ci ∩ Ci+1 ⊆ C,
for 1 ≤ i < p.

Based on Lemma 4.7, we define (K, T)-consistency for a
permutation π(C) to simplify our computation. This defin-
ition is one of the main new ingredients that let us extend
the result of Wienöbst et al. [2021].

Definition 4.9 ((K, T)-consistency of permutations of max-
imal cliques). Let G be a UCCG, C a maximal clique in
G, π(C) a permutation of C, K be a given background
knowledge, and T = (T,R) a rooted clique tree of G (on
which Cα is defined). π(C) is said to be (K, T)-consistent
if (a) π(C) is K-consistent, i.e, for any edge u → v ∈ K
such that u, v ∈ C, u occurs before v in π(C), and (b) no
element of FP(C, T) (Definition 4.8) is a prefix of π(C).

If π(C) itself is notK-consistent then noK-consistent AMO
exists that is represented by π(C). Also, if π(C) has a pre-
fix in FP(C, T) then from Observation 4.6 and Lemma 4.7,
there does not exist an AMO α of G such that α is rep-
resented by π(C), and C = Cα. This yields the following
observation.

1916

Observation 4.10. If π(C) is not (K, T)-consistent then
there exists no K-consistent AMOs of G that can be
canonically represented by π(C), i.e., |{α : α ∈
AMO(G, π(C),K) and C = Cα}| = 0

We thus focus on only those permutations π(C) of C that
are (K, T)-consistent. The main ingredient towards this end
is the following recursive formula.

Lemma 4.11. Let GC be K-consistent. Then, for any
(K, T)-consistent permutation π(C) of C, the size of the
set {α : α ∈ AMO(G, π(C),K) and C = Cα} is∏
H∈CG(C) #AMO(H,K[H]).

Note that the formula obtained in Lemma 4.11 depends
only upon the clique C and not on the permutation π of
the nodes of C (as long as π is itself K-consistent)! This
implies immediately that the number ofK-consistent AMOs
of G for which C is the canonical representative is given
by multiplying the product

∏
H∈CG(C) #AMO(H,K[H])

with the number of (K, T)-consistent permutation of C.

This motivates us to count (K, T)-consistent permutations
of a maximal clique C of G. To count the (K, T)-consistent
permutations of C, we define the following:

Definition 4.12. Let S be a set of vertices, R =
{R1, R2, . . . , Rl} such that R1 (R2 (. . . (Rl (S,
and K ⊆ S × S. Φ(S,R,K) is the number of K-consistent
permutations of S that do not have a prefix inR.

Lemma 4.1 and Observation 4.10, along with Lemma 4.11
and the discussion following it, finally give us the following
recursion.

Lemma 4.13. Let G be a UCCG, K be a given background
knowledge, and T = (T,R) a rooted clique tree of G on
which <α has been defined. Then #AMO(G,K) equals∑
C

Φ(C,FP (C, T),K[C])×
∏

H∈CG(C)

#AMO(H,K[H]),

where the sum is over those C for whichGC isK-consistent.

Lemma 4.13 solves our counting problem. The pre-
condition of Φ(S,R,K) in Definition 4.12 that R =
{R1, R2, . . . , Rl} has the propertyR1 (R2 (. . . (Rl (
S is satisfied at the beginning of the recursion, i.e. when
R = FP (C, T), by Lemma 4.14, which is a consequence
of the standard clique intersection property of clique trees
of chordal graphs.

Lemma 4.14 (Wienöbst et al. [2021], Lemma 7). We can
order the elements of FP (C, T) as X1 (X2 (. . . (
Xl (C.

The precondition of Φ(S,R,K) is preserved throughout the
recursion described in the lemma. We now give a recursive
method to compute Φ(S,R,K).

Algorithm 2: Valid-Perm(S,R,K)

Input :A clique S,R = {R1, R2, . . . , Rl} such that
R1 (R2 (. . . (Rl (S, and background
knowledge K ⊆ S × S.

Output : Φ(S,R,K).
1 ifR = ∅ then
2 return |S|!

|VK|! ·Ψ(VK,K)

3 end
4 sum← Valid-Perm(S,R− {Rl},K)
5 if {(u, v) : u→ v ∈ K, v ∈ Rl and u /∈ Rl} 6= ∅ then
6 return sum
7 end
8 return sum− Valid-Perm(Rl,R− {Rl},K[Rl])×

Valid-Perm(S \Rl,∅,K[S \Rl])

Lemma 4.15. Let S be a clique, and K ⊆ S × S be a set
of directed edges. Let R = {R1, R2, . . . , Rl} where l ≥ 1
be such that R1 (R2 (. . . (Rl (S. Then,

1. Φ(S,∅,K) = |S|!
|VK|! × Ψ(VK,K), where Ψ(VK,K)

is the number of K-consistent permutations of ver-
tices in VK (VK is the set of end points of edges
in K). (Example: Suppose S = {1, 2, 3, 4, 5}, and
K = {1 → 2, 2 → 3}. Then, VK = {1, 2, 3}. And,
there exist only one permutation, (1, 2, 3), of VK that
is K-consistent, i.e., Ψ(VK,K) = 1. This implies
Φ(S,∅,K) = 20.)

2. If there exists an edge u→ v ∈ K such that u ∈ S \Rl
and v ∈ Rl, then Φ(S,R,K) = Φ(S,R− {Rl},K).

3. If there does not exist an edge u → v ∈ K
such that u ∈ S \ Rl and v ∈ Rl,
then Φ(S,R,K) = Φ(S,R − {Rl},K)−
Φ(Rl, R− {Rl},K[Rl])× Φ(S \Rl,∅,K[S \Rl]).

Proof of Lemma 4.15. Proofs of items 2 and 3 follow easily
from the definition of the Φ function (Lemma 4.13), and are
similar in spirit to the corresponding results of Wienöbst
et al. [2021] in the setting of no background knowledge.
We provide the details of these proofs in the supplementary
material and focus here on proving item 1. If R = ∅ then
Φ(S,R,K) is the number of K-consistent permutations of
S. There are |S|!

|VK|! permutations of S consistent with any
given ordering of vertices in VK. The total number of K-
consistent permutations of the vertices in VK is Ψ(VK,K).
Therefore, the number of K-consistent permutations of S
equals |S|!|VK|! ×Ψ(VK,K).

Algorithm 2 implements Lemma 4.15 to compute
Φ(S,R,K), and its correctness given below, is an easy con-
sequence of Lemma 4.15.

1917

Algorithm 3: count(G,K,memo) (modification of an
algorithm of Wienöbst et al. [2021])
Input :A UCCG G, background knowledge K ⊆ EG.
Output :#AMO(G,K).

1 if G ∈ memo then
2 return memo[G]
3 end
4 T = (T,R)← a rooted clique tree of G
5 if R = VG then
6 memo[G] = Φ(V,∅,K)
7 return memo[G]

8 end
9 sum← 0

10 Q← queue with single element R
11 while Q is not empty do
12 C ← pop(Q)
13 push(Q, children(C))
14 (flag,L)←LBFS(G,C,K)
15 if flag = 1 then
16 prod← 1
17 foreach H ∈ L do
18 prod =

prod× count(G[H],K[H],memo)
19 end
20 sum = sum + prod× Φ(C,FP(C, T),K[C])

21 end
22 end
23 memo[G] = sum
24 return sum

Observation 4.16. For input S,R = {R1, R2, . . . , Rl},
and K, where R1 (R2 (. . . (Rl (S, and K ⊆ S × S,
Algorithm 2 returns Φ(S,R,K).

We now construct Algorithm 3 that computes
#AMO(G,K). Algorithm 3 evaluates this formula,
utilizing memoization to avoid recomputations.

Theorem 4.17. For a UCCG G and background knowledge
K, Algorithm 3 returns #AMO(G,K).

Proof of Theorem 4.17: We first fix a clique tree T = (T,R)
(at line 4) on which we define <α. Lines 5-8 deals with
the base case when G is a clique. If G is not a clique, Al-
gorithm 3 follows Lemma 4.13. The full detail is given in
Supplementary Material due to lack of space.

5 TIME COMPLEXITY ANALYSIS

In this section, we analyze the run time of Algorithm 3. The
proof of the following observation, which shows that despite
our modifications, Algorithm 1 still runs in linear time, is
given in the Supplementary Material.

Observation 5.1. For a UCCGG, a maximal clique C ofG,
and background knowledge K, Algorithm 1 runs in linear
time O(|VG|+ |EG|).

Similar to Wienöbst et al.’s count function, our count
function (Algorithm 3) is also recursively called at most
2|Π(G)| − 1| times, where Π(G) is the set of maximal
cliques of G. Our approach to compute the background
aware version of Φ (Algorithm 2) is similar to that of
Wienöbst et al. [2021], and the difference in time complex-
ity comes from the high time complexity of computation of
Φ(S,∅,K) at item 1 (it is O(1) for K = ∅, which is the
setting considered by Wienöbst et al. [2021]). Proof of the
claims below can be found in the Supplementary Material.

Proposition 5.2. Let G be a UCCG, and K be the known
background knowledge about G. The number of distinct
UCCG explored by the count function (as defined in Al-
gorithm 3) is bounded by 2|Π(G)| − 1.

Lemma 5.3. For input S, R = {R1, R2, . . . , Rl}, and K,
Algorithm 2 can be implemented using memoization to use
O(k! · k2 · |Π(G)|2) arithmetic operations, where k is the
max-clique knowledge of K (assuming factorials of integers
from 1 to |VG| are available for free).

Theorem 5.4 (Final runtime bound of Algorithm 3). For
a UCCG G, and background knowledge K, Algorithm 3
runs in time O(k!k2n4), more precisely O(k!k2 · |Π(G)|4),
where n is the number of nodes inG, and k is the max-clique
knowledge of K.

Proof of Theorem 3.2. Together, Theorems 4.17 and 5.4
prove our main result, Theorem 3.2.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of Al-
gorithm 3 on a synthetic dataset. For each n ∈
{500, 510, 520, . . . , 1000}, we construct 50 random chordal
graphs with n nodes, and for each k ∈ {5, 6, . . . , 13}, we
construct a set of background knowledge edges with k as its
max clique knowledge value. We then measure the running
time of Algorithm 3 for each of these (graph, background
knowledge) pairs, and take the mean running time over all
such pairs with the same value of n and k. Further details
about the construction of these instances can be found in the
Supplementary Material.

Validating the run-time bound To validate the
O(k!k2n4) run-time bound established in Section 5, we
draw log-log plots of the mean run-time T against the size n
of the graph, for each fixed value of k (fig. 2). As predicted
by the polynomial (in n) run-time bound in our theoretical
result, we get, for each value of the parameter k, a roughly
linear log-log plot.

1918

Figure 2: log vs. log plot of T vs. n

The intercept of the log-log plot While the plots in fig. 2
for k ∈ {5, 6, 7, 8, 9, 10, 11} are quite close to each other,
the separation of the plots for k = 12 and k = 13 is much
larger. The reason behind it is the actual time complexity
of Algorithm 3 (explained in Supplementary Material) can
roughly be bounded as log T ≤ log a + log(k!k2 + b) +
4 log n, where a and b are constants independent of n and k.
The above observation then shows that until about k u 11,
all the plots have intercepts close to each other, as the value
of b dominates k!k2 for small value of k. The difference
starts increasing fast when the k!k2 term becomes larger
than b.

Effect of the size of the background knowledge An im-
portant feature of our analysis of Algorithm 3 is that its
run-time bound does not depend directly upon the actual
size of the background knowledge. To validate this, we con-
duct the following experiment: we fix a chordal graph of size
n and the max-clique knowledge value k, and then construct
two different sets K1 and K2 of background knowledge
edges, of different sizes such that both have the same k
value (the details of the construction are given in the Supple-
mentary Material). In table 1, T1, T2 are the running times
of Algorithm 3 with background knowledge K1 and K2 re-
spectively. The table confirms the expectation that when the

n k |K1| |K2| T1 T2

1000 10 65 116 370 353
1000 10 75 137 346 338
1100 11 55 121 467 455
1100 11 51 104 460 453

Table 1: Exploring runtime dependence on the number of
background knowledge edges

graph and k are fixed, the running time does not increase
much when the size of the background-knowledge increases.

More detailed data and discussion of this phenomenon are
given in the Supplementary Material.

7 CONCLUSION

Our main result shows that the max-clique-knowledge
parameter we introduce plays an important role in the al-
gorithmic complexity of counting Markov equivalent DAGs
under background knowledge constraint. In particular, it
leads to a polynomial time algorithm in the special case
of graphs of bounded maximum-clique size. Note that an
algorithm that runs in polynomial time in the general case
is precluded by the #P-hardness result of Wienöbst et al.
[2021] (unless P = NP). However, the optimal dependence
of the run time on the max-clique-knowledge parameter is
an interesting open problem left open by our work.

8 ACKNOWLEDGMENT

We acknowledge the support from the Department of
Atomic Energy, Government of India, under project no.
RTI4001. We want to thank Piyush Srivastava for his invalu-
able suggestions, discussions, and help in the completion
of this paper. We thank all the anonymous reviewers for
multiple useful suggestions which helped in improving the
presentation of this paper.

References

Steen A. Andersson, David Madigan, and Michael D. Perl-
man. A Characterization of Markov Equivalence Classes
for Acyclic Digraphs. Annals of Statistics, 25(2):505–541,
1997.

Megan Bernstein and Prasad Tetali. On Sampling Graphical
Markov Models. arXiv:1705.09717, 2017.

David Maxwell Chickering. A Transformational Character-
ization of Equivalent Bayesian Network Structures. In
Proceedings of the 11th Conference on Uncertainty in
Artificial Intelligence (UAI 1995), pages 87–98, 1995.

Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel
Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilip-
czuk, and Saket Saurabh. Parameterized Algorithms.
Springer International Publishing, 2015.

Michael Finegold and Mathias Drton. Robust Graphical
Modeling of Gene Networks using Classical and Altern-
ative t-Distributions. Annals of Applied Statistics, pages
1057–1080, 2011.

Nir Friedman. Inferring Cellular Networks using Probab-
ilistic Graphical Models. Science, 303(5659):799–805,
2004.

1919

Delbert Fulkerson and Oliver Gross. Incidence Matrices
and Interval Graphs. Pacific Journal of Mathematics, 15:
835–855, 1965.

Robert Ganian, Thekla Hamm, and Topi Talvitie. An Effi-
cient Algorithm for Counting Markov Equivalent DAGs.
In Proceedings of the 34th AAAI Conference on Artifi-
cial Intelligence (AAAI 2020), volume 34, pages 10136–
10143, 2020.

AmirEmad Ghassami, Saber Salehkaleybar, Negar
Kiyavash, and Kun Zhang. Counting and Sampling
from Markov Equivalent DAGs using Clique Trees. In
Proceedings of the 33rd AAAI Conference on Artificial
Intelligence (AAAI 2019), volume 33, pages 3664–3671,
2019.

Alain Hauser and Peter Bühlmann. Characterization and
Greedy Learning of Interventional Markov Equivalence
Classes of Directed Acyclic Graphs. Journal of Machine
Learning Research, 13:2409–2464, 2012.

Yangbo He and Bin Yu. Formulas for Counting the Sizes of
Markov Equivalence Classes of Directed Acyclic Graphs.
arXiv:1610.07921, 2016.

Yangbo He, Jinzhu Jia, and Bin Yu. Counting and Exploring
Sizes of Markov Equivalence Classes of Directed Acyclic
Graphs. Journal of Machine Learning Research, 16(1):
2589–2609, 2015.

Michael Kearns, Michael L. Littman, and Satinder Singh.
Graphical Models for Game Theory. In Proceedings of
the 17th Conference on Uncertainity in Artifical Intelli-
gence conference (UAI 2001), pages 253–260, 2001.

David Madigan, Steen A. Andersson, Michael D. Perl-
man, and Chris T. Volinsky. Bayesian Model Averaging
and Model Selection for Markov Equivalence Classes of
Acyclic Digraphs. Communications in Statistics–Theory
and Methods, 25:2493–2519, 1996.

Christopher Meek. Causal Inference and Causal Explanation
with Background Knowledge. In Proceedings of the 11th
Conference on Uncertainty in Artificial Intelligence (UAI
1995), pages 403–410, 1995.

Judea Pearl. Causality: Models, Reasoning and Inference.
Cambridge University Press, 2009.

Zekun Ren, Felipe Oviedo, Maung Thway, Siyu I. P. Tian,
Yue Wang, Hansong Xue, Jose Dario Perea, Mariya Lay-
urova, Thomas Heumueller, Erik Birgersson, Armin G.
Aberle, Christoph J. Brabec, Rolf Stangl, Qianxiao Li,
Shijing Sun, Fen Lin, Ian Marius Peters, and Tonio
Buonassisi. Embedding Physics Domain Knowledge
into a Bayesian Network Enables Layer-by-Layer Pro-
cess Innovation for Photovoltaics. NPJ Computational
Materials, 6(1):9, January 2020.

Donald J. Rose, R. Endre Tarjan, and George S. Lueker.
Algorithmic Aspects of Vertex Elimination on Graphs.
SIAM Journal on Computing, 5(2):266–283, 1976.

Topi Talvitie and Mikko Koivisto. Counting and Sampling
Markov Equivalent Directed Acyclic Graphs. In Pro-
ceedings of the 33rd AAAI Conference on Artificial In-
telligence (AAAI 2019), volume 33, pages 7984–7991,
2019.

Thomas Verma and Judea Pearl. Equivalence and Synthesis
of Causal Models. In Proceedings of the 6th Conference
on Uncertainity in Artifical Intelligence conference (UAI
1990), pages 220–227, 1990.

Marcel Wienöbst, Max Bannach, and Maciej Liśkiewicz.
Polynomial-Time Algorithms for Counting and Sampling
Markov Equivalent DAGs. In Proceedings of the 35th
AAAI Conference on Artificial Intelligence (AAAI 2021),
pages 12198–12206, 2021.

1920

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Main Result
	The Algorithm
	Time Complexity Analysis
	Experimental evaluation
	Conclusion
	Acknowledgment

