
SymNet 3.0: Exploiting Long-Range Influences in Learning
Generalized Neural Policies for Relational MDPs

(Supplementary Material)

Vishal Sharma*1 Daman Arora∗1 Mausam1 Parag Singla1

1Indian Institute of Technology Delhi {vishal.sharma, cs5180404, mausam, parags}@cse.iitd.ac.in

1 PROOFS

Theorem 4. For a node n in the influence graph, let L(n, k) denote the multi-set of node features of nodes that are exactly
k hops away from node n in the influence graph. In reference to theorem 1, given the features of nodes n1 and n2, if there
exists a k > 0 such that L(n1, k) ̸= L(n2, k), then, given a sufficiently powerful attention function SYMNET3.0 has the
power to learn the parameters that break the symmetry induced between s1 and s2 which have the features of nodes n1 and
n2 swapped.

Proof (Sketch). The high level intuition of the proof is that their will exist certain "key-nodes" in the graph which have
unique features. For example, in the Navigation domain, it will be the Goal location. For the Pizza domain, it would be
the location of the Pizza and the Customer. If a node is using distance from these key-nodes, then it is possible to break
symmetries induced by a fixed-depth GAT. The more the number of key-nodes, the easier it is to break the symmetry. The
formal proof is as follows:

Let Cf,n,d denote the number of times f occurs in L(n, d). As L(n1, k) ̸= L(n2, k), ∃f ′, s.t. Cf ′,n1,k ̸= Cf ′,n2,k. With
a sufficiently powerful attention function, in the state s1, node n1 can focus attention on f ′ to learn a node embedding
different from that of n2.

We construct one such set of parameters for SYMNET3.0 that will break the symmetry among s1 and s2 with respect to
nodes n1 and n2.

1. GATpre can learn an identity mapping for each node by focusing all attention on itself and those nodes in its
neighbourhood that have exactly the same features as itself while ignoring all other neighbours.

2. Next, consider the following (un-normalized) attention function in the influence layer.

e(fi, fj , dij) =

0 d = 0

0 fj = f ′, dij = k

−INF otherwise

where INF is a very large positive number.

3. Next, GATpost can also learn an identity mapping (similar to GATpre).

The above parameters ensure that, in the influence layer, any given node gives a non-zero attention weight (after normaliza-
tion) to itself and to any other node at a distance k having features f ′. In state s1, n1’s attention is spread over n1 and those
nodes at a distance k that have f ′ as their features. Therefore the influence embedding for n1 in s1 will be

Cf′,n1,k

Cf′,n1,k+1 ∗ k.

*Equal Contribution

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

Similarly for n2 in s2, it will be
Cf′,n2,k

Cf′,n2,k+1 ∗ k. Since Cf ′,n1,k ̸= Cf ′,n2,k, the embeddings will be different when the
features are swapped, thus breaking the symmetry among n1 in s1 and n2 in s2.

An example of attention function in the influence layer that can break symmetry: Additionally, we also provide an
explicit construction of attention weights of the influence layer, that is independent of f ′. Assume that the features of
nodes come from a finite-ordered set F and there exists a function idxF : F → N that returns the index of a feature in the
ordered-set F . Consider the un-normalized attention function for m,n ≥ 1,

am,n(fi, fj , dij) =

0 dij = 0

0 idx(fj) = m and dij = n

−INF otherwise
(1)

where −INF is a very large negative number. Since the influence layer has multi-head attention, we can assign each head
with a different attention function. Specifically, we assign am,n to the (n|F |+m)th attention head. Note that if a graph has
|G| nodes, this ensures there are atmost |G||F | attention heads.

Note that given these attention heads, it is possible to encode the multi-set of neighbours at a distance k in the influence
embedding! Let Cf,n,d denote the number of times feature f occurs in the d-hop neighbour of node n. If we’re given that
L(n1, k) ̸= L(n2, k), we can say that ∃f ′ ∈ F such that Cf,n1,k ̸= Cf,n2,k.

Consider the embedding of node n1 in state s1, specifically the athidx(f ′),k attention head which would correspond to
the (k|F |+ idx(f ′))th element of the influence embedding. Equal attention would be spread over n1 and Cf ′,n1,k nodes.

Therefore the aggregated distance would be
Cf′,n1,k

1+Cf′,n1,k
∗k. Correspondingly for n2 in s2, this element would be

Cf′,n2,k

1+Cf,n2,k
∗k.

Since Cf ′,n1,k ̸= Cf ′,n2,k the embedding for n1 in s1 would not equal the embedding for n2 in s2. A similar argument can
be made for n2 in s1 and n1 in s2. In practice this kind of a construction would require the dimension of the heads to scale
with the size of the graph, however this is an exaggeration in the practical setting. In practical domains, there are only a
fixed-small number of key features, and just considering the distance from them is sufficient for computing the policy.

2 RDDL EXAMPLE

The IPPC domain of Navigation is a 2D grid world where a robot has to reach a goal cell. Each cell in the grid has a death
probability with which the robot can die. The agent receives a +1 reward for reaching the goal and 0 otherwise.

Object Types: x, y

Non-Fluents: north(y, y), south(y, y), east(x, x), west(x, x), min_x(x), max_x(x),
prob(x, y), goal(x, y)

State-Fluents: robot_at(x, y)

Actions: move_north, move_south, move_east, move_west

3 EXPERIMENTAL DETAILS

• Data generation: For each domain, we generate 1000 training, 100 validation, and 200 test instances with size
increasing from train to val to test instances. Similar to SYMNET2.0, we use state-of-the-art online planner PROST
and generate 30 trajectories of each training instance using the default settings.

• Architectural Details: For our experiments with SYMNET2.0, we use a GAT with depth 4, having shared weights
across layers, each layer having 10 attention heads. For SYMNET3.0, both the pre-processing and post-processing
GATs are of depth 2 and have 10 attention heads, with shared weights. For SYMNET3.0, the influence layer uses 10
attention heads. The final node embedding dimension for both models is 20, and action decoders used are MLPs with 1
hidden layer of dimension 20.

• Training details: We train all models for 48 hours on a K40 GPU using imitation learning for LR domains and for 24
hours for IPPC domains. Each checkpoint is evaluated on validation instances and we pick the one with best average
for testing.

Figure 1: (left) Figure shows the attention map averaged across all heads for the robot’s location computed by SYM-
NET3.0+KL for the DNav domain. We note that the attention heads focus on the corners of the grid helping in the
localization of all nodes. (right) Figure shows the attention map averaged across all heads for the robot’s location computed
by SYMNET3.0+KL for the SRecon domain. Here, 0 and 1 denote the object 0 and object 1. We note that the attention
heads focus on one of the corners of the grid.

Figure 2: (left) Figure shows the attention map averaged across all heads for the robot’s location computed by SYM-
NET3.0+KL for the StNav domain. Here, the probability of death of each cell is written on the cell. We note that the
attention is focused on the entrance of the column which is safest. (right) Figure shows the attention map averaged across all
heads for the robot’s location computed by SYMNET3.0+KL for the StWall domain. Here, the attention is focuses on the
goal and the cells near the safe passage cell.

4 DETAILED RESULTS AND ATTENTION MAPS

The detailed results of experiments for each run of various models for LR domains is shown in Table 1 and for IPPC domains
is shown in Table 2

Tables 3 and 4 show the results when the best model among SYMNET3.0-KL, SYMNET3.0+KLD and SYMNET3.0+KL is
chosen based on validation scores..

Model SRecon Pizza DNav StWall EAcad StNav Mean

PROST 0.34 0.09 0.94 0.69 0.37 0 0.67

SYMNET2[1] 0.49 0.22 0.74 0.26 0.89 0 0.63
SYMNET2[2] 0.47 0.35 0.57 0.23 0.89 0.01 0.56
SYMNET2[3] 0.49 0.27 0.46 0.27 0.9 0 0.54
SYMNET2[4] 0.43 0.11 0.43 0.31 0.9 0.13 0.55
SYMNET2[5] 0.47 0.33 0.57 0.27 0.9 0.03 0.58

SYMNET3-KL[1] 0.63 0.65 0.86 0.47 0.95 0 0.76
SYMNET3-KL[2] 0.63 0.43 0.83 0.31 0.72 0.2 0.62
SYMNET3-KL[3] 0.73 0.69 0.87 0.42 0.81 0 0.7
SYMNET3-KL[4] 0.7 0.64 0.8 0.24 0.9 0.08 0.65
SYMNET3-KL[5] 0.72 0.66 0.86 0.24 0.95 0.09 0.68

SYMNET3+KLD[1] 0.64 0.42 0.96 0.44 0.96 0.43 0.79
SYMNET3+KLD[2] 0.55 0.82 0.91 0.31 0.9 0.01 0.71
SYMNET3+KLD[3] 0.59 0.55 0.88 0.4 0.86 0.11 0.71
SYMNET3+KLD[4] 0.72 0.44 0.92 0.31 0.94 0.04 0.72
SYMNET3+KLD[5] 0.61 0.67 0.88 0.41 0.95 0.17 0.75

SYMNET3+KL[1] 0.46 0.09 0.92 0.43 0.92 0.05 0.76
SYMNET3+KL[2] 0.65 0.31 0.93 0.33 0.91 0.02 0.72
SYMNET3+KL[3] 0.67 0.14 0.97 0.27 0.94 0.03 0.73
SYMNET3+KL[4] 0.66 0.18 0.93 0.36 0.95 0.15 0.75
SYMNET3+KL[5] 0.61 0.18 0.98 0.36 0.83 0 0.72

Table 1: Performance of all runs of different models on 6 LR domains.

5 SIZES OF INSTANCES

In the spirit of transfer, the sizes of instances increase from training to validation to test instances. A measure of size is the
number of state fluents present in the instance. We report the minimum and maximum of train, validation and the test sets
for LR domains in table 5 and for IPPC domains in table 6.

6 DOMAINS AND GENERATORS

1. Deterministic Navigation (DNav)
Deterministic Navigation involves a Robot and a Goal cell located in a square grid. For each step that the Robot is not
in the Goal cell, it receives a reward of -1. The optimal policy requires the Robot to reach the Goal in the minimum
number of timesteps. To generate instances, first the grid size is sampled uniformly from [Dmin, Dmax] and then the
goal and start cell of the robot is samples uniformly from the grid cells. Parameters for generation:

(a) Dmin: Minimum allowed grid dimension
(b) Dmax: Maximum allowed grid dimension.

To generate the train, validation, and test sets, we use the parameters mentioned in Table 7

2. Extreme Academic Advising (EAcad) Extreme Academic Advising consists of various courses which are arrange in
a Directed Acyclic Graph. Certain courses are program requirements. For each time step, every program requirement
that is not completed adds a negative reward to the total reward. In order to get high reward, an agent must complete
program requirements in the shortest amount of time possible. If all the pre-requisites of a course have been completed
then the probaility of completion of the course when attempted is 0.95. Otherwise, the probability of completion is
0.05. This incentivizes an agent to complete courses in the DAG order specifically leaving out courses which are not
ancestors to a requirement course. To generate the courses, we set L which is the number of levels, and C the number

Model Tam Traffic Sys Skill Nav TT Recon Elev Acad CT Wild GoL Mean

PROST 0.86 0.91 0.76 0.84 0 0.03 0.59 0.91 0.64 0.34 0.32 0.57 0.56

SYMNET2[1] 0.91 0.9 0.76 0.84 0.09 0.76 0.41 0.9 0.88 0.65 0.71 0.82 0.72
SYMNET2[2] 0.92 0.88 0.72 0.78 0.69 0.79 0.3 0.91 0.85 0.91 0.51 0.83 0.76
SYMNET2[3] 0.89 0.87 0.85 0.86 0.59 0.82 0.3 0.92 0.9 0.76 0.47 0.72 0.75
SYMNET2[4] 0.89 0.9 0.81 0.83 0.45 0.76 0.35 0.95 0.64 0.89 0.63 0.8 0.74
SYMNET2[5] 0.89 0.86 0.82 0.79 0.88 0.77 0.37 0.93 0.86 0.82 0.78 0.75 0.79

SYMNET3-KL[1] 0.92 0.85 0.87 0.85 0.78 0.77 0.21 0.92 0.89 0.76 0.88 0.82 0.79
SYMNET3-KL[2] 0.91 0.89 0.82 0.84 0.29 0.59 0.41 0.88 0.68 0.84 0.8 0.75 0.73
SYMNET3-KL[3] 0.93 0.83 0.75 0.84 0.2 0.8 0.61 0.88 0.62 0.81 0.64 0.78 0.72
SYMNET3-KL[4] 0.91 0.84 0.79 0.77 0.88 0.53 0.48 0.89 0.65 0.77 0.74 0.8 0.75
SYMNET3-KL[5] 0.89 0.82 0.83 0.73 0.5 0.79 0.41 0.76 0.79 0.8 0.73 0.82 0.74

SYMNET3+KLD[1] 0.9 0.85 0.81 0.76 0.87 0.77 0.23 0.94 0.92 0.77 0.66 0.79 0.77
SYMNET3+KLD[2] 0.89 0.86 0.83 0.83 0.84 0.82 0.36 0.28 0.55 0.86 0.66 0.83 0.72
SYMNET3+KLD[3] 0.9 0.83 0.85 0.75 0.86 0.76 0.19 0.81 0.78 0.81 0.58 0.69 0.73
SYMNET3+KLD[4] 0.91 0.87 0.84 0.84 0.8 0.8 0.37 0.86 0.8 0.72 0.7 0.76 0.77
SYMNET3+KLD[5] 0.9 0.86 0.8 0.67 0.87 0.22 0.31 0.66 0.86 0.76 0.47 0.77 0.68

SYMNET3+KL[1] 0.91 0.86 0.82 0.63 0.85 0.81 0.18 0.93 0.8 0.76 0.53 0.65 0.73
SYMNET3+KL[2] 0.9 0.86 0.78 0.7 0.85 0.8 0.29 0.9 0.89 0.72 0.56 -0.27 0.67
SYMNET3+KL[3] 0.91 0.86 0.84 0.68 0.87 0.66 0.27 0.9 0.75 0.89 0.21 0.76 0.72
SYMNET3+KL[4] 0.89 0.81 0.83 0.74 0.72 0.74 0.21 0.92 0.88 0.83 0.4 -0.1 0.66
SYMNET3+KL[5] 0.9 0.86 0.83 0.75 0.27 0.7 0.26 0.9 0.67 0.8 0.36 -0.13 0.6

Table 2: Performance of all runs of different models on 12 IPPC domains.

of courses per level. Additionally, each courses has, on average p number of prerequisites from the previous level.
The number of course requirements is R, and the are sampled with a probability proportional to the square of their
level. This is done so as to choose courses which require a lot of pre-requisites to be completed in order. Parameters of
generation are:

(a) Lmin: Minimum number of levels
(b) Lmax: Maximum number of levels
(c) Cmin: Minimum number of courses per level
(d) Cmax: Maximum number of courses per level
(e) p: Average number of pre-requisites

To generate train, val, and test sets, we use the parameters mentioned in Table 8.

3. Safe Recon (SRecon) In Safe Recon, an agent has to traverse on a rectangular grid and take pictures of object where it
detects life. Once an agent reaches at an object, it must apply tools("water" and "life"), in the correct order(first water,
then life). Tools can fail with some probability. Once life has been detected, the agent can take pictures which gives
it positive reward until the end of the episode. If an tool is damaged, it can go back to BASE to repair its tool or use
damaged tools. Using damaged tools is risky because the a negative reward is given for each photo clicked which
doesn’t have life. This domain is identical to the one used for IPPC 2014, with the difference being that we do not use
HAZARDS in our version. The parameters for instance generation are:

(a) Dmin Minimum grid size
(b) Dmax Maximum grid size
(c) Omin Minimum number of objects
(d) Omax Maximum number of objects
(e) pmin Minimum threshold for tool damage probability
(f) pmax Maximum threshold for tool damage probability

Model SRecon Pizza DNav StWall EAcad StNav Mean
PROST 0.34 0.09 0.94 0.69 0.37 0 0.41
SYMNET2 0.47 0.26 0.55 0.27 0.9 0.03 0.41
SYMNET3-KL 0.68 0.62 0.84 0.33 0.87 0.08 0.57
SYMNET3+KLD 0.62 0.58 0.91 0.38 0.92 0.15 0.59
SYMNET3+KL 0.61 0.18 0.95 0.35 0.91 0.05 0.51
SYMNET3(best val) 0.68 0.58 0.95 0.38 0.91 0.15 0.61

Table 3: Comparison of SYMNET3.0 variants with the baselines on 6 LR domains. The last row denotes the score of the
best among SYMNET3.0+KL, SYMNET3.0-KL and SYMNET3.0-KLD chosen on the basis of average validation reward.

Model Tam Traffic Sys Skill Nav TT Recon Elev Acad CT GoL Wild Mean
PROST 0.86 0.91 0.76 0.84 0 0.03 0.59 0.91 0.64 0.34 0.32 0.57 0.56
SYMNET2 0.9 0.88 0.79 0.82 0.54 0.78 0.35 0.92 0.83 0.81 0.62 0.78 0.75
SYMNET3-KL 0.91 0.85 0.81 0.81 0.53 0.7 0.42 0.87 0.73 0.8 0.76 0.79 0.75
SYMNET3+KLD 0.9 0.85 0.83 0.77 0.85 0.67 0.29 0.71 0.78 0.78 0.61 0.77 0.73
SYMNET3+KL 0.9 0.85 0.82 0.7 0.71 0.74 0.24 0.91 0.8 0.8 0.41 0.18 0.67
SYMNET3(best val) 0.91 0.85 0.83 0.81 0.85 0.67 0.42 0.91 0.78 0.8 0.76 0.79 0.78

Table 4: Comparison of SYMNET3.0 variants with the baselines on 12 IPPC domains. The last row denotes the score of the
best among SYMNET3.0+KL, SYMNET3.0-KL and SYMNET3.0-KLD chosen on the basis of average validation reward.

To generate the train, validation, and test sets we use the parameters mentioned in Table 9.

4. Pizza Delivery (Pizza) Pizza Delivery consists of a rectangular grid of width w and height h. In addition, the grid
contains d pizza shops which are subgoals. The agent must collect the pizza from any pizza shop and deliver it to the
customer in the minimum time possible. Additionally, a wind blows which can randomly push you to any neighbouring
cell. To generate domains, a start location s, customer location c and a special pizza shop location p′ is sampled
uniformly randomly. Next, to sample the remaining d− 1 goals, we remove all cells p such that

dist(s, p) ≥ dist(s, p′)

or
dist(s, p) + dist(c, p) ≤ dist(s, p′) + dist(c, p′)

This is done so that the planner doesn’t go to the nearest pizza shop but learns to minimize the sum of both dis-
tances(distance to shop+distance to customer). Out of the candidate cells, we sample with probability proportional to
the distance from s. Parameters for generation:

(a) wmin: Minimum grid width
(b) wmax: Maximum grid width
(c) hmin: Minimum grid height
(d) hmax Maximum grid height
(e) dmin: Minimum number of pizza shops
(f) dmax Maximum number of pizza shops

To generate the train, validation, and test sets we use the parameters mentioned in Table 10.

Domain Train(min) Train(max) Val(min) Val(max) Test(min) Test(max)
SRecon 48 193 208 249 373 924
Pizza 34 153 205 265 409 493

EAcad 8 36 42 192 120 320
StWall 25 100 121 225 256 400
DNav 81 196 225 324 400 625

Table 5: Number of state fluents for LR domains for training, validation, and test sets.

Domain Train(min) Train(max) Val(min) Val(max) Test(min) Test(max)
Acad 4 50 60 96 120 240
CT 12 84 112 144 180 312

GoL 4 36 42 64 81 100
Skill 6 42 12 42 30 60

Recon 29 81 68 107 120 257
TT 12 75 108 147 192 300

Wild 10 72 72 128 128 288
Tam 2 48 28 84 48 140
Elev 9 32 18 32 24 60

Traffic 32 80 32 80 56 104
Sys 2 15 2 14 15 25
Nav 9 49 25 90 120 120

Table 6: Number of state fluents for IPPC domains for training, validation and test sets.

Dmin Dmax Horizon
Train 9 14 40
Val 15 18 60
Test 20 25 60

Table 7: Table shows the parameters used in to generate instances in the DNav domain.

Lmin Lmax Cmin Cmax p Horizon
Train 2 8 2 8 1 40
Val 7 12 3 8 1 100
Test 12 20 5 8 1 200

Table 8: Table shows the parameters used in to generate instances in the EAcad domain.

Dmin Dmax Omin Omax pmin pmax Horizon
Train 6 13 2 4 0 0.5 40
Val 13 14 2 4 0 0.5 80
Test 18 19 2 4 0 0.5 80

Table 9: Table shows the parameters used in to generate instances in the SRecon domain.

wmin wmax hmin hmax dmin dmax Horizon
Train 5 12 5 12 2 4 100
Val 14 16 14 16 2 4 150
Test 20 22 20 22 2 4 200

Table 10: Table shows the parameters used in to generate instances in the Pizza domain.

nmin nmax Horizon
Train 5 10 40
Val 11 15 40
Test 16 20 40

Table 11: Table shows the parameters used in to generate instances in the StWall domain.

5. Stochastic Wall (StWall) Stochastic Wall consists of a square grid of dimension n. Uniformly randomly, a row or a
column is sampled to form a barrier. The start and goal location are sampled such that they lie on opposite sides of the
barrier. In the barrier, a cell is selected to be a safe passageway from one part of the grid to the other. Hitting the barrier
can cause death with some probability sampled from U(0.8, 1.0). The agent must navigate from his initial position to
the goal. The generation parameters are:

wmin wmax hmin hmax Horizon
Train 5 10 5 10 40
Val 11 15 11 15 40
Test 15 20 15 20 40

Table 12: Table shows the parameters used in to generate instances in the StNav domain.

(a) nmin: Minimum size of the grid.
(b) nmax: Maximum size of the grid.

To refer to the generation parameters for train, val and test splits, refer to table 11.

6. Stochastic Navigation (StNav) This domains consists of a grid of width w and height h. The bottom and top rows are
safe. The start state is sampled from the bottom row and the goal state is sampled in the top row. In the middle rows,
the robot can die with some probability. However, there exists a single column which has very low death probability
from U(0.045, 0.055). For all other column, the death probability in each cell is from U(0.88, 0.92). This task has long
range dependencies because the agent has to decide which column to enter into. The column could be very far and thus
SYMNET2.0might not be able to decide which direction to take. The generation parameters are:

(a) wmin: Minimum width of the grid.
(b) wmax: Maximum width of the grid.
(c) hmin: Minimum height of the grid.
(d) hmax: Maximum height of the grid.

To refer to the generation parameters for train, val and test splits, refer to table 12

	Proofs
	RDDL Example
	Experimental Details
	Detailed Results and Attention Maps
	Sizes of instances
	Domains and Generators

