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A PROOFS AND DERIVATIONS

A.1 PROOF OF THEOREM 1

Before proving Theorem 1, we introduce the exact bounds of the approximation errors for estimating EpX and EpY in the
disjoint sample sets projection stage. Lemma A1 and A2 below are adapted from Theorem 2 in Singh et al. [2019].

Lemma A1 Under Condition 1, ∀δ ∈ (0, 1), the following holds w.p. 1− δ:

∥En1

α1,X
− EpX∥HΓ

≤ rE1
(δ, n1, c1) :=

√
ζ1(c1 + 1)

4
1

c1+1

(
4κ(Q1 + κ∥EpX∥HΓ

ln(2/δ)√
n1ζ1(c1 − 1)

) c1−1
c1+1

,

α1 =

(
8κ(Q1 + κ∥EpX∥HΓ

ln(2/δ)√
n1ζ1(c1 − 1)

) 2
c1+1

.

Lemma A2 Under Condition 1 and Condition 2, ∀ϵ ∈ (0, 1), the following holds w.p. 1− ϵ:

∥En2

α2,Y
− EpY ∥HΘ

≤ rE2
(ϵ, n2, c2) :=

√
ζ2(c2 + 1)

4
1

c2+1

(
4κ(Q2 + κ∥EpY ∥HΘ ln(2/ϵ)√

n2ζ2(c2 − 1)

) c2−1
c2+1

,

α2 =

(
8κ(Q2 + κ∥EpY ∥HΘ

ln(2/ϵ)√
n2ζ2(c2 − 1)

) 2
c2+1

.

Recall that we define the population-level risk for the regression stage Eγ(H), population-level risk with regularization
Eγξ (H), and the empirical risk Êγ,mξ (H) with EpX and EpY being replaced by En1

α1,X
and En2

α2,Y
, respectively. Denote the

optimal operator to Eγξ (H) as Hγ
ξ = argminH Eγξ (H). We now define the empirical risk Eξγ,m(H) with true EpX and EpY ,

and the corresponding optimal operator.

Eγ,mξ (H) =
1

m

m∑
l=1

∥yγ,l −Hψγ,l∥2Y + ξ∥H∥2HΩ
, Hγ,m

ξ = argmin
H

Eγ,mξ (H),

where the true transformed inputs and outputs are given by

ψγ,l = ψ(xl) + (
√
γ − 1)EpXϕ(zl) ∈ HX , yγ,l = yl + (

√
γ − 1)EpY ϕ(zl) ∈ Y.

The closed form solution of Hγ,m
ξ is given by Lemma A3 below, and it’s adapted from Theorem 3 in Singh et al. [2019]

Lemma A3 ∀ξ > 0, the solution Hγ,m
ξ to Eγ,mξ exists, is unique, and

T = 1
m

∑m
l=1 Tψγ,l

, g = 1
m

∑m
l=1 Ωψγ,l

yγ,l, Hγ,m
ξ = (T+ ξ)−1 ◦ g.

We then define the following terms.
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Definition 1 Fix η ∈ (0, 1) and define the following constants

Cη = 96 ln2(6/η), M = 2(C + ∥Hγ∥HΩ

√
B), Σ =

M

2
.

For the excess error of KAR estimator Ĥγ,m
ξ , we can bound it by five terms according to Proposition 32 in Singh et al.

[2019].

Lemma A4 The excess error can be bounded as follows

Eγ(Ĥγ,m
ξ )− Eγ(Hγ) ≤ 5[S−1 + S0 +A(ξ) + S1 + S2],

where

S−1 = ∥
√
T ◦ (T̂+ ξ)−1(ĝ − g)∥2HΩ

,

S0 = ∥
√
T ◦ (T̂+ ξ)−1(T− T̂)Hγ,m

ξ ∥2HΩ
,

S1 = ∥
√
T ◦ (T̂+ ξ)−1(g −THγ)∥2HΩ

,

S2 = ∥
√
T ◦ (T̂+ ξ)−1(T −T)(Hγ

ξ −Hγ)∥2HΩ
,

A(ξ) = ∥
√
T (Hγ

ξ −Hγ)∥2HΩ
.

For all five terms above, only ĝ − g in S−1 depends on the approximation error of EpY . The bounds for other four terms are
same to the KIV case. Below we introduce without proof the bond of S0, S1, S2 and A(ξ) according to Theorem 7 in Singh
et al. [2019].

Lemma A5 Under Condition 1–3, if m is large enough and ξ ≤ ∥T∥L(HΩ) then ∀δ, η ∈ (0, 1), the following holds up w.p.
1− η − δ:

S0 ≤ 4

ξ
4BL2r2ιx ∥Hγ,m

ξ ∥2HΩ
,

S1 ≤ 32 ln2(6η)

[
BM2

m2ξ
+

Σ2

m
β1/bγ

π/bγ
sin(π)

¯
ξ−1/bγ

]
,

S2 ≤ 8 ln2(6/η)

[
4B2ζξcγ−1

m2ξ
+
Bζξcγ

mξ

]
,

A(ξ) ≤ ζξcγ .

To extend the convergence rate of KIV estimator to KAR estimator. We then illustrate the bound for S−1. To begin with, the
bound of term

√
T ◦ (T̂+ ξ)−1 in S−1 is given by Proposition 39 in Singh et al. [2019].

Lemma A6 If ∥ψ̂γ − ψγ∥HX ≤ rx w.p. 1 − δ, ξ ≤ ∥T∥L(HΩ), m is sufficiently large and Condition 3 holds, then w.p.
1− η/3− δ

∥
√
T ◦ (T̂+ ξ)−1∥L(HΩ) ≤

2√
ξ
.

With the the error propagated from the estimators in the projection stage, we can bound ψ̂γ − ψγ and ŷγ − yγ as shown in
Lemma A7–A8.

Lemma A7 Under Condition 1, ∀δ ∈ (0, 1), the following statement holds w.p. 1− δ: ∀z ∈ Z, x ∈ X ,

∥ψ̂γ − ψγ∥HX ≤ rx(γ, δ, n1, c1) := |√γ − 1|κrE1
(δ, n1, c1).

Proof 1 By definition, we have

∥ψ̂γ − ψγ∥HX = ∥ (√γ − 1)
(
En1

α1,X
− EpX

)
ϕ(z)∥HX

≤ |√γ − 1|∥En1

α1,X
− EpX∥HΓ

∥ϕ(z)∥HZ .
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This, together with Lemma A1 and Condition 1, ensures that w.p. 1− δ

∥ψ̂γ − ψγ∥HX ≤ rx(γ, δ, n1, c1) := |√γ − 1|κrE1
(δ, n1, c1).

Remark A1 Corollary 1 in Singh et al. [2019] is a special case of Lemma A7 with γ = 0.

Lemma A8 Under Condition 1– 2, ∀ϵ ∈ (0, 1), the following statement holds w.p. 1− ϵ: ∀z ∈ Z, y ∈ Y ,

∥ŷγ − yγ∥HY ≤ ry(γ, ϵ, n2, c2) := |√γ − 1|κrE2
(ϵ, n2, c2).

Proof 2 Lemma A8 is analogous to Lemma A7 by replacing ψγ with yγ . The proof is thus omitted.

Combining Lemma A6- A8, we can derive the bound of ĝ − g and then the bound of S−1.

Lemma A9 If ∥ψ̂γ − ψγ∥HX ≤ rx w.p. 1− δ and ∥ŷγ − yγ∥Y ≤ ry w.p. 1− ϵ, then w.p. 1− δ − ϵ

∥ĝ − g∥2HΩ
≤ 3(L2r2ιx r

2
y +B2r2y + L2r2ιx C

2).

Proof 3 By definition, we have

ĝ − g =
1

m

m∑
l=1

(
Ωψ̂γ,l

ŷγ,l − Ωψγ,l(x)yγ,l

)
=

1

m

m∑
l=1

{
Ωψ̂γ,l

− Ωψγ,l

}
{ŷγ,l − yγ,l}+Ωψ̂γ,l

{ŷγ,l − yγ,l}+
{
Ωψ̂γ,l

− Ωψγ,l

}
yγ,l.

We then have

∥ĝ − g∥2HΩ
≤ 3m

m2

m∑
l=1

∥
{
Ωψ̂γ,l

− Ωψγ,l

}
{ŷγ,l − yγ,l} ∥2HΩ

+ ∥Ωψ̂γ,l
{ŷγ,l − yγ,l} ∥2HΩ

+∥
{
Ωψ̂γ,l

− Ωψγ,l

}
yγ,l∥2HΩ

≤ 3

m

m∑
l=1

∥Ωψ̂γ,l
− Ωψγ,l

∥2L(Y,HΩ)∥ŷγ,l − yγ,l∥2Y + ∥Ωψγ,l
∥2L(Y,HΩ)∥ŷγ,l − yγ,l∥2Y

+∥Ωψ̂γ,l
− Ωψγ,l

∥2L(Y,HΩ)∥yγ,l∥
2
Y .

By the boundedness and the Hölder property in Condition 3, we obtain that w.p. 1− δ − ϵ,

∥ĝ − g∥2HΩ
≤ 3

m

m∑
l=1

L2∥ψ̂γ,l − ψγ,l∥2ιHX
∥ŷγ,l − yγ,l∥2Y + ∥Ωψγ,l

∥2L(Y,HΩ)∥ŷγ,l − yγ,l∥2Y

+L2∥ψ̂γ,l − ψγ,l∥2ιHX
∥yγ,l∥2Y

≤ 3(L2r2ιx r
2
y +B2r2y + L2r2ιx C

2).

Lemma A10 Under Condition 1–3, then w.p. 1− δ − ϵ

S−1 ≤ 4

ξ
3(L2r2ιx r

2
y +B2r2y + L2r2ιx C

2).

Proof 4 We can derive from the definition of S−1 that

S−1 ≤ ∥
√
T ◦ (T̂+ ξ)−1∥2L(HΩ)∥ĝ − g∥2HΩ

.

This, together with Lemma A6 and Lemma A9, ensures

S−1 ≤ 4

ξ
3(L2r2ιx r

2
y +B2r2y + L2r2ιx C

2).
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We then show the order of the sum S0 + S1 + S2 +A(ξ), which is adapted from Theorem 4 in Singh et al. [2019].

Lemma A11 Under Condition 1– 3, choose α1 = n
− 1

c1+1

1 , n1 = m
d1(c1+1)

ι(c1−1) , where d1 > 0. Let

f(m) =
1

m2+d1ξ3
+

1

m1+d1ξ2+1/bγ
+

1

md1ξ
+ ξcγ +

1

m2ξ
+

1

mξ1/bγ
,

we then have
Op(S0 +A(ξ) + S1 + S2) = O(f(m)).

(i) If d1 ≤ bγ(cγ+1)
bγcγ+1 then O(f(m)) = O(m

− d1cγ
cγ+1 ) with ξ = m

− d1
cγ+1 ;

(ii) If d1 >
bγ(cγ+1)
bγcγ+1 then O(f(m)) = O(m

− bγcγ
bγcγ+1 ) with ξ = m

− bγ
bγcγ+1 .

Proof 5 (Proof of Theorem 1) The choices of α1, α2 and n1, n2 in the statement of Theorem 1 ensure that

r2x = O([(n
− 1

2
1 )

2
c1+1 ]2ι) = O(m−d1), r2y = O([(n

− 1
2

2 )
2

c2+1 ]2) = O(m−d2).

Thus, by Lemma A10, we have Op(S−1) = Op(1/ξ(r
2ι
x r

2
y + r2y + r2ιx )) = Op(1/ξ

{
m−d1 +m−d2 +m−d1−d2

}
). Since

d1, d2 > 0, and d1 ≤ d2 by Condition 4, m−d1/ξ then dominates two other terms in S−1.

Note that f(m) in Lemma A11 also includesm−d1/ξ. Therefore, given Condition 4, the sum of four terms S0+A(ξ)+S1+S2

dominates S−1, which suggests that the approximation error of EpY is dominated by that of EpX . We can then derive the
result from Lemma A11.

A.2 PROOF OF THEOREM 2

Proof 6 (Proof of Theorem 2) Under the kernel structural equation model, simple calculation gives

C = BCZΦ(Z) + ϵC , (1)
Ψ(X) = (BXZ +BXCBCZ)Φ(Z) +BXCϵC + ϵX , (2)

Y = [BY Z +BY CBCZ +BY X(BXZ +BXCBCZ)]Φ(Z) + (BY C +BY XBXC)ϵC +BY XϵX + ϵY . (3)

We denote B□△ as the adjoint operator of B△□, B□△ = B∗
△□. When no ambiguity arise, we use the transpose matrix

notation B□△ = B⊤
△□. For instance, BXZ = B⊤

ZX , BY C = B⊤
CY . Recall that the transformed input and output in

Equation (16) and Equation (17) has the form

ψγ(X) = ψ(X)− EpXϕ(Z) +
√
γEpXϕ(Z),

and
Yγ = Y − EpY ϕ(Z) +

√
γEpY ϕ(Z).

In the SEM case, the projections EpX and EpY into ϕ(Z) are noted by the (composition of) operators in Equation (2) and
Equation (3), where

EpX = (BXZ +BXCBCZ),

and
EpY = [BY Z +BY CBCZ +BY X(BXZ +BXCBCZ)].

As such, the transformed input and output has the form

ψγ(x) = BXCϵC + ϵX +
√
γ(BXZ +BXCBCZ)ϕ(Z), (4)

and

yγ = (BY C +BY XBXC)ϵC +BY XϵX + ϵY + γ[BY Z +BY CBCZ +BY X(BXZ +BXCBCZ)]ϕ(Z). (5)
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Define relevant covariance matrix/operators as ΣC = E[ϵCϵ⊤C ], ΣX = E[ϵX ⊗ ϵX ] and ΣZ = E[ϕ(Z)⊗ ϕ(Z)], where ⊗
denotes the tensor outer product. Then the solution for the least square objective on the transformed input output can be
written as

Hγ = E[Yγψγ(X)](E[ψγ(X)⊗ ψγ(X)])−1.

Plug in the transformed terms in the form of Equation (4) and Equation (5), we have

E[ψγ(X)⊗ ψγ(X)]

= E[(BXCϵC + ϵX +
√
γ(BXZ +BXCBCZ)ϕ(Z))(BXCϵC + ϵX +

√
γ(BXZ +BXCBCZ)ϕ(Z))

⊤]

= BXCE[ϵCϵ⊤C ]BCX + E[ϵX ⊗ ϵX ] + γ(BXZ +BXCBCZ)E[ϕ(Z)⊗ ϕ(Z)](BZX +BZCBCX)

= BXCΣCBCX +ΣX + γ(BXZ +BXCBCZ)ΣZ(BZX +BZCBCX).

Moreover, E[Yγψγ(X)] has the form

(BY C +BY XBXC)E[ϵCϵ⊤C ]BCX +BY XE[ϵX ⊗ ϵX ]+

γ[BY Z +BY CBCZ +BY X(BXZ +BXCBCZ)]E[ϕ(Z)⊗ ϕ(Z)](BZX +BZCBCX)

=(BY C +BY XBXC)ΣCBCX +BY XΣX+

γ[BY Z +BY CBCZ +BY X(BXZ +BXCBCZ)]ΣZ(BZX +BZCBCX)

as ϵC , ϵX and ϵY are independent variables, which are also independent of Z. In overall, we have

Hγ =[(BY C +BY XBXC)ΣCBCX +BY XΣX

+ γ[BY Z +BY CBCZ +BY X(BXZ +BXCBCZ)]ΣZ(BZX +BZCBCX)]

[BXCΣCBCX +ΣX + γ(BXZ +BXCBCZ)ΣZ(BZX +BZCBCX)]
−1

The bias of the target KAR estimator is then given by

Hγ −BY X =[
(BY C +BY XBXC)ΣCBCX +BY XΣX + γ[BY Z +BY CBCZ +BY X(BXZ +BXCBCZ)]ΣZ(BZX +BZCBCX)

]
[
BXCΣCBCX +ΣX + γ(BXZ +BXCBCZ)ΣZ(BZX +BZCBCX)

]−1

−BY X

=
[
(BY C +BY XBXC)ΣCBCX +BY XΣX + γ[BY Z +BY CBCZ +BY X(BXZ +BXCBCZ)]ΣZ(BZX +BZCBCX)

−BY X(BXCΣCBCX +ΣX + γ(BXZ +BXCBCZ)ΣZ(BZX +BZCBCX))
]

[
BXCΣCBCX +ΣX + γ(BXZ +BXCBCZ)ΣZ(BZX +BZCBCX)

]−1

Collecting all the common terms we get

Hγ −BY X =
[
BY CΣCBCX︸ ︷︷ ︸

Σ⊥
Y X

+ γ(BY Z +BY CBCZ)ΣZ(BZX +BZCBCX)︸ ︷︷ ︸
Σ

||
Y X

]
[
BXCΣCBCX +ΣX + γ(BXZ +BXCBCZ)ΣZ(BZX +BZCBCX)

]−1

Thus, ∀x ∈ X , y ∈ Y , consider the inner product y⊤(Hγ − BY X)ψ(x) = 0 when the following holds: (i) BY C = 0
and γ = 0, or (ii) BY Z + BY CBCZ = 0 and γ = ∞, or (iii) BY C = 0, BY Z + BY CBCZ = 0 and γ ≥ 0, or (iv)
Σ

||
Y X = aΣ⊥

Y X for some a > 0, and γ = ∞, or (v) Σ||
XY = −aΣ⊥

XY for some a > 0, and γ = 1/c. As such, we conclude
Hγ = BXY .

A.3 CONVERGENCE RATE FOR KAR.2 ESTIMATOR

In this section, we will further discuss the convergence rate of KAR.2 estimator, and show that the rate does not improve
upon the convergence rate of KAR estimator.
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In the three-stage KAR procedure, we approximate EpX and EpY by En1

α1,X
and En2

α2,Y
, respectively. In the two-stage KAR

procedure, instead, we approximate the two operators by Enα,X and Enα,Y , respectively. Note that the estimated operators
Enα,X and Enα,Y use the same α. The shared α may fail to ensure the optimal approximation error for Enα,X and Enα,Y at the
same time.

Lemma A12 Under Condition 1, ∀δ ∈ (0, 1), the following holds w.p. 1− δ:

∥Enα,X − EpX∥HΓ ≤ r1(α) :=
4κ(Q1 + κ∥EpX∥HΓ

) ln(2/δ)√
nα

+ α
c1−1

2

√
ζ1.

Under Condition 1 and Condition 2, ∀ϵ ∈ (0, 1), the following holds w.p. 1− ϵ:

∥Enα,Y − EpY ∥HΘ ≤ r2(α) :=
4κ(Q2 + κ∥EpY ∥HΘ) ln(2/ϵ)√

nα
+ α

c2−1
2

√
ζ2.

Approximation error bound r1(α) for Enα,X achieves its minimum at rate O(n
− c1−1

2(c1+1) ) when

α =

(
8κ(Q1 + κ∥EpX∥HΓ

) ln(2/δ)√
nζ1(c1 − 1)

) 2
c1+1

= O(n
−1

c1+1 );

and approximation error bound r2(α) for Enα,Y achieves its minimum at rate O(n
− c2−1

2(c2+1) ) when

α =

(
8κ(Q2 + κ∥EpY ∥HΘ

) ln(2/ϵ)√
nζ2(c2 − 1)

) 2
c2+1

= O(n
−1

c2+1 ).

Lemma A12 above provides the upper bounds of the approximation errors for Enα,X and Enα,Y , and it’s adapted from
Theorem 2 in Singh et al. [2019]. We can see that if c1 ̸= c2, we cannot claim the optimal convergence rate for Enα,X and
Enα,Y at the same time, which disjoint sample sets projection estimators can guarantee by setting different α1 and α2 as
shown in Lemma 1 and 2. In other words, in KAR.2 procedure, the error propagated to the final stage, which are caused by
using Enα,X and Enα,Y , can have larger order than using En1

α1,X
and En2

α2,Y
separately in the KAR procedure. Therefore, we

cannot ensure a same or improved convergence rate for KAR.2 estimator compared to KAR estimator.

B ADDITIONAL SIMULATION DETAILS AND RESULTS

B.1 SYNTHETIC EXAMPLE IN KIV SETTING

In this section, we show the data generating process and implementation details for the example that follows the simulation
case of learning counterfactual functions Chen and Christensen [2018] studied in Singh et al. [2019]. The structural model is
set as follows,

Y = C + ln(|16X − 8|+ 1)sgn(X − 0.5).

The explanatory variables are generated from C
V
W

 ∼ N

 0
0
0

 ,

 1, 0.5, 0
0.5, 1, 0
0, 0, 1

 ,

X = F

(
W + V√

2

)
,

Z = F (W ),

where F denote the c.d.f of standard normal distribution. This structural model ensures that anchor Z is a valid instrumental
variable, so that KIV is supposed to perform well in this case. We conduct kernel anchor regression with three-stage
algorithm (KAR), kernel anchor regression with two-stage algorithm (KAR.2) and multiple γs and kernel instrument
variable regression (KIV). Set n1 = 200, n2 = 200, m = 600, n = n1 + n2 = 400. For KAR and KAR.2, we set γ to be 0,
0.5, 1, 2, 5, 10, and 100. We set α1 = cαn

−0.5
1 , α2 = cαn

−0.5
2 , α = cαn

−0.5, and ξ = 1m−0.5, where cα > 0 is a constant
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Figure B1: Variant synthetic example: fitted nonlinear (left) and linear (right) methods.
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Figure B2: Experimental results for additional experiments.

chosen from {0.01, 0.05, 0.1, 0.5, 0.8, 1, 2, 3} for each estimator separately to minimise the corresponding MSE. We use
Gaussian kernel for all kernel methods, where the lengthscales are set according to median heuristic Gretton et al. [2012].

For each algorithm, we then implement 50 simulations and calculate MSE with respect to the true causal model E(Y |do(x)),
which can be computed from the structural model. As shown in Figure 2(a), though KIV performs better than most KAR
and KAR.2 estimators, KAR and KAR.2 with γ = 2 defeat KIV in the KIV setting. This, together with the the fact that KIV
defeat other non kernel-based approaches as shown in Singh et al. [2019], indicates that KAR also outperforms DeepIV and
SmoothIV in this setting. The parameters cαs are chosen to be 1, 0.1, 3, 0.8, 3, 3, 3, 1, 0.1, 3, 1, 3, 3, 3 and 2 for KAR with
γ being 0, 0.5, 1, 2, 5, 10, 100, KAR.2 with same γ series and KIV, respectively.

B.2 ADDITIONAL SYNTHETIC DATA EXAMPLES

We also consider a variant case where the structural equation is same to the case in Section 5.1 in the main text

Y = 0.75C − 0.25Z + ln(|16X − 8|+ 1)sgn(X − 0.5),

and the explanatory variables are generated asC
V
W

 ∼ N

0
0
0

 ,

1, 0.3, 0.2
0.3, 1, 0
0.2, 0, 1

 .

Instead, X and Z are set via the following transformation.

X = F

(
|W |+ V√

2

)
, Z = F (|W |)− 0.5. (6)

The fitted result of nonlinear and linear methods is shown in Figure B1. The MSE averaged over 50 simulations is shown in
Figure 2(b). From the result, we can also see that the proposed kernel anchor regression estimators still performs the best
among others under the variant case.

Moreover, we consider a case where the is structural equation is linear,

Y = 0.75C − 0.25Z + 0.5X + 0.75,
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Figure B3: Linear SEM example: fitted nonlinear (left) and linear (right) methods.
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Figure B4: MSE for the linear SEM example.

where the data-generating process for X , Z and C remains the same as Section 5.1 in the main text,C
V
W

 ∼ N

0
0
0

 ,

1, 0.3, 0.2
0.3, 1, 0
0.2, 0, 1

 ,

and

X = F

(
W + V√

2

)
, Z = F (W )− 0.5.
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nWe compare KAR with the linear models to show the robustness and

usefulness of the non-linear anchor regression. By cross-validation,
we choose γ = 3 for KAR estimators. As shown in the Figure B3,
KAR and KAR.2 are able to learn the linear relationship well and
both methods achieve the lower MSE among others, outperforming
the linear methods, as shown in Figure B4.

B.3 BANDWIDTH CHOICE FOR GAUSSIAN KERNEL

We conduct the experiment using different bandwidths for Gaussian
kernels on the setting in Section 5; and plot the cross-validation error
on the right. The median bandwidth, averaged over 50 trials, are plotted in red vertical line; and the average cross-validation
error are plotted in blue horizontal line. The result Bandwidth for Gaussian kernel shows that the median heuristic bandwidth
choice achieves close-to-optimal cross-validation error, which reassures the good results presented in the main text.
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