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Abstract

Learning causal effects is a fundamental problem
in science. Anchor regression has been developed
to address this problem for a large class of causal
graphical models, though the relationships between
the variables are assumed to be linear. In this work,
we tackle the nonlinear setting by proposing ker-
nel anchor regression (KAR). Beyond a classic
two-stage least square (2SLS) estimator, we also
study an improved variant that involves nonpara-
metric kernel regression in three separate stages.
We provide convergence results for the proposed
KAR estimators and the identifiability conditions
for KAR to learn the nonlinear structural equation
models (SEM). Experimental results demonstrate
the superior performances of the proposed KAR
estimators over existing baselines.

1 INTRODUCTION

Understanding the causal effects can be a key ingredient in
many scientific studies. For instance, medical practitioners
need to know how effective a treatment is to the target dis-
ease in clinical trials; econometricians ask how much change
a particular purchasing behaviour drives the Consumer Price
Index (CPI); epidemiologists want to understand to what ex-
tent a government policy can alleviate the pandemic. While
the goal of revealing causal effects remains the same, the
focus in the notion of causality may differ due to specific ap-
plications. To describe different aspects of the causal notions
and design corresponding statistical procedures for inferring
the causal effects, various frameworks have been developed
including the potential outcomes framework [Rubin, 2004,
2005], counterfactual distributions [Chernozhukov et al.,
2013] and Pearl’s causal graphical models [Pearl et al., 2000,
2016]. A succinct yet comprehensive introduction can be
found in Peters et al. [2017].

Causality has also been an emerging field in machine learn-
ing community and machine learning techniques have been
studied to improve the procedures for learning the causal
effects. In particular, independence [Gretton et al., 2005]
and conditional independence [Fukumizu et al., 2007] mea-
sures have been exploited to infer causal graphical models
[Colombo et al., 2012, Mooij et al., 2009], especially for
the additive noise setting [Hoyer et al., 2008, Peters et al.,
2014]. Independent Component Analysis (ICA) [Hyvärinen,
2013, Hyvarinen and Morioka, 2017] has been employed
to identify causal relationships in both linear [Hyvärinen
et al., 2010, Shimizu et al., 2006, 2011] and non-linear set-
tings [Monti et al., 2020, Khemakhem et al., 2021]. Score
matching [Hyvärinen and Dayan, 2005] has also been con-
sidered [Rolland et al., 2022] for non-linear causal learning.
Moreover, kernel methods, that utilize rich representation
of reproducing kernel Hilbert space (RKHS), have been
applied to tackle nonparametric estimation [Muandet et al.,
2021, Singh et al., 2019] and regression [Singh et al., 2019,
Zhu et al., 2022] problems with causal implications. Deep
neural networks have also been attempted for learning treat-
ment effect [Johansson et al., 2020, Kallus, 2020, Louizos
et al., 2017] or useful causal representations [Besserve et al.,
2019, Schölkopf et al., 2021, Xu et al., 2020, 2021].

Recently, an elegant and statistically robust approach for-
mulates causality as an invariant risk minimization (IRM),
see for example [Bühlmann, 2018, Peters et al., 2016]. The
causal structure is thought to be invariant across the envi-
ronment and robust under intervention. The IRM learning
procedure [Arjovsky et al., 2019] on the observational data
is then formulated as a regularized empirical risk minimiza-
tion (ERM) to achieve both in-distribution performance
and out-of-distribution generalization. In particular, anchor
regression [Rothenhäusler et al., 2018], closely related to
K-class estimators [Jakobsen and Peters, 2022], has been
developed under the IRM framework to tackle a very gen-
eral class of causal graphical models with the confounders
being partly (but not fully) observed. By choosing different
regularization parameter, anchor regression is able to unify
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the ordinary least square (OLS) regression, partialling out
(PA) regression, and instrumental variable (IV) regression.
While existing works mostly considered linear cases [Oberst
et al., 2021, Rothenhäusler et al., 2018], we explore the
non-linear setting for anchor regression [Kook et al., 2022].
Specifically, we consider the nonparametric estimation to
tackle non-linear features via RKHS functions. Although
nonlinear anchor regression may not perform well in terms
of generalization [Christiansen et al., 2021], we show that
the approach is valuable as it can identify nonlinear causal
effects under certain conditions when confounders are only
partially observed, and in certain setting, it can outperform
other nonlinear methods in terms of MSE.

This paper is structured as follows. In Section 2, we re-
view useful concepts including instrumental variable (IV),
anchor regression (AR), and reproducing kernel Hilbert
space (RKHS). Then we develop two versions of kernel
anchor regression (KAR) estimators in Section 3. Theoreti-
cal analysis on the estimators and the causal interpretation
with nonlinear SEM are provided in Section 4. Experimen-
tal results for synthetic data and real-world applications
are shown in Section 5 followed by concluding discussion
and future directions in Section 6. Code for the experi-
ments is available at https://github.com/Swq118/
Kernel-Anchor-Regression.

2 BACKGROUND

Directed Acyclic Graph (DAG) is a power class of graphical
model for characterising conditional dependency structures
and has been widely used for probabilistic modelling such
as hidden Markov models [Rabiner and Juang, 1986], la-
tent variable models [Bishop, 1998] and topic models [Blei,
2012]. By enforcing certain Markov and faithfulness as-
sumptions [Peters et al., 2011], as well as noise structures
[Hoyer et al., 2008], DAG models the causal relationships
[Glymour et al., 2019, Spirtes et al., 2013] and the learn-
ing procedures have been developed [Colombo et al., 2012,
Spirtes et al., 2000, Zhang et al., 2018].

From Instrumental Variable to Anchor Regression
Instrumental variable (IV) has been developed to incorporate
endogenous explanatory variables in econometrics [Bow-
den and Turkington, 1990] and then applied for estimating
causal effect [Angrist et al., 1996]. Consider the linear re-
gression problem Y = Xβ+ ε. OLS assumes independence
between noise ε and explanatoryX (the exogenous variable)
and β is estimated via minimizing

βOLS = arg min
β

Etrain[‖Y −Xβ‖2]. (1)

The IV setting assumes explicit dependency between X and
ε via instrumental variable Z, i.e. X = Zθ + ε where Z ⊥
ε. The two-stage least squares (2SLS) procedure, widely
used in economics, tackles the linear IV estimation by first
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Figure 1: DAG representations for IV regression (solid lines
only) and anchor regression (with dashed lines).

regressing Z over X to get conditional means X̄(z) :=
E[X|Z = z] and secondly regressing outputs Y on these
conditional means1. This corresponds to minimizing the
projected least square objective,

βIV = arg min
β

Etrain[‖PZ(Y −Xβ)‖2]. (2)

Let PZ denote the projection to Z where PZ=z(X) =
E[X|Z = z] = X̄(z). 2SLS works well when the under-
lying assumptions hold. The corresponding DAG is shown
in Figure 1 with only solid lines. In practice, the relation
between Y andX may not be linear, nor may be the relation
between X and Z. Non-parametric IV has been explored
through moment estimations [Dikkala et al., 2020] as well
as using deep neural networks [Bennett et al., 2019, Cen-
torrino et al., 2019, Hartford et al., 2017, Singh et al., 2019,
Xu et al., 2020, Zhu et al., 2022].

However, Y ’s dependency on Z may not be solely through
X , i.e. as the dashed lines from Z to Y in Figure 1 indicate,
Y may depend on Z directly, and the strength of such de-
pendency may remain unknown. The latent confounder C
may not be independent of Z, as indicated by dashed line
from Z to C in Figure 1. Incorporating such dependency
structures tackles a much more general class of DAG, e.g.
IV is a special case. To estimate β, anchor regression has
been proposed [Rothenhäusler et al., 2018] to effectively
combines Equation (1) and Equation (2). For regularization
parameter γ and identity operator Id(Z) := Z,

βγ = arg min
β

Etrain[‖(Id− PZ)(Y −Xβ)‖2] (3)

+γEtrain[‖PZ(Y −Xβ)‖2]. (4)

Here, γ ≥ 0 can be thought of the level of direct dependency
of Y on Z variable2. By setting different γ values, anchor
regression recovers classical settings, i.e. γ = 1 corresponds
to OLS, β1 = βOLS ; γ →∞ corresponds to IV, β→∞ :=
limγ→∞ βγ = βIV ; γ = 0 corresponds to the "partialling
out" setting where only residuals between regression of Z
to X and Y are of interest.

1Writing Y = Xβ + ε = (Zθ)β + (εβ + ε) where Zθ =
E[X|Z]. the regressor is independent of noise and OLS apply.

2The smaller γ value dashed line, the stronger the dependency,
i.e. the more solid dashed line from Z to Y .
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Kernel-based Methods Functions in RKHS has been em-
ployed to tackle various statistical and machine learning
tasks with nonlinear features [Hofmann et al., 2008], e.g.
kernel ridge regression, support vector machine, etc. RKHS
functions have also been utilized to represent and charac-
terize distributions, via kernel mean embedding [Muandet
et al., 2017]. For probability measure p and kernel k as-
sociated with RKHS H, the mean embedding denoted by
µp :=

∫
k(x, ·)dp(x) ∈ H has been widely used to compare

distributions, e.g. via maximum-mean-discrepancy (MMD)
[Gretton et al., 2012]. Conditional mean embedding [Song
et al., 2009] has also been considered for learning in regres-
sion problems [Fukumizu et al., 2007, Grünewälder et al.,
2012]. With the rich representations, RKHS functions are
also applicable of learning distribution directly via distribu-
tion regression [Szabó et al., 2015, 2016].

3 KERNEL ANCHOR REGRESSION

To capture the non-linear features in the DAG, we kernelize
the anchor regression framework by utilizing the rich feature
representation of RKHS functions. The kernelizing proce-
dure is inspired from kernel instrumental variable (KIV)
[Singh et al., 2019] where the operators are learned for con-
ditional mean embedding in two separate regression stages.
The DAG representation is illustrated in Figure 23. In our
setting, Z is observable covariates called anchor which may
or may not have effects on target X or Y . All unobservable
latent confounders are denoted by C.

Let kX : X × X → R, kZ : Z × Z → R be measurable
positive definite kernels corresponding to RKHS HX and
HZ . Denote the feature maps ψ : X → HX , x→ kX (x, ·)
and φ : Z → HZ , z → kZ(z, ·). Let Pφ(Z) and Id de-
note the L2-projection on the linear span from the compo-
nents of φ(Z) and the identity operator, respectively. Denote
H : HX → Y as the conditional operator we aim to learn.
Then for γ ≥ 0, define the population-level kernel anchor
regression operator Hγ as

Hγ = arg min
H

E[‖(Id− Pφ(Z))(Y −Hψ(X))‖2]

+γE[‖Pφ(Z)(Y −Hψ(X))‖2]. (5)

To unravel Pφ(Z), both IV and AR estimators applied the
two-stage procedure, where the first stage is to estimate the
projection operator Pφ(Z) and the second stage is to perform
the projection-adjusted regression.

3.1 PROJECTION STAGE

The projection stage aims to tackle Pφ(Z) by transform-
ing the problem of learning Pφ(Z)ψ(X) and Pφ(Z)Y into

3We note that, as opposed to Figure 1, there is no edges be-
tween Z, X and Y as the learning is not based on the original data
space, yet using the feature space φ(X) ∈ HX and ψ(Z) ∈ HZ .

Z HZ

X HX C
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Figure 2: DAG representation for kernel anchor regression.

two separate kernel ridge regressions. Let operators EX :
HZ → HX and EY : HZ → Y be the projections to learn;
α1, α2 > 0 be regularization parameters. We note that due
to the explicit dependency from Z to Y , Pφ(Z)Y needs to
be treated separately from Pφ(Z)ψ(X). This is different
from the IV setting where Pφ(Z)Y = Y . The objectives
regularized by Hilbert-Schmidt (HS) norm are

Eα1(EX) = E‖ψ(X)− EXφ(Z)‖2HX + α1‖EX‖2HS ,
(6)

Eα2
(EY ) = E‖Y − EY φ(Z)‖2Y + α2‖EY ‖2HS . (7)

Denote the optimal operators for the population risks
as Epα1,X

= arg minEX Eα1
(EX), and Epα2,Y

=
arg minEY Eα2(EY ). We then consider two variants of em-
pirical risks and their corresponding estimations.

3.1.1 Disjoint sample sets projection

Firstly, we treat two ridge regressions in Equation (6) and
Equation (7) independently, by using two disjoint sets of
samples S1 = {(xi, zi)}i∈[n1] and S2 = {(yj , zj)}j∈[n2].
The empirical forms for Equation (6) and Equation (7) are

1

n1

∑
i∈[n1]

‖ψ(xi)− EXφ(zi)‖2HX + α1‖EX‖2HS , (8)

1

n2

∑
j∈[n2]

‖yj − EY φ(zj)‖2Y + α2‖EY ‖2HS . (9)

Denote Φ1,Z = (φ(z1), . . . , φ(zn1
)), {zi}i∈[n1] ⊂ S1;

Φ2,Z = (φ(z1), . . . , φ(zn2
)), {zj}j∈[n2] ⊂ S2; their

gram matrices K1,ZZ = Φ>1,ZΦ1,Z ∈ Rn1×n1 and
K2,ZZ = Φ>2,ZΦ2,Z ∈ Rn2×n2 . Denote Ψ1,X =
(ψ(x1), . . . , ψ(xn1

)), {xi}i∈[n1] ⊂ S1 and Y2 =
(y1, . . . , yn2

), {yj}j∈[n2] ⊂ S2. By the standard regression
formula, the optimal operators to minimize Equation (8) and
Equation (9) are

En1

α1,X
= Ψ1,X(K1,ZZ + n1α1I)−1Φ>1,Z , (10)

En2

α2,Y
= Y2(K2,ZZ + n2α2I)−1Φ>2,Z , (11)
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where the superscripts n1, n2 explicitly reveal sample sizes.
We note that the projections Pφ(Z) are estimated differently
for Pφ(Z)ψ(X) and Pφ(Z)Y , through (K1,ZZ + n1α1I)−1

and (K2,ZZ + n2α2I)−1, respectively. K1,ZZ and K2,ZZ

are independent due to the disjoint i.i.d. sample sets of Z.

3.1.2 Joint sample set projection

On the other hand, we can also consider the projection
analogous to [Rothenhäusler et al., 2018] where we jointly
consider the samples used for both projections, i.e. project-
ing onto the same φ(Z) subspace. Setting n = n1 + n2

and α = α1 = α2, we consider the joint sample set
S = {(xi, yi, zi)}i∈[n] and the empirical risks

1

n

∑
i∈[n]

‖ψ(xi)− EXφ(zi)‖2HX + α‖EX‖2HS , (12)

1

n

∑
i∈[n]

‖yi − EY φ(zi)‖2Y + α‖EY ‖2HS . (13)

Denote KZZ ∈ Rn×n as the gram matrix from
{zi}i∈[n] ⊂ S; ΦZ = (φ(z1), . . . , φ(zn)), {zi}i∈[n] ⊂ S;
ΨX = (ψ(x1), . . . , ψ(xn)), {xi}i∈[n] ⊂ S and Y =
(y1, . . . , yn), yi ∈ S. Then we have

Enα,X = ΨX(KZZ + nαI)−1Φ>Z , (14)

Enα,Y = Y (KZZ + nαI)−1Φ>Z . (15)

By setting the same level of regularization, we can see that
the estimates of Pφ(Z) projection, through (KZZ +nαI)−1,
are the same for Pφ(Z)ψ(X) and Pφ(Z)Y .

3.2 REGRESSION STAGE

With the learned projections Pφ(Z)ψ(X) and Pφ(Z)Y , we
can now tackle the overall objective in Equation (5).

Denote E(EX) and E(EY ) as the unregularized version of
Equation (6) and Equation (7);EpX andEpY their correspond-
ing optimal operators, respectively. For given γ, define the
transformed input and output as

ψγ(X) = ψ(X)− EpXφ(Z) +
√
γEpXφ(Z) ∈ HX , (16)

Yγ = Y − EpY φ(Z) +
√
γEpY φ(Z) ∈ Y. (17)

Proposition 1 (Equivalence) Let H : HX → Y , and con-
sider the regression of transformed output in Equation (17)
on transformed input in Equation (16)

Eγ(H) = E(Z,X,Y )‖Yγ −Hψγ(X)‖2Y . (18)

The solution to Equation (18) is equivalent to the KAR
estimator in Equation (5), i.e. Hγ = arg minH Eγ(H).

The proof is by expanding the projectionEpX andEpY , which
is similar to the linear case in Rothenhäusler et al. [2018].

With regularization parameter ξ ≥ 0, Equation (18) has the
kernel ridge regression form defined as

Eγξ (H) = E(Z,X,Y )‖Yγ −Hψγ(X)‖2Y + ξ‖H‖2HS .

The regression stage is regardless of how the projections are
estimated in Section 3.1. For the empirical estimation for op-
erators ÊX ∈ {En1

α1,X
, Enα,X} and ÊY ∈ {En2

α2,Y
, Enα,Y },

we use sample set Sm = {(xl, yl, zl)}l∈[m], which is dis-
joint to the set S used in the previous stages, and compute
the transformed inputs and outputs as

ψ̂γ,l(x) = ψ(xl) + (
√
γ − 1)ÊXφ(zl) ∈ HX ,

ŷγ,l = yl + (
√
γ − 1)ÊY φ(zl) ∈ Y.

The empirical risk has the form

Êγ,mξ (H) =
1

m

∑
l∈[m]

‖ŷγ,l −Hψ̂γ,l(x)‖2Y + ξ‖H‖2HS ,

Ĥγ,m
ξ = arg min Êγ,mξ (H).

Denote Ψ̂γ = (ψ̂γ,1(x), . . . , ψ̂γ,m(x)) and its gram ma-
trix KΨ̂γΨ̂γ

= Ψ̂>γ Ψ̂γ ∈ Rm×m; Ŷγ = (ŷγ,1, . . . , ŷγ,m).
Again, by standard regression formula,

Ĥγ,m
ξ = Ŷγ(KΨ̂γΨ̂γ

+mξI)−1Ψ̂>γ . (19)

3.3 KAR ESTIMATOR

Given observational data of size N , {(xi, yi, zi)}i∈[N ], the
KAR procedure can be performed in two ways based on the
two variants in the projection stage.

Three-stage KAR To apply the disjoint sample sets
projection in Section 3.1.1, we randomly split the data
set of size N into three disjoint sets of sample size
n1, n2,m where N = n1 + n2 + m and re-index them
in [N ]. The first two sets of data {(xi, zi)}i∈{1:n1} and
{(yj , zj)}j∈{n1+1:n1+n2} are used for learning the projec-
tion operators in Equation (10) and Equation (11). We note
that samples {yi}i∈{1:n1} and {xj}j∈{n1+1:n1+n2} are not
used. The third set {(xl, yl, zl)}l∈{n1+n2+1:N} is used in
regression stage to learn Ĥγ,m

ξ in Equation (19). This proce-
dure, termed KAR, includes solving three different regres-
sion problems, and differs from the two-stage settings used
in linear anchor regression [Rothenhäusler et al., 2018].
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Two-stage KAR For the joint sample set projection in
Section 3.1.2, we only split the data of size N into two
disjoint sets randomly of size n and m where N =
n + m and re-index them such that {(xi, yi, zi)}i∈{1:n}
and {(xl, yl, zl)}l∈{n+1:N}. The first set is then grouped
into {(xi, zi)}i∈{1:n} and {(yi, zi)}j∈{1:n} to learn the pro-
jection operators in Equation (10) and Equation (11). In
this manner, {zi}i∈{1:n} are used twice. The second set
{(xl, yl, zl)}l∈{n+1:N} is used for regression stage to learn
Ĥγ,m
ξ in Equation (19), which is the same as the three-stage

procedure above. This procedure, termed KAR.2, replicates
the 2SLS used in KIV [Singh et al., 2019] and linear anchor
regression [Rothenhäusler et al., 2018]. Note that the KIV
procedure in [Singh et al., 2019] can be seen as a special
case of our KAR.2 by choosing γ =∞.

4 ANALYSIS OF KAR ESTIMATORS

4.1 CONSISTENCY

We first focus on the three-stage KAR procedure with dis-
joint sample sets for projection in Section 3.1.1. The closed
form solutions and convergence rates of the estimators are
extended from the analysis of 2SLS in KIV [Singh et al.,
2019]. We follow the integral operator notations in [Singh
et al., 2019]. Define the projection stage operators as

S∗1 : HZ → L2(Z, ρZ), l→ 〈l, φ(·)〉HZ ,

S1 : L2(Z, ρZ)→ HZ , l̃→
∫
φ(z)l̃(z)dρZ(z),

where ρ denotes the joint distribution of (Z,X, Y ).
L2(Z, ρZ) denotes the space of square integrable functions
from Z to Y with respect to measure ρZ , where ρZ is the
restriction of ρ toZ . T1 = T2 = S1◦S∗1 are then uncentered
covariance operators. We define the power of operator T1

with respect to its eigendecomposition. LetHΓ = HX⊗HZ ,
HΘ = Y ⊗HZ andHΩ = Y ⊗HX be the relevant tensor
product spaces for the operators.

Condition 1 (i) X and Z are Polish, i.e. separable and
completely metrizable topological spaces. (ii) kX and kZ
are continuous and bounded: supx∈X ‖ψ(x)‖HX ≤ Q1,
supz∈Z ‖φ(z)‖HZ ≤ κ. (iii) ψ and φ are measurable.
(iv) kX is characteristic. (v) EpX ∈ HΓ s.t. E(EpX) =
infEX∈HΓ

E(EX). (vi) Fix ζ1 <∞. For c1 ∈ (1, 2], define
the prior P(ζ1, c1) as the set of probability distributions ρ
on X × Z s.t. ∃G1 ∈ HΓ s.t. EpX = T

(c1−1)/2
1 ◦ G1 and

‖G1‖2HΓ
≤ ζ1.

Condition 1 is adapted from [Singh et al., 2019] to bound the
approximation error of the regularized estimator En1

α1,X
. Pa-

rameter c1 suggests the smoothness of conditional operator
En1

α1,X
. A larger c1 corresponds to a smoother operator.

Lemma 1 ∀α1 > 0, the solution En1

α1,X
of the regularized

empirical objective in Equation (8) exists and is unique. With
T1 = 1

n1

∑n1

i=1 φ(zi)⊗ φ(zi) and g1 = 1
n1

∑n1

i=1 φ(zi)⊗
ψ(xi), the estimator in Equation (10) has the formEn1

α1,X
=

(T1 +α1)−1 ◦g1. Under Condition 1 and α1 = n
−1/(c1+1)
1 ,

we have: ‖En1

α1,X
− EpX‖HΓ

= Op(n
− c1−1

2(c1+1)

1 ).

Lemma 1 follows from [Singh et al., 2019], and shows that
the efficient rate of α1 is n−1/(1+c1)

1 . Note that the conver-
gence rate of En1

α1,X
is calibrated by c1, which measures the

smoothness of the conditional expectation operator EX .

For the disjoint set projection in Section 3.1.1, the closed
form solution and convergence rate for learning Pφ(Z)Y
estimator is similar to that of learning Pφ(Z)ψ(X) due to
the independent estimation procedure and further requires
the following conditions.

Condition 2 (i) Y is a Polish space. (ii) Y is bounded:
supy∈Y ‖y‖Y ≤ Q2. (iii) EpY ∈ HΘ s.t. E(EpY ) =
infEY ∈HΘ E(EY ). (iv) Fix ζ2 <∞. For c2 ∈ (1, 2], define
the prior P(ζ2, c2) as the set of probability distributions ρ
on Y × Z s.t. ∃G2 ∈ HΘ s.t. EpY = T

(c2−1)/2
2 ◦ G2 and

‖G2‖2HΘ
≤ ζ2.

Lemma 2 ∀α2 > 0, the solution En2

α2,Y
of the regularized

empirical objective in Equation (9) exists and is unique. With
T2 = 1

n2

∑n2

j=1 φ(zj)⊗φ(zj) and g2 = 1
n2

∑n2

j=1 φ(zj)yj ,
the estimator in Equation (10) has the form En2

α2,Y
= (T2 +

α2)−1 ◦ g2. Under Condition 1– 2 and α2 = n
−1/(c2+1)
2 ,

we have: ‖En2

α2,Y
− EpY ‖HΘ = Op(n

− c2−1

2(c2+1)

2 ).

Similar to learning projection Pφ(Z)ψ(X), the efficient rate
of α2 is n−1/(1+c2)

2 , where c2 measures the smoothness of
the conditional expectation operator EY .

Let L2(HX , ρHX ) denote the space of square integrable
functions from HX to Y with respect to measure ρHX ,
where ρHX is the extension of ρ toHX . Define the regres-
sion stage operator as

S∗ : HΩ → L2(HX , ρHX ), H → Ω∗(·)H,

S : L2(HX , ρHX )→ HΩ,

H̃ →
∫

Ωψγ ◦ H̃ψγdρHX (ψγ),

where Ωψγ : Y → HΩ defined by y → Ω(·, ψγ)y is
the point evaluator of [Micchelli and Pontil, 2005]. Define
Tψγ = Ωψγ ◦ Ω∗ψγ and covariance operator T = S ◦ S∗.
Define the power of operator T with respect to its eigende-
composition. Condition 3 below extends hypothesis 7–9 in
[Singh et al., 2019], and is sufficient to bound the excess
error of Ĥγ,m

ξ with the error propagated from the estimators
in the projection stage.
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Condition 3 (i) The {Ωψγ} operator family is uniformly
bounded in Hilbert-Schmidt norm: ∃B s.t. ∀ψγ ,
‖Ωψγ‖2L2(Y,HΩ) = Tr(Ω∗ψγ ◦ Ωψγ ) ≤ B.

(ii) The {Ωψγ} operator family is is Hölder continu-
ous in operator norm: ∃L > 0, ι ∈ (0, 1] s.t.
∀ψγ , ψ′γ , ‖Ωψγ − Ωψ′γ‖L(Y,HΩ) ≤ L‖ψγ − ψ′γ‖ιHX .

(iii) Hγ ∈ HΩ, then Eγ(Hγ) = infH∈HΩ Eγ(H).

(iv) Yγ is bounded, i.e. ∃C <∞ s.t. ‖Yγ‖Y ≤ C.

(v) Fix ζ < ∞. For given bγ ∈ (1,∞] and cγ ∈ (1, 2],
define the prior P(ζ, bγ , cγ) as the set of probability
distributions ρ onHX × Y s.t.

(a) range space assumption is satisfied: ∃G ∈ HΩ

s.t. Hγ = T
(cγ−1)

2 ◦G and ‖G‖2HΩ
≤ ζ;

(b) the eigenvalues from spectral decomposition T =∑∞
k=1 λkek〈·, ek〉HΩ

, where {ek}∞k=1 is basis of
Ker(T )⊥ , satisfy α ≤ kbγλk ≤ β for α, β > 0.

We note that all parameters mentioned in Condition 3 de-
pend on γ, though the function representations are not ex-
plicit. We set subscript γ especially for parameters bγ and
cγ to emphasize their dependency on γ. Parameter bγ mea-
sures the decay of eigenvalues of the covariance operator T ,
and larger bγ suggests smaller effective input dimension. A
larger cγ corresponds to a smoother operator Hγ .

Lemma 3 ∀ξ > 0, the solution Ĥγ,m
ξ to Êγ,mξ exists

and is unique for each γ. Let T̂ = 1
m

∑m
l=1 Tψ̂γ,l , ĝ =

1
m

∑m
l=1 Ωψ̂γ,l ŷγ,l. Equation (19) has the form

Ĥγ,m
ξ = (T̂ + ξ)−1 ◦ ĝ.

Condition 4 For c1, c2 set in Conditions 1– 2 and ι satisfy-

ing Condition 3, assume n2 ≥ n
ι(c1−1)(c2+1)

(c1+1)(c2−1)

1 .

Remark 1 Condition 4 is sufficient but not necessary to
ensure that the error propagates to regression stage from
estimating EpY is smaller than that from estimating EpX in
disjoint sample sets projection.

The main challenge of extending the convergence rate of
KIV estimator [Singh et al., 2019] to KAR estimator is
that in our case, the excess error depends not only on the
accuracy of EpX estimator but also on the accuracy of EpY
estimator. However, by proposing Condition 4, we ensure
the error from estimating EpY is dominated by that of EpX ,
and manage to illustrate the optimal convergence rate for
KAR as shown in Thereom 1. In this way, the three-stage
procedure can guarantee the same convergence rate as the
two-stage procedure in KIV.

Theorem 1 Under Condition 1– 4, let d1, d2 > 0 and

choose α1 = n
− 1
c1+1

1 , α2 = n
− 1
c2+1

2 , n1 = m
d1(c1+1)

ι(c1−1) ,

n2 = m
d2(c2+1)

ι(c2−1) , we have:

(i) If d1 ≤ bγ(cγ+1)
bγcγ+1 , then Eγ(Ĥγ,m

ξ ) − Eγ(Hγ) =

Op(m
− d1cγ
cγ+1 ) with ξ = m

− d1
cγ+1 .

(ii) If d1 >
bγ(cγ+1)
bγcγ+1 , then Eγ(Ĥγ,m

ξ ) − Eγ(Hγ) =

Op(m
− bγcγ
bγcγ+1 ) with ξ = m

− bγ
bγcγ+1 .

At d1 = bγ(cγ + 1)/(bγcγ + 1) < 2, the convergence
rate of KAR estimator m−bγcγ/(bγcγ+1) is optimal. This
statistically efficient rate is calibrated by bγ , the effective
input dimension, together with cγ , the smoothness of the
operatorHγ . The condition d1 = bγ(cγ+1)/(bγcγ+1) < 2
also suggests that n1 > m. We provide additional discussion
on the two-stage KAR estimator, and show that only a lower
convergence rate can be guaranteed (see Section A.3 in
supplementary material).

4.2 CAUSAL EFFECT AND TARGET KAR
ESTIMATE

In this section, we discuss the scenarios assuming that the
data are generated from a structural causal model with non-
linear features as shown below, C

ψ(X)
Y

 = B


φ(Z)
C

ψ(X)
Y

+

εCεX
εY

 , (20)

where we write operator B in the following matrix form

B =

BCZ 0 0 0
BXZ BXC 0 0
BY Z BY C BY X 0

 .

We note that each operator B4� represents an operator that
takes an element from �-related space to4-related space,
e.g. BXZ : HZ → HX and BY Z : HZ → Y . The noise
variables εZ , εC , εX and εY are independent of each other.
Let ΣZ , ΣC , ΣX and ΣY denote the covariance of εZ , εC ,
εX and εY , respectively. Here each operator in B represents
a line in the model shown in Figure 2. For instance, BCZ
stands for the line from HZ to C; BY X corresponds to
the line fromHX to Y . BY X in Equation (20) reflects the
causal effect we are interested in. We study the identifiability
scenarios where operator BY X can be learned via KAR
estimator Hγ .

Theorem 2 An operator BXZ is a zero operator written
by BXZ = 0, if 〈ψ(x), BXZφ(z)〉HX = 0, ∀ψ(X) ∈
HX , φ(z) ∈ HZ . Operator BCZ = 0 if c>BCZφ(z) = 0,
∀c ∈ C, φ(z) ∈ HZ . A matrix-valued operator, e.g. BY C =
0 if all entries are 0. For data generation process following
Equation (20), we have Hγ = BY X in following cases.
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Figure 3: Synthetic example: fitted (top left) nonlinear mod-
els; (top right) linear models; (bottom): log MSE.

(i) BY C = 0 and γ = 0, i.e. no latent confounder.

(ii) BY Z + BY CBCZ = 0 and γ = ∞, where kernel IV
is a special case, i.e. both BY Z = 0 and BCZ = 0.

(iii) BY C = 0, BY Z +BY CBCZ = 0, and γ ≥ 0.

(iv) Σ
||
Y X = −aΣ⊥Y X for some a > 0, and γ = 1/a.

Σ
||
Y X = (BY Z + BY CBCZ)ΣZ(BZX + BZCBCX)

denotes the covariance between ψ(X) and Y pro-
jected on the linear span from the components of φ(Z);
and Σ⊥Y X = BY CΣCBCX denotes the covariance
between the residuals of ψ(X) and Y .

Thereom 2 (i) suggests that KPA (kernel partialling out
regression) is optimal when there is no unobserved con-
founder; (ii) suggests that KIV identifies the causal effect
under a generalized condition including KIV assumption,
i.e. BY Z = 0 and BY C = 0; (iii) shows the KAR estimator
identifies the causal relation from X to Y regardless of γ
with generalized KIV condition in (ii) and no latent con-
founder in (i). The condition γ ≥ 0 in (iii) actually implies
that Hγ is constant over all γ ≥ 0, which coincides with
the definition of anchor stability in [Rothenhäusler et al.,
2018]. Thereom 2 (iv) shows the KAR identifiability con-
dition with appropriate choice of γ when Σ

||
XY and Σ⊥XY

are in the flipped direction. To further illustrate the identifi-
ability condition, consider the linear case and assume that
X , Z and C have only one dimension. In this case, it’s not
trivial for Σ

||
Y X = −aΣ⊥Y X holds for some a > 0, which

ensures KAR to identify the causal effect. We stress that the
identifiability condition in Theorem 2 (iv) does not include
no hidden confounding (BY C = 0) nor valid instrument
variable (BY Z = 0 and BY C = 0).

In the next section, we show the empirical results for KAR
estimators compared with relevant baseline methods.

5 EMPIRICAL RESULTS

5.1 SYNTHETIC EXPERIMENTS

We consider the data generating process of the following
nonlinear structural equation,

Y = 0.75C − 0.25Z + ln(|16X − 8|+ 1)sgn(X − 0.5),

where sgn(x) ∈ {−1, 0,+1} denotes the sign of x. The
explanatory variables X,Z,C are generated fromC

V
W

 ∼ N
0

0
0

 ,

1, 0.3, 0.2
0.3, 1, 0
0.2, 0, 1

 ,

X = F

(
W + V√

2

)
, Z = F (W )− 0.5,

where F denote the c.d.f of standard normal distribution.
For our learning procedure, Z, X and Y are available, and
C is unobservable.

We generate {(xi, yi, zi)}i∈[N ] with N = 700. To perform
the data-splitting procedures described in Section 3, we set
n1 = n2 = 250 and n = 500 for a fair comparison in
the projection stage ; and m = 200 in the regression stage
. We set regularizers as α1 = 1.5n−0.5

1 , α2 = 1.5n−0.5
2 ,

α = 1.5n−0.5 and ξ = 1.5m−0.5.

Fitting methods We consider estimations via the three-
stage kernel anchor regression with disjoint data set projec-
tion (KAR) and two-stage kernel anchor regression with
joint data set projection (KAR.2). The baseline approaches
include the kernel-based nonlinear methods: kernel instru-
ment variable regression (KIV), kernel partialling out regres-
sion (KPA), kernel ridge regression (KReg); and the linear
models: linear anchor regression (AR), linear instrument
variable regression (IV), linear partialling out regression
(PA) and ordinary least square (OLS). We use Gaussian ker-
nel for all kernel-based methods, where the median heuristic
is used for choosing the bandwidth [Gretton et al., 2012]. We
show that the median heuristic is a good choice by achieving
close-to-optimal cross-validation error (see Section B.3 in
supplementary material). For the synthetic example, we set
γ = 2 for all anchor regressions (KAR, KAR.2 and AR).

For each algorithm, we implement 50 trials and calculate the
mean squared error (MSE) with respect to the true causal
model E(Y |do(x))4, which can be computed from the struc-
tural model. A trial is shown in Figure 3 as a visual example.
We can see that the KAR produces a closest estimation to the
true model among all methods and outperforms KAR.2. The

4Setting a particular value X = x while ignoring other
variables that may potentially changing the distribution of y,
p(y|X = x) is noted as p(y|do(x) [Pearl, 2009, Peters et al.,
2016]. E[Y |do(x)] is set us the mean over p(y|do(x)) averaging
out different Z values in this case.
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Figure 5: Prediction error with distributional intervention.

comparison with linear models are also shown. IV model
fits better than other linear models. We report log10(MSE)
in the bottom of Figure 3, which shows that both KAR meth-
ods have smaller errors than others. KAR performs slightly
better than KAR.2 in this case. To check the robustness of
KAR estimators, we study a less smooth variant of the data
generating process and show the results in Section B.2 in
supplementary material.

The effect of γ choices To investigate how the change of
γ affects the estimator, we consider KIV as our baseline as
the IV setting corresponds to γ →∞. We consider the data
generating process used in the KIV paper Singh et al. [2019].
The log10(MSE) results of KAR and KAR.2, in comparison
with KIV, are shown in Figure 4. For the simulation, we
set N = 1000, n1 = n2 = 200, n = n1 + n2 = 400 and
m = 600. From the result, we can see that both KAR and
KAR.2 achieves smaller error when choosing γ = 2. Data
generation and model implementation details are included
in Section B.1 supplementary material.

Intervention and Generalization To evaluate the robust-
ness and generalization performance of both KAR estima-
tors under distribution shift, as discussed in [Rothenhäusler
et al., 2018], we intervene the anchor variable Z. We train
the model on a subpopulation of samples with Z < 0 and
test on the samples with Z ≥ 0. The performance is mea-
sured by prediction error (PE) of fitted model with respect
to E(Y |X = x, Z ≥ 0), where the true conditional model
is not known in closed form but estimated from samples.

We also exchange the training set and the testing set. As
shown in Figure 5, our KAR estimator has the lowest PE
among others, showing better out-of-distribution generaliza-
tion performance. More importantly, by checking the two
(flipped) scenarios, i.e. train on Z < 0 v.s. train on Z ≥ 0,
we also see that KAR is the most invariant in terms of PE.
On the contrary, linear version of AR and IV achieves very
different PE in both cases. Variances of PE for KPA are also
very different in the two cases. Despite KReg achieving a
relatively low PE in both cases, the distributions of PE can
be found very different. In supplementary material (see Sec-
tion B.1), we also illustrate that KAR can outperform other
non kernel-based approaches, e.g. DeepIV or SmoothIV.

5.2 REAL-WORLD APPLICATION

We consider the smoking dataset extracted from National
Medical Expenditure Survey (NMES) [Johnson et al., 2003]
to study the effect of smoking amount on medical expendi-
ture [Imai and Van Dyk, 2004]5.

The treatment variable X is the log of smoking amount, the
outcome Y is the log of medical expenditure, and the anchor
Z is set to be the last age for smoking. We use 1000 samples,
randomly selected from 9708 available samples, to fit the
model. We set n1 = n2 = 300, n = 600 and m = 400. We
also set γ = 2.9 and apply Gaussian kernel with median
heuristic bandwidth [Gretton et al., 2012] for all kernel
methods. As shown in the upper part of Figure 6, KAR
estimators show that the effect ofX on Y is more significant
when X ∈ [−2, 1] compared to X ∈ [1, 4]. Our method can
also be used in complement with the approaches finding
causal directions, e.g. [Peters et al., 2016]6. We run the
CAM to ensure that there is a causal effect in the direction
from X to Y and KAR procedure further learns the specific
function representing such effect. However, existing work
such as propensity score approaches [Imai and Van Dyk,
2004] did not manage to extract such causal relationship
between smoking and medical expenditure.

To strengthen our finding, we quantify the performance of
the estimators. Since we do not know the real generating
process of the data, we cannot compare the MSE as Figure 3
and 4. Instead, it’s feasible to evaluate the estimators’ per-
formance under distribution perturbation via PE, similar to
Figure 5. We train models on male subjects and compute
the prediction accuracy of fitted model on female subjects.
As shown in the bottom of Figure 6, we see that both KAR
approaches outperform other kernel-based approaches as
well as the linear version of AR, suggesting a better learned

5The dataset is accessible through using the R package
for “estimating causal dose response function” causaldrf
[Galagate, 2016] https://cran.r-project.org/web/
packages/causaldrf/index.html.

6Implementation with R package CAM can be found at https:
//rdrr.io/cran/CAM/man/CAM.html
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causal effect for smoking amount to medical expenditure.

6 CONCLUSION AND FUTURE WORKS

In this work, we consider learning a more general class of
causal DAG in a nonlinear setting using kernelized anchor
regression. By considering different data splitting strategies
to estimate the projection operators, we show that the three-
stage approach not only performs better empirically than
baseline approaches as well as the 2SLS approach, but also
achieves optimal rate under given conditions. Identifiability
results for our approach are provided and are shown to
generalize KIV and “no latent confounder” scenarios.

Our study opens several directions to better understand the
nonlinear causal effect using the anchor regression frame-
work. For the future, data adaptive choice of γ and its causal
interpretation can be further to explore. Moreover, while we
focus on effect variable Y in its original space in this work,
anchor regression for the feature space of Y can be another
interesting future study.

We also note that Rothenhäusler et al. [2018] studies the
distribution generalisation property for the linear anchor re-
gression. While, this work does not focus on the theoretical
properties of generalisation using RKHS functions in the
non-linear setting, the possibility and conditions to achieve
distribution generalisation property for non-linear anchor
regression is another interesting future direction.
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