
A Bayesian Approach for Bandit Online Optimization with Switching Cost
(Supplementary Material)

Zai Shi1 Jian Tan1 FeiFei Li1

1Alibaba Group, Hangzhou, Zhejiang, China

1 PROOF OF THEOREM 1

Defining v∗t = argminxX f(x) + c(x, xt−1) and x∗0 = x0, we have

T∑
t=1

(f(xt) + c(xt, xt−1)− f(v∗t)− c(v∗t , xt−1))

≥
T∑

t=1

(f(xt) + c(xt, xt−1)− f(x∗t)− c(x∗t , xt−1)) (1)

≥
T∑

t=1

(f(xt) + c(xt, xt−1)− f(x∗t)− ηc(x∗t , x
∗
t−1)− ηc(x∗t−1, xt−1)) (2)

=

T∑
t=1

(f(xt) + c(xt, xt−1)− f(x∗t)− ηc(x∗t , x
∗
t−1)− ηc(x∗t , xt)) + ηc(x∗T , xT)− ηc(x∗0, x0)

≥
T∑

t=1

(f(xt) + c(xt, xt−1)− f(x∗t)− ηc(x∗t , x
∗
t−1)− ηc(x∗t , xt))− ηD (3)

≥
T∑

t=1

(f(xt) + c(xt, xt−1)− f(x∗t)− ηc(x∗t , x
∗
t−1)− η2c(x∗t , x

∗)− η2c(xt, x
∗))− ηD (4)

≥
T∑

t=1

((1− η2/λ)f(xt) + c(xt, xt−1)− (1 + η2/λ)f(x∗t) + 2η2/λf(x∗)− ηc(x∗t , x
∗
t−1))− ηD (5)

≥
T∑

t=1

((1− η2/λ)f(xt) + (1− η2/λ)c(xt, xt−1)− (1 + η2/λ)f(x∗t)− ηc(x∗t , x
∗
t−1))− ηD (6)

where (1) is from the definition of v∗t , (2) is from Assumption 3, (3) is from Assumption 4, (4) is from Assumption 3, (5) is
from Assumption 2 and (6) is from f(x) ≥ 0 and c(x, y) ≥ 0 within X .

Meanwhile, following a similar approach to the proof of Lemma 1 based on Lemma 2 of the main paper, we have

T∑
t=1

(f(xt) + c(xt, xt−1)− f(v∗t)− c(v∗t , xt−1)) = O

(
B
√
Tγ′T +

√
Tγ′T (γ

′
T + log(1/δ))

)
(7)

with probability at least 1− δ, where γ′T is the maximal information gain related to kernel k′ and the domain X × X in
2d-dimension.

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<shizai.sz@alibaba-inc.com>?Subject=Your UAI 2023 paper

Since f(x) ≥ 0 and c(x, y) ≥ 0 within X , by combining (6) and (7) with η2/λ < 1 we have

T∑
l=1

(f(xl) + c(xl, xl−1))−
T∑
l=1

ψ
(
f(x∗l) + c(x∗l , x

∗
l−1)

)
= O

(
B
√
Tγ′T +

√
Tγ′T (γ

′
T + log(1/δ))

)
= Õ(T g(2d))

with probability at least 1− δ, where ψ = max{ 1+η2/λ
1−η2/λ ,

η
1−η2/λ}.

2 PROOF OF COROLLARY 1

From the definition of competitive ratio, we have

CR =

∑T
t=1 ft(xt) + c(xt, xt−1)∑T
t=1 ft(x

∗
t) + c(x∗t , x

∗
t−1)

≤
∑T

t=1 ψ
(
f(x∗t) + c(x∗t , x

∗
t−1)

)
+ Õ(T g(2d))∑T

t=1 ft(x
∗
t) + c(x∗t , x

∗
t−1)

(8)

≤ ψ +
Õ(T g(2d))

TC
(9)

= ψ + Õ(T g(2d)−1),

where (8) is from Theorem 1 and f(x) ≥ 0, c(x, y) ≥ 0 within X , (9) is from Assumption 4 and the assumption in Corollary
1.

3 PROOF OF THEOREM 2

For epoch m, define v∗m = argminx∈X f(x) + 2ηc(x, vm) and x∗0 = x0, where vm is the pivot point of epoch m defined in
Algorithm 3. For epoch m, the time horizon is from l = m(m−1)

2 + 1 to l = m(m−1)
2 +m. Defining t = m(m−1)

2 +m and
x∗ = argminx∈X f(x), we have

t−1∑
l=

m(m−1)
2 +1

(f(xl) + 2ηc(xl, vm)− f(v∗m)− 2ηc(v∗m, vm)) + f(xt)− f(x∗) (10)

≥
t∑

l=
m(m−1)

2 +1

(f(xl) + c(xl, xl−1))− ηc(xt, vm)− ηc(xm(m−1)
2

, vm)−
t−1∑

l=
m(m−1)

2 +1

(f(v∗m) + 2ηc(v∗m, vm))− f(x∗)

(11)

≥
t∑

l=
m(m−1)

2 +1

(f(xl) + c(xl, xl−1))−
t−1∑

l=
m(m−1)

2 +1

(f(x∗l) + 2ηc(x∗l , vm))− 2ηD − f(x∗t) (12)

≥
t∑

l=
m(m−1)

2 +1

(f(xl) + c(xl, xl−1))−
t−1∑

l=
m(m−1)

2 +1

(
f(x∗l) + 2η2(c(x∗l , x

∗
l−1) + ηc(x∗l−1, x

∗) + ηc(vm, x
∗))

)
− 2ηD − f(x∗t) (13)

≥
t∑

l=
m(m−1)

2 +1

(f(xl) + c(xl, xl−1))−
t∑

l=
m(m−1)

2 +1

(
(1 + 2η3/λ)f(x∗l) + 2η2c(x∗l , x

∗
l−1)

)
− 2η3c(xm(m−1)

2
, x∗)

+ 2η2c(x∗t , x
∗
t−1) + 2η3c(x∗t−1, x

∗) + 2η3c(x∗t , x
∗)− 2η3/λ(m− 1)(f(vm)− 2f(x∗))− 2ηD (14)

≥
t∑

l=
m(m−1)

2 +1

(f(xl) + c(xl, xl−1))−
t∑

l=
m(m−1)

2 +1

(
(1 + 2η3/λ)f(x∗l) + 2η2c(x∗l , x

∗
l−1)

)
− (2η + 2η3)D − 2η3/λ(m− 1)(f(vm)− f(x∗)) (15)

where (11) is from ηc(xl, vm) + ηc(xl−1, vm) ≥ c(xl, xl−1) using Assumption 3 , (12) is from Assumption 4 and the
definition of v∗m and x∗, (13) is from using Assumption 3 for c(x∗l , vm) and c(x∗l−1, vm), (14) is from Assumption 2 and
(15) is from Assumption 2 and 4.

Now we want to bound (m − 1)(f(vm) − f(x∗)) in (15) for m > 1 (it is 0 when m = 1). By the definition of vm in
Algorithm 3, we have

f(vm) + εvm − f(xn(n+1)
2

)− εn(n+1)
2

≤ 0,∀n ∈ {1, ...,m− 1}

where εvm is the observation noise when observing f(vm) and εxn(n+1)
2

is the observation noise when observing f(xn(n+1)
2

).

Note that xn(n+1)
2

is the point chosen by UE in epoch n. Therefore, for any ϵ > 0 and m > 1, if

m−1∑
n=1

[εn(n+1)
2

− εvm] ≤ ϵ,

we have

(m− 1)(f(vm)− f(x∗))−
m−1∑
n=1

(f(xn(n+1)
2

)− f(x∗)) ≤ ϵ

Then for m > 1 we have

P[(m− 1)(f(vm)− f(x∗))−
m−1∑
n=1

(f(xn(n+1)
2

)− f(x∗)) ≤ ϵ]

≥ P[
m−1∑
n=1

[εn(n+1)
2

− εvm] ≤ ϵ] ≥ 1− exp(− ϵ2

4(m− 1)R
)

since the observation noise is R-subGaussian from Assumption 1. As a result,

(m− 1)(f(vm)− f(x∗))−
m−1∑
n=1

(f(xn(n+1)
2

)− f(x∗)) ≤
√

4(m− 1)R log
M − 1

δ
(16)

with probability at least 1− δ/(M − 1).

For UE across m epochs, we can regard them as running IGP-UCB on f(x) for m iterations. Therefore, we have

m−1∑
n=1

(f(xn(n+1)
2

)− f(x∗)) = O
(
B
√
(m− 1)γm−1 +

√
(m− 1)γm−1(γm−1 + log(1/δ))

)
(17)

holds together for all choices of m ∈ {2, ...,M +1} with probability at least 1− δ from Lemma 1. Combined with (16), we
have

(m− 1)(f(vm)− f(x∗)) ≤
√
4(m− 1)R log

M − 1

δ
+O

(
B
√

(m− 1)γm−1 +
√
(m− 1)γm−1(γm−1 + log(1/δ))

)
(18)

holds together for all choices of m ∈ {2, ...,M} with probability at least 1 − 2δ, which finishes the bound of (m −
1)(f(vm)− f(x∗)).

Meanwhile, LE in epoch m can be regarded as running IGP-UCB on f(x) + 2ηc(x, vm) for m− 1 iterations. Then from
Lemma 1,

m(m+1)
2 −1∑

l=
m(m−1)

2 +1

(f(xl) + 2ηc(xl, vm)− f(v∗m)− 2ηc(v∗m, vm))

= O
(
B
√
(m− 1)γm−1 +

√
(m− 1)γm−1(γm−1 + log(M/δ))

)
(19)

with probability at least 1− δ/M . From (17) and (19), we have

M∑
m=1

[

m(m+1)
2 −1∑

l=
m(m−1)

2 +1

(f(xl) + 2ηc(xl, vm)− f(v∗m)− 2ηc(v∗m, vm)) + f(xm(m+1)
2

)− f(x∗)]

=

M∑
m=1

O
(
B
√
mγm +

√
mγm(γm + log(M/δ))

)
(20)

with probability at least 1− 2δ, which gives the bound for the telescoping of (10) from m = 1 to M . Combining it with (15)
and (18), we have

M∑
m=1

[

m(m−1)
2 +m∑

l=
m(m−1)

2 +1

(f(xl) + c(xl, xl−1))−

m(m−1)
2 +m∑

l=
m(m−1)

2 +1

(
(1 + 2η3/λ)f(x∗l) + 2η2c(x∗l , x

∗
l−1)

)
]

=

T∑
t=1

(f(xl) + c(xl, xl−1))−
T∑

t=1

(
(1 + 2η3/λ)f(x∗l) + 2η2c(x∗l , x

∗
l−1)

)
=

M∑
m=1

O
(
B
√
mγm +

√
mγm(γm + log(M/δ))

)
with probability at least 1− 3δ since (20) and (18) both use the event (17). From Assumption 2 and 4, we know that f and c
are positive within X . Set ψ = max{1 + 2η3/λ, 2η2} and recall that B

√
mγm +

√
mγm = mg(d). Then since f and c are

both positive within X and T = 1 + 2 + ...+M = M(M+1)
2 , we have

T∑
l=1

(f(xl) + c(xl, xl−1))−
T∑
l=1

ψ
(
f(x∗l) + c(x∗l , x

∗
l−1)

)
= Õ(T (g(d)+1)/2).

with probability at least 1− 3δ.

4 EXPERIMENT DETAILS OF SECTION 6

4.0.1 Robot Pushing Problem

The original 14-dimensional robot pushing problem was first tested in Wang et al. [2018] without switching cost, where
the authors implemented the simulation of pushing two objects with two robot hands in the Box2D physics engine. The
original code is available at https://github.com/zi-w/Ensemble-Bayesian-Optimization. In this problem, we need to choose
14 control parameters that determine the location and rotation of the robot hands, pushing speed, moving direction and
pushing time. The lower limit of these parameters is [−5,−5,−10,−10, 2, 0,−5,−5,−10,−10, 2, 0,−5,−5] and the
upper limit is [5, 5, 10, 10, 30, 2π, 5, 5, 10, 10, 30, 2π, 5, 5]. Denote the initial positions of the objects i0, i1, the ending
positions of the objects e0, e1 and the goal locations of the objects g0, g1, respectively. Then the reward is defined to be
r = ||g0 − i0||+ ||g1 − i1|| − ||g0 − e0|| − ||g1 − e1||, which is the progress made towards pushing the objects to the goal.

4.0.2 Lunar Lander Problem

The original 12-dimensional lunar lander problem in Eriksson et al. [2019] is to learn a controller for a lunar lander to
minimize fuel consumption and the distance to a landing target, while also preventing crashes. The original code is available
in the OpenAI gym: https://github.com/openai/gym. The 12 controllable parameters of the lander include its angle and
position, their respective time derivatives, and so on. We use [0, 2] as the limit for each of these parameters.

5 RUNNING TIME RESULTS OF EXPERIMENTS IN SECTION 6

In this section, we show the running time of AS and GS for experiments in Section 6. For each algorithm, we run its 10 tests
concurrently in a sever with 2.7GHz Intel(R) Xeon(R) Platinum CPU including 16 processors, and 30GB RAM. We list the

maximum, minimum and the average running time of 10 tests of each algorithm in Table 1. For fairness, we just use the
naive implementation of each algorithm without any empirical acceleration techniques proposed in previous BO works.

Robot Pushing Lunar Lander

Greedy Search
Avg 107993.2 49316.1
Max 127680 67624
Min 94107 31143

Alternating Search
Avg 55984.5 27973.2
Max 67893 30840
Min 44272 14680

Table 1: Running time of GS and AS for robot pushing and lunar lander problem. The time unit is second.

References

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable global optimization via
local bayesian optimization. Advances in neural information processing systems, 32, 2019.

Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale bayesian optimization in high-
dimensional spaces. In International Conference on Artificial Intelligence and Statistics, pages 745–754. PMLR, 2018.

	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	Experiment Details of Section 6
	Robot Pushing Problem
	Lunar Lander Problem

	Running Time Results of Experiments in Section 6

