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Abstract

As a classical problem, online optimization with
switching cost has been studied for a long time
due to its wide applications in various areas. How-
ever, few works have investigated the bandit set-
ting where both the forms of the main cost function
f(x) evaluated at state x and the switching cost
function c(x, y) of transitioning from state x to y
are unknown. In this paper, we consider the sit-
uation when (f(xt) + εt, c(xt, xt−1)) can be ob-
served with noise εt after making a decision xt at
time t, aiming to minimize the expected total cost
within a time horizon. To solve this problem, we
propose two algorithms from a Bayesian approach,
named Greedy Search and Alternating Search, re-
spectively. They have different theoretical guaran-
tees of competitive ratios under mild regularity con-
ditions, and the latter algorithm achieves a faster
running speed. Using simulations of two classical
black-box optimization problems, we demonstrate
the superior performance of our algorithms com-
pared with the classical method.

1 INTRODUCTION

Inspired by applications in online control [Goel et al., 2017],
networking [Lin et al., 2012], video streaming [Joseph and
de Veciana, 2012], power generation planning [Kim et al.,
2015] and various other ones [Kim et al., 2015, Goel et al.,
2017], the problem on the online optimization with switch-
ing costs has attracted increasing attention. It is a sequen-
tial decision problem where the decision-maker makes a
decision xt at each time slot t and then receives a main
cost ft(xt) associated with this decision. Meanwhile, an
additional cost, called switching cost c(xt, xt−1), is also
revealed, which measures the cost of transitioning from the
last state xt−1 to the current state xt. The objective is to

minimize the total cost within a fixed time horizon.

The basic version of this problem was introduced in Lin
et al. [2012] with applications of scheduling in data cen-
ters. Since then, many algorithms have been proposed for
problems with more complex settings. For more related
works, please see Section 1.1.1 for details. Previous works
predominantly assume that the forms of ft(·) and c(·, ·) are
already known at time t before choosing xt. In some appli-
cations, however, we can only get access to the observed
values (ft(xt), c(xt, xt−1)) after making a decision to se-
lect xt at time t, which is called a bandit setting [Hazan
et al., 2016]. Particularly in this paper, we assume that
ft(x) = f(x) + εt, where {εt} is a sequence of i.i.d. zero-
mean additive random noises when observing f(x) at time
t. Our objective is to minimize the expected total cost, i.e.,∑T
t=1 (f(xt) + c(xt, xt−1)) within a time horizon [1, T ].

We will show some examples of this setup in Section 2.
The black-box functions f(·) and c(·, ·) can be highly non-
convex, and thus, zeroth-order methods using gradient esti-
mators [Liu et al., 2020] are not suitable herein for global
optimization.

To tackle this challenge, we propose two methods based on
Bayesian optimization (BO) [Frazier, 2018] with theoretical
guarantees for a class of functions under mild conditions.
The contributions of our paper are as follows.

• Inspired by the idea of greedy algorithms, we first pro-
pose Greedy Search (GS) with a theoretical guarantee
in terms of competitive ratio, a common performance
metric for online optimization, shown in Table 1. The
ratio approaches a dimension-free constant as T →∞
under a mild condition. Even though this algorithm
is easy to implement, it needs to operate on a higher
dimension than the original problem, thus resulting
in increased running time. It also requires additional
properties of f and c for its theoretical guarantee as
shown in Table 1. GS is discussed in Section 4.

• To mitigate the above issues, we propose Alternating
Search (AS) with a novel structure, which switches be-
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Algorithms Competitive Ratio ψ Value Requirements
IGP-UCB (Chowdhury and Gopalan) 1 + Õ(T g(d)−1) (Without switching) N.A. No
Greedy Search (Our paper) ψ + Õ(T g(2d)−1) max{ 1+η

2/λ
1−η2/λ ,

η
1−η2/λ} η2/λ < 1

Alternating Search (Our paper) ψ + Õ(T (g(d)−1)/2) max{1 + 2η3/λ, 2η2} No

Table 1: Theoretical results of our proposed algorithms in terms of competitive ratio. Õ means big O neglecting the log
term. Here IGP-UCB is a classical BO algorithm listed as a benchmark by writing its regret bound as Õ(T g(d)) for some
function g of the domain dimension d, whose details can be found in Lemma 1. Note that the result of IGP-UCB is for single
black-box function without switching cost. η and λ are two parameters related to properties of f and c shown in Assumption
2 and 3.

tween two optimization strategies at deliberately cho-
sen time slots. It achieves a competitive ratio shown in
Table 1, which also tends to a dimension-free constant
as T → ∞, under a condition even milder than GS.
Meanwhile, each step of AS has a running time faster
than GS, as is discussed in Section 5.

• Through simulations of two classical online control
problems, we demonstrate the theoretical findings in
our paper, as shown in Section 6.

To the best of our knowledge, our algorithms are the first
ones with theoretical guarantees for bandit online optimiza-
tion problems with switching costs.

1.1 RELATED WORKS

This section reviews related works on online optimization
with switching cost in Section 1.1.1 and Bayesian optimiza-
tion in Section 1.1.2.

1.1.1 Online Optimization with Switching Cost

The fundamental version of online optimization with switch-
ing cost is Smoothed Online Convex Optimization (SOCO),
where the main cost function ft is convex and ft is avail-
able before making a decision at time t. It was first intro-
duced in Lin et al. [2012] with the background of dynamic
power management in data centers. Afterwards, this setup
has found applications in many other areas including speech
animation [Kim et al., 2015], multi-timescale control [Goel
et al., 2017], video streaming [Joseph and de Veciana, 2012],
and power generation planning [Kim et al., 2015].

In general, the performance metric of an algorithm for online
optimization with switching cost is given by competitive
ratio in the form of

∑T
t=1 ft(xt)+c(xt,xt−1)∑T
t=1 ft(x

∗
t )+c(x

∗
t ,x
∗
t−1)

, where {xt}Tt=1

are the output of the algorithm and {x∗t }Tt=1 are the optimal
offline solution. In Lin et al. [2012], a 3-competitive algo-
rithm was proposed for one-dimensional action spaces. An
improved algorithm with a competitive ratio of 2 was intro-
duced in Bansal et al. [2015] and was shown optimal in one
dimension in Antoniadis and Schewior [2017]. Beyond one

dimension, it was found that a dimension-free competitive
ratio is possible when the main cost function has specific
structures. Online Balanced Descent (OBD) introduced in
Chen et al. [2018] was such an algorithm for polyhedral
functions. In Goel et al. [2019], OBD was found to provide
a dimension-free competitive ratio for strongly convex func-
tions as well. The authors also gave an optimal algorithm
called Regularized OBD for the strongly convex case.

All the above works considered the case where only 1-step
prediction is available. When there are w-step predictions,
i.e., ft, .., ft+w−1 are available before choosing xt, some
works proposed further improved algorithms by taking ad-
vantage of predictions. In Chen et al. [2015], the authors
showed that a classical control algorithm called Receding
Horizon Control cannot achieve a competitive ratio that
tends to one as w →∞. Therefore, they proposed a method
called Averaging Fixed Horizon Control that can fill this
gap. When the main cost function is strongly convex with
bounded gradients and the switch cost is quadratic, the au-
thors of Li et al. [2020] proposed two algorithms whose
competitive ratios decay exponentially in w without the
need to solve sub-problems in each step. Non-convex main
cost functions were considered in Lin et al. [2020], where
several new algorithms were proposed that can achieve a
1 +O(1/w) competitive ratio with different assumptions on
ft and c. When there is a feedback delay of predictions and
the switching cost depends on multiple previous decisions
in a nonlinear manner, the authors in Pan et al. [2022] pro-
posed a method called Iterative Regularized OBD, which
has a constant and dimension-free competitive ratio.

Note that all the above works do not consider the bandit
setup. There is also a line of works [Dekel et al., 2014, Guha
and Munagala, 2009, Agrawal et al., 1990, Koren et al.,
2017] considering multi-armed bandits with switching cost.
Different from their works, the decisions in our setup are
chosen from a continuous state space instead of a finite set,
which is more challenging.

1.1.2 Bayesian Optimization

Bayesian optimization (BO) is a global optimization method
suitable for a black-box objective function f that is expen-
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sive to evaluate the function value at a point x. It uses a
Gaussian process (GP) with kernel k(x, x′) as a surrogate
model of f to execute the optimization process. The main
techniques of BO will be introduced in Section 3. Since our
paper is theoretically focused, we will only introduce BO
methods with theoretical results here.

Most of BO algorithms focus on the sequential optimization
of a black-box function f within a compact set, where the
observation values contain additive random noises. Under
some regularity assumptions of f , the best known regret
bounds of Upper Confidence Bound (UCB) [Chowdhury
and Gopalan, 2017], Thompson Sampling (TS) [Chowdhury
and Gopalan, 2017] and Expected Improvement (EI) [Gupta
et al., 2022] types of BO methods scale as Õ(γT

√
T ) within

a time horizon T , where γT is called the maximal informa-
tion gain between the noisy observation and the latent GP
surrogate model given the past T observations. The details
and the bounds of this term can be found in Vakili et al.
[2021].

Beyond these classical algorithms, new algorithms with
Õ(
√
γTT ) have been proposed recently with far more

complex implementations including SupKernelUCB [Valko
et al., 2013], GP-ThreDS [Salgia et al., 2021], RIPS [Camil-
leri et al., 2021], BPE [Li and Scarlett, 2022] and so on,
which are of more theoretical interests.

2 PROBLEM FORMULATION

Consider a class of sequential decision problems that aim to
minimize

T∑
t=1

[Eft(xt) + c(xt, xt−1)]

by choosing xt at time t from a d-dimensional set X given
an initial state x0, where ft(xt) = f(xt) + εt with a zero-
mean random variable εt implying Eft(xt) = f(xt). We
call f(x) the main cost function and c(x, y) the switching
cost function from y to x. ft(xt) can be regarded as the
observation value of f(xt) at time twith random noise εt. In
our setup, the forms of f and c are unknown to the decision-
maker and their values at x can be observed separately after
making a decision x. Particularly, we assume that

Assumption 1. {εt}Tt=1 are independent R-subGaussian
random variables satisfying E [exp [s(εt − E[εt])] ≤
exp(R2s2/2) with zero mean, and c(x, y) is observed with-
out noise.

This setup is common in online control problems of robotics,
aerospace, etc.. In these problems, the relation between the
main cost (often defined to be the negative value of a reward)
and the corresponding controllable parameters is unknown
to us. Meanwhile, the change of controllable parameters can
result in a cost such as energy consumption, whose relation

is also unknown to us. Both the main cost and the switching
cost can be observed after a set of controllable parameters
are chosen.

In Section 6, we will test our algorithms on two black-box
control problems commonly used in existing BO studies,
which satisfy all the assumptions of our general setup. In
the robot pushing problem [Wang et al., 2018], we want to
control robot hands to push objects to their goals. We can
control the rotation, the pushing speed, the moving direction
and the pushing time of the robot hands, and changing these
parameters will consume the power of the robot, which
forms the switching cost in this problem. We can set the
total distances of the objects to their goals as the reward,
and then the main cost is its negative value. Our objective is
to minimize a weighted combination of the main cost and
the switching cost within a time horizon.

In the lunar lander problem [Eriksson et al., 2019], we want
to learn a controller for a lunar lander, whose controllable
parameters include the positions, the angles and their time
derivatives of firing booster engines. The reward is the total
distance of each leg towards landing on a certain terrain of
the moon. Here we need to consume the energy of the lunar
lander if we change its controllable parameters. Similar to
the first example, our setup can be applied to this problem.

In our paper, we will use competitive ratio (CR) as the
performance metric of algorithms in our setup. As seen in
Section 1.1.1, it is commonly used in online optimization
with switching cost. It is defined as

CR =

∑T
t=1 f(xt) + c(xt, xt−1)∑T
t=1 f(x∗t ) + c(x∗t , x

∗
t−1)

(1)

in our setup, where {x∗t }Tt=1 are the optimal solution for∑T
t=1[f(xt) + c(xt, xt−1)] with x∗0 = x0.

In the following, we will propose two algorithms with cer-
tain performance guarantees of CR. Particularly, both two
algorithms can achieve a constant, dimension-free CR as
T → ∞. Before introducing our algorithms, we will first
provide some background knowledge of Bayesian optimiza-
tion for ease of our discussion.

3 PRELIMINARY: HOW TO DEAL WITH
BLACK-BOX FUNCTIONS

The first challenge of our setup is the black-box nature of
f(·) and c(·, ·). Some previous methods on online optimiza-
tion with switching cost are based on gradients, e.g., Li et al.
[2020]. Then one possible direction is to use the zeroth-
order version of these methods based on gradient estimators
with function observations [Liu et al., 2020]. However, since
f and c may be nonconvex in our setup, this direction is not
applicable because gradient-based methods could converge
to the local minima.
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Algorithm 1 IGP-UCB

1: Input: Prior GP (0, k(x, x′)), parameters
B,R, ω, δ, T .

2: for t = 1, ..., T do
3: Set βt = B +R

√
2(γt−1 + 1 + log(1/δ)).

4: Choose xt = arg minx∈X {µt−1(x)− βtσt−1(x)}.
5: Obtain the noisy observation of f(xt).
6: Get µt(x) and σt(x) using (4) and (5).
7: end for
8: Output: x1, ..., xT .

In this paper, we adopt another technique called Bayesian
optimization (BO) for black-box problems, which is widely
used in applications like deep learning [Wu et al., 2019],
database [Zhang et al., 2021] and robotics [Berkenkamp
et al., 2021]. In the following, we will introduce the intuition
of BO via its basic methods aiming to minimize a single
black-box function f .

First, we put a Gaussian process (GP) prior
GP (µ0(x), k(x, x′)) on f with a mean function µ0

and a kernel function k, which serves as a surrogate model
of f . The kernel function k measures the similarity of two
points x, x′ with a certain distance ||x− x′||. Two popular
choices of k are square exponential (SE) kernel and Matérn
kernel, defined as

kSE(x, x′) = exp(−||x− x
′||2

2u2
) (2)

kMat(x, x
′) =

21−ν

Γ(ν)
(
||x− x′||

√
2ν

u
)νBν(

||x− x′||
√

2ν

u
),

(3)

where u > 0 and ν > 0 are hyperparameters and Bν(·) is
the modified Bessel function. After observing a function
value, we will update the posterior distribution of f based
on the new observation. Now the question is how to choose
the next query point under the current posterior distribution
to get a solution efficiently.

In general, a BO method will choose the next point which
minimizes the expectation of some utility function u(x)
with regard to the current posterior distribution. Different
kinds of utility functions lead to different classes of BO
methods. Please refer to Frazier [2018] for details. Here
we will introduce one of these methods called IGP-UCB
[Chowdhury and Gopalan, 2017], which is also a basis of
our algorithms in later sections. Its procedure is shown in
Algorithm 1.

IGP-UCB uses a linear combination of the mean function
µt(x) and the variance function σt(x) of the current pos-
terior distribution to choose the next point, which can be
regarded as the lower confidence bound (LCB) of f (use the
upper confidence bound, i.e., UCB, if it is a maximization
problem) at time t. In Algorithm 1, the weight parameter

βt reflects the exploration-exploitation trade-off in the opti-
mization process. Here δ is a positive constant that will be
specified later and γt is called maximal information gain up
to time t related to the domain X and the kernel k [Chowd-
hury and Gopalan, 2017] with bounds provided in Vakili
et al. [2021]. The updates of µt and σt in IGP-UCB are as
follows

µt(x) = kt(x)T (Kt + ωI)−1y1:t, (4)

σ2
t (x) = k(x, x)− kt(x)T (Kt + ωI)−1kt(x), (5)

given the past chosen t points and their corresponding
observations (x1:t, y1:t). The term ωI is added due to
the subGaussian observation noise, where I is an iden-
tity matrix and ω is a positive constant specified later.
Kt = [k(x, x′)]x,x′∈{x1,...,xt} is the kernel matrix at time
t and kt(x) = [k(x1, x), ..., k(xt, x)]T is a vector function
of x. The theoretical performance of IGP-UCB is given as
follows.

Lemma 1. [Theorem 3 of Chowdhury and Gopalan [2017]]
Assume that f lies in the reproducing kernel Hilbert space
(RKHS) with kernel k, ||f ||k < B, and f is observed with
independentR-subGaussian noise. Then, running IGP-UCB
for f with ω = 1 + 2/T leads to

T∑
t=1

[f(xt)− f(x∗)]

= O(B
√
TγT +

√
TγT (γT + log(1/δ)))

with a probability of at least 1 − δ, where x∗ =
arg minx∈X f(x).

Here || · ||k is RKHS norm of kernel k and ||f ||k < B
constrains the complexity of f . The reader may refer to Ras-
mussen [2003] for the details of the RKHS theory. It is not
easy to directly examine ||f ||k < B in practice. However,
this assumption is the basis for almost all the theoretical re-
sults of BO methods mentioned in Section 1.1.2. In Lemma
1, γT is called the maximal information gain between the
noisy observation and the latent GP surrogate model given
the past T observations. With the bounds of γT for different
kernels shown in Vakili et al. [2021], we can see that IGP-
UCB leads to a sub-linear regret for most kernel functions.
For ease of comparison between IGP-UCB and our pro-
posed methods introduced later, we writeB

√
TγT +

√
TγT

as T g(d) by neglecting the log term, where d is the dimen-
sion of domain and g(d) is determined by the bounds of
γT . Then the regret bound of IGP-UCB can be written as
Õ(T g(d)), which captures the bounds for most kinds of ker-
nels used in practice. For example, when k is a Matérn
kernel with parameter ν as in (3), we have g(d) = ν+d

2ν+d
[Vakili et al., 2021]. Note that we need to choose kernels
with g(d) < 1 to get a sub-linear regret for IGP-UCB. The
above notation of g is important, which will also be used
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in the theoretical results of our proposed algorithms in the
following two sections.

If f is lower-bounded by a positive constant C, then we
can transfer the bound of Lemma 1 to the bound of CR as
follows:

CR =

∑T
t=1 f(xt)∑T
t=1 f(x∗)

≤
∑T
t=1 f(x∗) + Õ(T g(2d))∑T

t=1 f(x∗)

≤ 1 +
Õ(T g(d))

T × C
= 1 + Õ(T g(d)−1).

The existence of C > 0 is needed because if f(x∗) = 0,
a CR value in (1) is not properly defined unless we add a
small value to f . Here we can see that CR of IGP-UCB
approaches 1 as T →∞ if g(d) < 1.

4 HOW TO DEAL WITH SWITCHING
COST: GREEDY SEARCH

From the last section, we can see that theoretical results
of classical BO methods are for fixed functions. However,
in our setup, we are faced with a time-varying objective
function that couples the decisions of the past, the presence
and the future via switching cost. Therefore, our setup is far
more complex which needs a carefully designed algorithm.

To that end, we first propose a simple method called Greedy
Search (GS), which tries to find xt that only minimizes
ht(x) := f(x)+c(x, xt−1) at time t. It can be regarded as a
greedy algorithm because it only cares about the next switch-
ing cost. Since classical BO methods are for fixed functions
while ht is time-varying and coupled with ht−1, we choose
to put a Gaussian process prior on a higher-dimensional
function h(x, x′) := f(x)+c(x, x′) and regard w = (x, x′)
as the domain. Recall that x is a d-dimensional vector, then
w is a 2d-dimensional vector, and ht(x) is equivalent to
h(w) = f(w) + c(w) where the last d dimensions of w
are xt−1. In this way, the observations of h1(x1), ..., ht(xt)
can be transferred to the observations of h(w) which is no
longer time-varying. The implementation of this algorithm
based on IGP-UCB is shown in Algorithm 2.

In this algorithm, k′(w,w′) is a R4d → R kernel function
and γ′t−1 is the maximal information gain up to time t− 1
related to k′. The updates of µ′t(w) and σ′t(w) are

µ′t(w) = (k′t(w))T (K ′t + ωI)−1y′1:t (6)

(σ′t)
2(w) = k′(w,w)− (k′t(w))T (K ′t + ωI)−1k′t(w),

(7)

where y′1:t are the past noisy observations of h(w), and the
definitions of k′t(w) and K ′t are similar to the ones in (4)
and (5), but related to k′. The theoretical guarantee of this
algorithm is based on the following lemma.

Lemma 2 (Theorem 2 of Chowdhury and Gopalan [2017]).
Assume that h(w) lies in the RKHS space with kernel k′ and

Algorithm 2 Greedy Search (GS)

1: Input: Prior GP (0, k′(w,w′)) on h(w), parameters
B,R, ω, δ, T .

2: for t = 1, ..., T do
3: Set β′t = B +R

√
2(γ′t−1 + 1 + log(1/δ)).

4: Choose xt = arg minx∈X {µ′t−1(x, xt−1) −
β′tσ
′
t−1(x, xt−1)}.

5: Obtain a noisy observation of h(wt) where wt =
(xt, xt−1).

6: Perform update to get µ′t(w) and σ′t(w) using (6)
and (7).

7: end for
8: Output: x1, ..., xT .

||h||k′ < B. With Assumption 1 and the updates in (6), (7),
we have

|µ′t−1(w)− h(w)|

≤ (B +R
√

2(γ′t−1 + 1 + log(1/δ)))σ′t−1(w) (8)

with probability at least 1− δ for any w ∈ X × X .

From (8), we know that

|µ′t−1(x, xt−1)− h(x, xt−1)|

≤ (B +R
√

2(γ′t−1 + 1 + log(1/δ)))σ′t−1(x, xt−1)

with probability at least 1− δ, where h(x, xt−1) = f(x) +
c(x, xt−1). Therefore, in each step of Algorithm 2, we are
minimizing the LCB of f(x) + c(x, xt−1), which realizes
the idea of GS via the GP surrogate model.

Now we address the following three assumptions for the
theoretical results of GS.

Assumption 2. For all x ∈ X , there exists a positive con-
stant λ such that f(x) − f(x∗) ≥ λc(x, x∗), where x∗ is
the global minimum of f . f(x∗) ≥ 0.

Assumption 3. c(x, z) ≤ η(c(x, y) + c(y, z)) and
c(x, z) ≤ η(c(x, y) + c(z, y)) for some constant η > 0,
where x, y, z ∈ X .

Assumption 4. 0 ≤ c(x, y) ≤ D where x, y ∈ X .

Assumption 2 means that f is not flat around x∗ (and it is
allowed to tend to be flat as λ approaches 0). It also mea-
sures the benefit of finding the global minimum of f com-
pared with the incur of switching cost, thus will impact the
performance of our algorithms. One example of f satisfy-
ing Assumption 2 is the highly nonconvex Ackley function
[Ackley, 1987] widely used as a test function for global
optimization methods. Its two-dimensional shape is shown
in Figure 1, where xi ∈ [−32.768, 32.768], x∗ = (0, 0)
and f(x∗) = 0. If c(x, x∗) = ||x − x∗||2, then we can set
λ = 0.1 in Assumption 2.
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Figure 1: Two-dimenisonal Ackley function.

Assumption 3 is the generalized triangle inequality, and
it becomes the standard one when η = 1. Particularly,
this assumption can be satisfied with the following con-
dition. Suppose that c(z, y) ≥ αc(y, z) for some α > 0
and c(x, z) ≤ c(x, y) + c(y, z). Then we can always find a
η′ such that c(x, z) ≤ η′(c(x, y) + c(z, y)), which means
that Assumption 3 is satisfied with η = max{1, η′}. In the
lunar lander problem mentioned in Section 2, the condi-
tion c(z, y) ≥ αc(y, z) means that the energy consumed
by some movement is at least α portion of the opposite
movement, which is not a limiting condition in practice.

Assumption 4 is a common property of switching cost in
practice. With these assumptions, we have the following
theorem.

Theorem 1. Assume that h(w) lies in the RKHS space with
kernel k′ and ||h||k′ < B. If Assumption 1-4 are satisfied
with η2/λ < 1, then Algorithm 2 with ω = 1 + 2/T gives

T∑
t=1

(f(xt) + c(xt, xt−1))−
T∑
t=1

ψ
(
f(x∗t ) + c(x∗t , x

∗
t−1)

)
= Õ(T g(2d))

with probability at least 1 − δ, where ψ =

max{ 1+η
2/λ

1−η2/λ ,
η

1−η2/λ}.

Proof. Please refer to Section 1 of Supplementary Material.

From the above theorem, we can see that Algorithm 2 needs
to know T beforehand. In fact, if T is unknown, the doubling
trick can bu used to convert our algorithm into an anytime
algorithm. Please refer to Besson and Kaufmann [2018] for
details.

Now similar to the discussion at the end of Section 3, we
can transfer the above bound into CR shown as follows:

Corollary 1. If f is lower-bounded by some positive con-
stant C, then under assumptions of Theorem 1, we have

CR = ψ + Õ(T g(2d)−1)

for Algorithm 2, where ψ = max{ 1+η
2/λ

1−η2/λ ,
η

1−η2/λ}.

Proof. Please refer to Section 2 of Supplementary Material.

Here we can see that Algorithm 2 achieves a constant, di-
mension free CRψ as T →∞ if g(2d) < 1. Compared with
IGP-UCB that requires g(d) < 1, it is a stricter condition,
thus the choices of kernel functions are narrowed for Algo-
rithm 2. It is due to the fact that this algorithm puts a prior
on a 2d-dimensional function. Meanwhile, when η = 0, we
have ψ = 1. In this case, c(x, y) is always equal to 0 from
Assumption 3, which means that there is no switching cost.
Then same with IGP-UCB, CR of Algorithm 2 approaches
1 as T →∞. Therefore, it is the existence of switching cost
that degrades the performance of the algorithm.

Despite its simplicity, Algorithm 2 has two disadvantages.
First, the requirement η2/λ < 1 restricts the applicability of
the algorithm. Second, the updates of posterior distribution,
i.e., (6) and (7), are on a higher dimension than the original
problem (2d instead of d), which leads to inefficiency since
it involves matrix inverse. In the next section, we will pro-
pose another algorithm that can mitigate these issues while
still possessing a theoretical guarantee of CR.

5 HOW TO DEAL WITH SWITCHING
COST: ALTERNATING SEARCH

The biggest challenge to reduce the operational dimension
of GS is that we cannot avoid the time-varying c in the
original dimension. To tackle it, we design an epoch-based
structure that alternatively changes c across epochs, but fixes
it within the epoch. Due to this characteristic, we call this
new algorithm Alternating Search (AS). In the following,
we will illustrate this algorithm using Figure 2.

Before the start of each epoch, e.g., epoch m, we choose
a point that has the minimal observation value of f among
all the past points. We call it the pivot point of epoch m
denoted by vm. Then during this epoch except its last it-
eration, we choose the next point by minimizing the GP
surrogate model of f(x) + c(x, vm), where c(x, vm) is no
longer time-varying within this epoch. We call it limited ex-
ploration (LE) because the search is constrained around vm
due to the existence of c(x, vm). In the last iteration of this
epoch, we choose the point minimizing the GP surrogate
model of f(x), which is called unlimited exploration (UE)
since the switching cost is not considered. Meanwhile, we
set the length of epochs to be linearly increasing.

Algorithm 3 shows the IGP-UCB version of this idea. In the
whole process of this algorithm, the posterior distribution of
f(x) is always updated after a point is chosen. The one of
c(x, vm), however, is only updated within epoch m because
c(x, vm) will be changed to c(x, vm+1) in the next epoch
and thus its GP model will be reset.
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Epoch 1:

Epoch 2:

Epoch 𝒎:

……

UE: choose 𝒙𝟏 that minimizes the surrogate model of 𝒇(𝒙)

UE: choose 𝒙𝟑 that minimizes the surrogate model of 𝒇(𝒙)

LE: choose 𝒙𝟐 that minimizes the surrogate model of 𝒇(𝒙) + 𝒄(𝒙, 𝒗𝟐)

UE: the last 
iteration

LE:  the first 𝒎− 𝟏
iterations

Epoch Length: 1

Epoch Length: 2

Epoch Length: 𝒎

𝑣$ = 𝑎𝑟𝑔𝑚𝑖𝑛%!{𝑓 𝑥& + 𝜀&|𝑡 = 1}

𝑣! = 𝑎𝑟𝑔𝑚𝑖𝑛"!{𝑓 𝑥# + 𝜀#|𝑡 = 1, … ,
𝑚(𝑚 − 1)

2 }

Figure 2: The structure of Alternating Search algorithm. Here f(xt) + εt represents the noisy observation of f at time t.

The intuition of this algorithm is as follows. From the ob-
jective

∑T
t=1[f(xt) + c(xt, xt−1)], we can see that f(x) is

a fixed function. Therefore, choosing a point that can suf-
ficiently reduce f(x) and searching around it will benefit
the performance, which is how we choose the pivot point
before the start of each epoch. We also need UE in the end
of each epoch is to help find a better pivot point in the next
epoch. On the other hand, UE may bring in a large switch-
ing cost since we do not incorporate the switching cost in
UE. With our designed epoch lengths, this situation only
happens for O(

√
T ) times within time horizon T because

it is only done once in each epoch. Meanwhile in LE, we
control the switching cost c(xt, xt−1) via c(x, vm) in the
other iterations of each epoch by utilizing Assumption 3.
Combining LE and UE in such a way gives us Algorithm 3
with a theoretical guarantee of CR.

Despite Assumption 1-4, we assume that f lies in the RKHS
with kernel kf and ||f ||kf < B; cm(x) := c(x, vm) lies
in the RKHS with kernel kcm and ||cm||kcm < B. The
updates of µft (x) and σft (x) are similar to (4) and (5) based
on the past observations of f(x). The updates of µcms (x)
and σcms (x) are slightly different by setting ω = 0 in (4)
and (5) since they are based on the noiseless observations
of cm(x) within epoch m:

µcms (x) = kcms (x)T (Kcm
s )−1ycm1:s

(σcms )2(x) = kcm(x, x)− kcms (x)T (Kcm
s )−1kcms (x)

Similar to Lemma 2, we can prove that |f(x)− µft−1(x)| ≤
βtσ

f
t−1(x) with probability at least 1− δ. Therefore, UE of

Algorithm 3, i.e., Step 8-10, is minimizing the LCB of f(x)
across epoches. Meanwhile, from Lemma 11 of Lyu et al.
[2019], we have |cm(x) − µcms−1(x)| ≤ Bσcms−1(x). Then
|f(x)+2ηcm(x)−µft−1(x)−2ηµcms−1(x)| ≤ 2ηβtσ

f
t−1(x)+

2ηBσcms−1(x). It means that LE of Algorithm 3 in epoch m,
i.e., Step 11-13, is minimizing the LCB of f(x) + 2ηcm(x).
The reason why we add the coefficient of 2η is the fact that
we use c(x, vm) to control c(xt, xt−1) by Assumption 3,
whose details can be found in the proof of the following
theorem.

Algorithm 3 Alternating Search (AS)

1: Initial value: GP (0, kf (x, x′)) prior for f(x), parame-
ters B,R, ω, δ, T , total iterations t = 1.

2: for m = 1, ...,M do
3: if m > 1 then
4: Choose vm that has the smallest observation

value of f among {xl}t−1l=1 and set cm(x) = c(x, vm).
Put GP (0, kcm(x, x′)) prior on cm(x).

5: end if
6: for s = 1, ...,m do
7: Set βt = B +R

√
2(γft−1 + 1 + log(M/δ)).

8: if s = m then
9: Set xt = arg minx∈X µ

f
t−1(x) −

βtσ
f
t−1(x).

10: Make new observations of f . Update µft (x)

and σft (x) for f(x) similar to (4) and (5).
11: else
12: Set xt = arg minx∈X µ

f
t−1(x) +

2ηµcms−1(x)− βtσft−1(x)− 2ηBσcms−1(x).
13: Make new observations of f and cm respec-

tively. Update µft (x) and σft (x) for f(x), µcms (x) and
σcms (x) for cm(x) similar to (4) and (5).

14: end if
15: t = t+ 1
16: end for
17: end for
18: Output: {xt}Tt=1 where T = 1 + 2 + ...+M .

Theorem 2. Assume that f lies in the RKHS with kernel
kf and ||f ||kf < B; cm(x) lies in the RKHS with kernel
kcm and ||cm||kcm < B for any m. If Assumption 1-4 are
satisfied, and ω = 1 + 2/T , then Algorithm 3 gives

T∑
t=1

(f(xt) + c(xt, xt−1))−
T∑
t=1

ψ
(
f(x∗t ) + c(x∗t , x

∗
t−1)

)
= Õ(T (g(d)+1)/2)

with probability at least 1 − 3δ, where ψ = max{1 +
2η3/λ, 2η2}.
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Proof. Please refer to Section 3 of Supplementary Material.

Here we can see that Algorithm 3 lifts the requirement of η
and λ that exists in Algorithm 2 for its theoretical guarantee.
Similar to the proof of Corollary 1, we can give CR of
Algorithm 3 using the above theorem.

Corollary 2. If f is lower-bounded by some positive con-
stant C, then under assumptions of Theorem 2, we have

CR = ψ + Õ(T (g(d)−1)/2) (9)

for Algorithm 3, where ψ = max{1 + 2η3/λ, 2η2}.

From (9), we can see that CR of Algorithm 3 approaches
ψ as T → ∞ if g(d) < 1. This condition is the same as
the one of IGP-UCB and milder than the one of Algorithm
2 which is g(2d) < 1. It is due to the fact that Algorithm
3 operates on a lower dimension (d instead of 2d) than
Algorithm 2, which also makes Algorithm 3 more efficient
than Algorithm 2. Same with Algorithm 2, we have ψ = 1
when η = 0, i.e., there is no switching cost.

However, an additional challenge for Algorithm 3 is how
to obtain observations of c(xt, vm) if we can only observe
c(xt, xt−1) at time t when vm 6= xt−1. Here are some cases
where this problem can be solved:

• Special form of c. Here we use the drone tracking
problem mentioned in Example 1 of Pan et al. [2022]
for an explanation. In this problem, the switching cost
from the speed xt to xt−1 of the drone is expressed as:

c(xt, xt−1) =
1

2
(xt − xt−1 + e(xt−1))2, (10)

where e(xt−1) accounts for the effects of gravity and
the aerodynamic drag due to xt−1. In practice, only
the form of e is unknown in (10) and we can obtain the
value of e(xt−1) after we observe c(xt, xt−1). Then
we can get c(xt, vm) = 1

2 (xt − vm + e(vm))2 once
e(vm) is known from the history observation involving
vm. It can be extended to other cases with a similar
form of c.

• Using simulation programs. This idea is similar to the
one of Kandasamy et al. [2016]. In practice, c(x, y) is
much easier to be simulated accurately in a program
than f due to its simplicity. Then c(xt, vm) can be
obtained by running a simulation program, while the
values of f are obtained from real experiments. Robot
pushing problem and lunar lander problem mentioned
in Section 2 are such examples, where c is just the
energy cost of changing controllable parameters.

If c(xt, vm) cannot be easily obtained, we should use Algo-
rithm 2 instead.

6 SIMULATION RESULTS

In this section, we will use two classical black-box con-
trol problems mentioned in Section 2 to test our algorithms.
Since our paper is theoretically focused, we only compare
our algorithms with IGP-UCB to demonstrate our theoretical
findings in this paper. The performance metric is the time-
averaged total cost, which is 1

T

∑T
t=1(f(xt) + c(xt, xt−1)).

For fairness, we use the same kernel function in these algo-
rithms, which is Matérn kernel with ν = 1.5. We run each
algorithm for 10 times in each problem, and plot the aver-
aged result of these 10 tests. In both experiments, βt’s of all
the three algorithms are tuned by grid search. We also add
the Gaussian noise with mean 0 and variance 1 to the origi-
nal observation values to satisfy our setup. More details of
the experiments are reported in Section 4 of Supplementary
Material.

6.1 ROBOT PUSHING PROBLEM

The original 14-dimensional robot pushing problem was first
tested in Wang et al. [2018] without switching cost, where
the authors implemented the simulation of pushing two
objects with two robot hands in the Box2D physics engine.
In our experiment, we transfer it to a minimization problem
with the switching cost defined as 0.1 times the l1 norm
of the change in the first 7 parameters, and the main cost
defined as the negative of the reward plus a large number so
that Assumption 2 can be satisfied. The simulation results
are shown in Figure 3.

Figure 3: The simulation results of the 14-dimensional robot
pushing problem. Each line is the average of 10 tests.

From the figure, we can see that our two algorithms have
better performance than IGP-UCB after a few iterations. In
general, GS has a slightly lower cost than AS, but their gap
is disappearing as the iteration increases. Meanwhile, in
Section 5 of Supplementary Material, we show the running
time of AS and GS after 2000 iterations. we can see that AS
is 48% faster than GS on average, thus is a better choice in
this experiment.
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6.2 LUNAR LANDER PROBLEM

The original 12-dimensional lunar lander problem in Eriks-
son et al. [2019] is to learn a controller for a lunar lander
implemented in the OpenAI gym without switching cost.
Similar to the above experiment, we transfer it to a mini-
mization problem where we define the switching cost as 100
times the l1 norm of the change in the first 6 parameters,
and the main cost as the negative of the reward plus a large
number to make it satisfy Assumption 2. The coefficient
100 is to make the switching cost comparable to the main
cost. The simulation results are shown in Figure 4.

Figure 4: The simulation results of the 12-dimensional lunar
lander problem. Each line is the average of 10 tests.

In this problem, the total cost of IGP-UCB is no longer
constantly decreasing with regard to iterations showing the
failure of this algorithm in our setup. Meanwhile, the per-
formance of GS is much better than AS. On the other hand,
the running time of AS is 43% faster than GS in average as
shown in Section 5 of Supplementary Material.

7 CONCLUSION

In this paper, we investigated a bandit setting for online
optimization problems with switching costs from a Bayesian
perspective, which has many applications in practice but
lacks algorithms with theoretical guarantees. To fill this gap,
we proposed two new algorithms called Greedy Search and
Alternating Search with competitive ratios approaching a
constant as T →∞ under different assumptions, where the
latter algorithm has a faster running time. Their superior
performance was also demonstrated via two classical black-
box control problems commonly tested in previous works.
Meanwhile, there are still some future directions to explore.
The most significant one is probably to find the lower bound
of competitive ratio for bandit online optimization with
switching cost. Based on this result, we can check whether
our proposed algorithms are optimal. If not, then how to
find the optimal algorithm for our setup is another problem
that needs to be solved.
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