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Abstract

In this paper, we study the expressivity of scalar,
Markovian reward functions in Reinforcement
Learning (RL), and identify several limitations
to what they can express. Specifically, we look
at three classes of RL tasks; multi-objective RL,
risk-sensitive RL, and modal RL. For each class,
we derive necessary and sufficient conditions that
describe when a problem in this class can be ex-
pressed using a scalar, Markovian reward. More-
over, we find that scalar, Markovian rewards are
unable to express most of the instances in each
of these three classes. We thereby contribute to a
more complete understanding of what standard re-
ward functions can and cannot express. In addition
to this, we also call attention to modal problems
as a new class of problems, since they have so far
not been given any systematic treatment in the RL
literature. We also briefly outline some approaches
for solving some of the problems we discuss, by
means of bespoke RL algorithms.

1 INTRODUCTION

To solve a task using reinforcement learning (RL), we must
first encode that tasks as a reward function [Sutton and Barto,
2018]. Typically, these rewards are scalar and Markovian.
However, it is often not straightforward to determine if a
given task can be adequately expressed using such a re-
ward function. Therefore, understanding the expressivity
of scalar, Markovian rewards is a basic and foundational
question of the RL setting. In this paper, we identify and
characterise several specific limitations in the expressiv-
ity of scalar, Markovian rewards. Specifically, we examine
three broad classes of tasks, all of which are both intuitive
to understand, and useful in many practical situations. We
then derive necessary and sufficient conditions that describe

when these tasks can be expressed using ordinary reward
functions, and consequently show that almost no tasks in
any of these three classes can be expressed using scalar,
Markovian rewards. This suggests that scalar, Markovian re-
ward functions are semantically limited in certain important
ways. We thus contribute to a more complete understanding
of what standard reward functions can and cannot express.
This clarifies the implicit assumptions behind many com-
mon RL techniques, and makes it easier to determine if they
are applicable to a given practical problem.

The first class of problems we look at, in Section 3, are
single-policy, multi-objective RL tasks (MORL). In such
problems, the agent receives multiple reward signals, and the
aim is to learn a single policy that achieves an optimal trade-
off amongst those rewards, according to some specified
criterion [Roijers et al., 2013, Liu et al., 2015]. For example,
a single-policy MORL algorithm might attempt to maximise
the rewards lexicographically [Skalse et al., 2022b]. We will
provide necessary and sufficient conditions describing when
a MORL problem can be reduced to scalar-reward RL, by
providing a single reward function that induces the same
preferences as the MORL problem. We find that this can
only be done for MORL problems that correspond to a linear
weighting of the rewards, which means that it cannot be
done for the vast majority of all interesting MORL problems.
This result is analogous to Harsanyi’s Utilitarian Theorem
Harsanyi [1955], generalised to the RL setting.

The next class of problems we study, in Section 4, is risks-
sensitive RL. In expected utility theory, risk-aversion is often
modelled using utility functions that are concave in some
of their variables. We will show that these tasks cannot be
expressed as Markovian reward functions, by demonstrating
that no non-affine monotonic transformations of the trajec-
tory return function are possible. This demonstrates another
limitation in the expressive power of Markovian rewards.

In Section 5, we introduce a new class of tasks, which we
call modal tasks. These are tasks where the agent is evalu-
ated not only based on what distribution of trajectories it
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generates, but also based on what it could have done along
those trajectories. As an example, consider the instruction
“you should always be able to return to the start state”. We
provide a formalisation of such tasks, argue that there are
many situations in which these tasks could be useful, and
finally prove that these tasks also typically cannot be for-
malised using scalar, Markovian reward functions.

In Section 6, we discuss how to solve tasks from each of
these classes using specialised RL solutions: we provide
references to existing literature, and also sketch both an
approach for learning a wide class of MORL problems, and
an approach for learning a wide class of modal problems.
Finally, in Section 7, we discuss the implications of our
results, together with several pieces of related work.

2 PRELIMINARIES

The standard RL setting is formalised using Markov Deci-
sion Processes (MDPs) Sutton and Barto [2018], which are
tuples 〈S,A, τ, µ0, R, γ〉 where S is a set of states, A is a
set of actions, τ : S × A → ∆(S) is a transition function,
µ0 is an initial state distribution over S, R : S × A → R
is a reward function, and γ ∈ (0, 1) is a discount factor. A
trajectory ξ is in general an element of (S × A)ω, i.e. a
sequence s0, a0, s1 . . . . We use G to denote the trajectory
return function, where G(ξ) =

∑∞
t=0 γ

tR(st, at). A policy
is a mapping π : S → ∆(A), and Π is the set of all poli-
cies. Given a policy π, its value function V π : S → R is
the function where V π(s) is the expected future discounted
reward when following π from s, and its Q-function Qπ

is Es′∼τ(s,a)[R(s, a) + γ · V π(s′)]. The policy evaluation
function J : Π→ R is J(π) = Es0∼µ0

[V π(so)]. If a policy
maximises J , then we say that this policy is optimal. We
denote optimal policies by π?, and their value function and
Q-function by V ? and Q?. Moreover, given an MDPM,
we say thatM’s policy order is the ordering ≺ on Π where
π1 ≺ π2 ⇐⇒ J(π1) < J(π2) for any π1, π2.

In this paper, we will say that a reward function R is trivial
if J(π1) = J(π2) for all π1, π2. Moreover, we say that R1

and R2 are equivalent if J1(π1) < J1(π2) ⇐⇒ J2(π1) <
J2(π2) for all π1, π2, and that they are opposites if J1(π1) <
J1(π2) ⇐⇒ J2(π1) > J2(π2) for all π1, π2.

MORL problems are formalised using Multi-Objective
MDPs (MOMDPs), which are tuples 〈S,A, τ, µ0,R, γ〉,
with the only difference from MDPs being R, which is
now a function R : S × A → Rk that, for each pair (s, a),
returns k different rewards (for some finite k). We denote
the i’th component of R as the scalar reward function Ri,
and use V πi , Qπi , Ji, and Gi, etc, to refer to its value-, Q-,
evaluation-, and return function, etc. There are two types of
MORL problems; single-policy MORL, where the goal is
to compute one policy that achieves an optimal trade-off of
the rewards, and multi-policy MORL, where the aim is to

compute several policies (typically with the aim of approx-
imating the Pareto front of the rewards). In this paper, we
are concerned with single-policy MORL. Since there may
not be a single policy that maximises each component of R,
a single-policy MORL problem needs some additional rule
for combining and trading off each reward.

In economics and psychology, risk-aversion is often mod-
elled using utility functions U(c) that are concave in some
relevant variable c. The most common risk-averse util-
ity functions are the exponential, the isoelastic, and the
quadratic utility functions. The exponential utility function
is given by U(c) = −eαc, where α > 0 is a parameter
controlling the degree of risk aversion. The isoelastic utility
function is given by U(c) = c1−α, for α > 0, α 6= 1, or by
U(c) = ln(c) (corresponding to the case when α = 1). The
quadratic utility function is given by U(c) = c−αc2, where
α > 0. Since this function is decreasing for sufficiently large
c, its domain is typically restricted to (−∞, 1/2α].

A Remark on “Tasks”: In this paper, we are investigating
the question of when a given task can be expressed using
a scalar, Markovian reward function. To do this, we must
first formalise what it should mean for a reward function to
“express a task”. One option is to say that a task corresponds
to a desired policy π, and that a reward functionR expresses
the task if π is optimal underR (possibly with the additional
requirement that π is the only policy that is optimal underR).
With this definition, we find that any task can be expressed
as a Markovian reward function, at least as long as π is
stationary and deterministic (see Appendix B). With this
definition, the problem is therefore rather trivial.

An alternative, stronger formalisation is to say that a task
corresponds to an ordering ≺ on Π, which encodes a prefer-
ence ordering over all policies, and that a reward function R
expresses the task if its corresponding evaluation function J
orders Π according to ≺. It is primarily this latter definition
that we will use in this paper. The main reason for this is
that it is often impossible to find the optimal policy in com-
plex environments. For example, in a robotics problem, it is
typically not feasible to find a policy that is globally optimal.
This means that it is not enough for R to admit the correct
optimal policy; it must also induce the right preferences
between the all the (sub-optimal) policies that the policy
synthesis algorithm might in fact generate. The only way
to robustly ensure that this is the case is if R induces the
right policy ordering. For this reason, we think it is more
informative to think of a problem setting (i.e. a “task”) as
corresponding to an ordering on Π.

3 MULTI-OBJECTIVE PROBLEMS

In this section, we examine the MORL setting. We first need
a general definition of what a single-policy MORL problem
is. Recall that a MOMDP 〈S,A, τ, µ0,R, γ〉 by itself has no
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one canonical objective to maximise. We therefore introduce
the notion of a MORL objective:

Definition 1. A MORL objective over k rewards is a func-
tionO that takes k policy evaluation functions J1 . . . Jk and
returns a (total) ordering ≺O over the set of all policies Π.

Given a MOMDP M, a MORL objective O gives us an
ordering ≺O over Π that tells us when a policy is preferred
over another. For the purposes of this paper, we will not need
to impose any further requirements on ≺O. For example,
we will not insist that ≺O must have a greatest element in
Π, or that π1 ≺O π2 whenever π2 is a Pareto improvement
over π1, etc, even though a reasonable MORL objective
presumably would have these properties. We next provide
a few examples of MORL objectives, where we denote by
π1, π2 any given pair of distinct policies.

Definition 2. Given J1 . . . Jk, the LexMax objective ≺Lex

is given by π1 ≺Lex π2 iff there is an i ∈ {1 . . . k} such that
Ji(π1) < Ji(π2) and Jj(π1) = Jj(π2) for all j < i.

Definition 3. Given J1 . . . Jk, the MaxMin objective ≺Min

is given by π1 ≺Min π2 ⇐⇒ mini Ji(π1) < mini Ji(π2).

Definition 4. Given J1 . . . Jk and some c1 . . . cm ∈ R, the
MaxSat objective ≺Sat is given by π1 ≺Sat π2 if and only
if the number of rewards that satisfy Ji(π1) ≥ ci is larger
than the number of rewards that satisfy Ji(π2) ≥ ci.

Definition 5. Given J1, J2 and some c ∈ R, the ConSat
objective ≺Con is given by π1 ≺Con π2 if and only if either
J1(π1) < c and J1(π1) < J1(π2), or J1(π1), J1(π2) ≥ c
and J2(π1) < J2(π2).

In other words, the LexMax objective has lexicographic
preferences overR1 . . . Rm, so that policies are first ordered
by their expected discounted R1-reward, and then policies
that obtain the same expected discounted R1-reward are
ordered by their expected discounted R2-reward, and so on.
The MaxMin objective orders policies by their worst perfor-
mance according to any of R1 . . . Rm (which could be used
to obtain worst-case guarantees). The MaxSat objective only
cares whether a policy reaches a certain threshold for each
reward, and ranks policies based on how many thresholds
they reach. The ConSat objective aims to maximise J2, but
under the constraint that J1 reaches a certain threshold. Note
that these objectives are not necessarily the most important
MORL objectives. Rather, they are simply a short list of
illustrative examples, meant to demonstrate the flexibility of
the MORL framework, and give an intuition for what types
of problems it can be used to express. A few more examples
can be found in Appendix C.

We next define what it means to reduce a MORL problem
to a scalar RL problem. Given a MORL objective O and
a MOMDPM, we use ≺MO to denote the ordering we get
when we apply O toM’s policy evaluation functions:

Definition 6. A MOMDP M = 〈S,A, τ, µ0,R, γ〉 with
MORL objective O is equivalent to the MDP M′ =
〈S,A, τ, µ0, R, γ〉 if and only ifM′’s policy order is ≺MO .
We then say thatM with O is scalarized by R. IfM with
O is scalarized by some R then we say thatM with O is
scalarizable, otherwise we say that it is unscalarizable.

Note thatM′ must have the same states, actions, transition
function, initial state distribution, and discount factor, asM.
This definition therefore says thatMwithO is equivalent to
M′ ifM′ is given by replacing R = 〈R1 . . . Rk〉 with a sin-
gle reward function R, and R induces the same preferences
between all policies as O(J1 . . . Jk). Note also that we re-
quire R to express the same policy order as O(J1 . . . Jk);
it is not enough for R and O(J1 . . . Jk) to have the same
optimal policies (see Section 2).

Given this definition, we can now provide the necessary
and sufficient conditions for when a MORL problem can
be reduced to a scalar-reward RL problem. All proofs are
provided in the supplementary material.

Theorem 1. If a MOMDPM with objective O is scalariz-
able, then there exist w1 . . . wk ∈ R such thatM with O is
scalarized by the reward R(s, a) =

∑k
i=1 wi ·Ri(s, a).

Theorem 1 tells us that a MORL objective can be expressed
using a scalar, Markovian reward function if and only if that
objective corresponds to a linear weighting of the individual
rewards. In other words, scalar, Markovian rewards are un-
able to express all non-linear MORL problems. As we will
see, this imposes a strong limitation on what MORL tasks
can be encoded using scalar, Markovian rewards.

It is worth noting that Theorem 1 is analogous to Harsanyi’s
Utilitarian Theorem Harsanyi [1955] from social choice the-
ory, but generalised to the RL setting. In brief, this theorem
supposes that we have a finite set of outcomes Ω and a group
of individuals {1 . . . k} with different preferences over Ω,
and that we wish to construct an aggregate preference struc-
ture that captures the preferences of the group. Moreover,
also suppose that (1) the preferences of each individual i
are described by a utility function Ui : Ω→ R, (2) the ag-
gregate preferences of the group are described by a further
utility function UG : Ω→ R, and (3) for all distributionsD1

and D2 over Ω, if EO∼D1
[Ui(O)] = EO∼D2

[Ui(O)] for ev-
ery individual i, then EO∼D1

[UG(O)] = EO∼D2
[UG(O)].

Harsanyi’s Utilitarian Theorem then says that UG must be
given by some linear combination of U1 . . . Uk. The link
to Theorem 1 becomes clear if we think of Ω as being the
set of all trajectories which are possible in a MOMDPM,
U1 . . . Uk as being the trajectory return functions G1 . . . Gk
of the reward functions R1 . . . Rk inM, and UG as being
the trajectory return function of the scalarizing reward R.
However, note that Harsanyi’s Utilitarian Theorem assumes
that Ω is finite, whereas the set of all trajectories may be
uncountably infinite. Moreover, assumption (3) quantifies
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over all possible distributions over Ω, whereas Theorem 1
only quantifies over distributions that can be realised as poli-
cies in a given MOMDPM. If Ω is allowed to be infinite,
and assumption (3) is restricted to range over only some
distributions over Ω, then Harsanyi’s Utilitarian Theorem
does not hold in general. The generalisation provided by
Theorem 1 is therefore non-trivial.

Theorem 1 also entails the following corollary, which is
useful to elucidate when a MORL objective cannot be
expressed using scalar reward functions. Given an order-
ing ≺ over Π, depending on some evaluation functions
J1 . . . Jk, we say that a function U : Π → R represents
≺ if U(π1) < U(π2) ⇐⇒ π1 ≺ π2. We say that U is
a linear representation if U(π) = f(

∑k
i=1 wi · Ji(π)) for

some w1 . . . wk ∈ R and some strictly monotonic f .

Corollary 1. If O(J1 . . . Jk) has a non-linear represen-
tation U , and M is a MOMDP whose J-functions are
J1 . . . Jk, thenM with O is unscalarizable.

Therefore, we can prove thatM with O is unscalarizable
by finding a non-linear representation of ≺MO . Accordingly,
we now show that none of the MORL objectives given in
Definitions 2-5 can be expressed using scalar, Markovian
reward functions, except in a few degenerate cases.

Corollary 2. M with LexMax is unscalarizable, as long as
M has at least two reward functions that are neither trivial,
equivalent, or opposite.

Note that if all reward functions are either trivial, equivalent,
or opposite, then the only reward function that matters for
LexMax is the highest-priority non-trivial reward function.
In that case, M with LexMax is equivalent to the MDP
which contains only this reward function.

Corollary 3. M with MaxMin is unscalarizable, unless
M has a reward function Ri such that Ji(π) ≤ Jj(π) for
all j ∈ {1 . . . k} and all π.

Note that ifM has a reward function Ri such that Ji(π) ≤
Jj(π) for all j and π, then this is the only reward function
that matters for the MaxMin objective. In that case,Mwith
MaxMin is equivalent to the MDP which contains only Ri.

Corollary 4. M with MaxSat is unscalarizable, as long
asM has at least one reward Ri where Ji(π1) < ci and
Ji(π2) ≥ ci for some π1, π2 ∈ Π.

Note that ifM has no reward Ri where Ji(π1) < ci and
Ji(π2) ≥ ci for some π1, π2 ∈ Π, then either all policies
satisfy all constraints, or no policy satisfies any constraint.
In either case,M with MaxSat would be equivalent to an
MDP with a trivial reward function.

Corollary 5. M with ConSat is unscalarizable, unless
either R1 and R2 are equivalent, or maxπ J1(π) ≤ c, or
minπ J1(π) ≥ c.

Note that if maxπ J1(π) ≤ c then no policy satisfies the
constraint, in which caseM with ConSat is equivalent to
the MDP with R1. If minπ J1(π) ≥ c then all policies
satisfy the constraint, in which case M with ConSat is
equivalent to the MDP withR2. IfR1 andR2 are equivalent,
thenM with ConSat is scalarized by R1 or R2.

Corollaries 2-5 thus show that none of the MORL objec-
tives given in Definition 2-5 can be expressed using a scalar,
Markovian reward function, except in a few degenerate cases
where those MORL objectives are trivialised. This demon-
strates that MORL problems typically cannot be scalarized
in a satisfactory way.

To get an intuition for this result, note that the expected
cumulative return of a Markovian reward function always
is maximised by some stationary policy, whereas some of
these MORL objectives may require the optimal policy to
be non-stationary. For example, consider the MaxMin ob-
jective, and suppose the agent can choose between an action
giving one R1-reward, and an action giving one R2-reward.
Then the optimal choice may depend on how much R1 and
R2-reward the agent has got in the past. This means that the
optimal policy may be non-stationary, and thus not corre-
spond to any Markovian reward.

4 RISK-SENSITIVE PROBLEMS

The next area we will look at is that of risk-sensitive RL.
An ordinary RL agent tries to maximise the expectation of
its reward function. However, there are many cases where
it is natural to require the agent to be risk-averse. For ex-
ample, we might prefer a policy that reliably achieves 5
reward, over one that achieves 11 reward with probability
0.5, and otherwise gets 0 reward, even though the latter pol-
icy achieves a higher expected reward. In this section, we
will examine when scalar, Markovian reward functions can
be used to encourage such behaviour.

In expected utility theory, risk-aversion is often modelled
using concave utility functions. In particular, suppose we
have a set of outcomes C, each of which is associated with
some utility via a function U1 : C → R. We can then
construct a second utility function U2 : C → R by letting
U2(c) = f(U1(c)) for some concave function f . Then, an
agent which maximises expected utility according to U2,
will be risk-averse with respect to utility as defined by U1.
For example, suppose each outcome is associated with some
monetary payoff, and that U1 measures how much money is
obtained in each outcome. If we were to maximise expected
utility according to U1, then we would prefer a 50% chance
of obtaining $2, 000, 000, to a certain chance of obtaining
$900, 000. However, in the real world, most people would
prefer the latter option. One reason for this is that, while
getting $2, 000, 000 is better than getting $900, 000, it is
less than twice as good. We can model these preferences
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by using a second utility function U2 that is concave in
U1. Intuitively, U2 should measure how much benefit we
get from the money. Then the expected U2-utility might be
higher for the safe option than the risky option, even though
the expected U1-utility is higher for the risky option.

In reinforcement learning, the outcomes are the trajectories
that might occur in the environment, and the utility of a tra-
jectory ξ is induced by the reward function R via the return
function, G. If the transition function τ is nondeterministic,
then the agent cannot reliably enact a particular outcome
(i.e., move along a particular trajectory), but can instead
only choose between some distributions over outcomes. By
default, the agent may then be compelled to pursue a pol-
icy that achieves a high reward with small probability, as
long as the expectation remains high. A natural question
is then whether we could avoid this by constructing a sec-
ond reward function that is concave in the original reward
function, similar to what is done in expected utility theory.
That is, given a reward function R1 and a concave function
f , can we construct a second reward function R2 such that
G2 = f(G1)? Our next theorem demonstrates that this is
impossible. As before, the proof is in the appendix.

Theorem 2. Given S, A, and γ, let R1 and R2 be two
reward functions. If γ ≥ 0.5, and for all ξ1, ξ2 ∈ (S ×A)ω ,

G1(ξ1) ≤ G1(ξ2) ⇐⇒ G2(ξ1) ≤ G2(ξ2),

then ∃a ∈ R, b ∈ R > 0 such that for all ξ ∈ (S ×A)ω ,

G1(ξ) = b ·G2(ξ) + a.

Theorem 2 effectively tells us that only affine transforma-
tions of G are possible. From this result, it straightforwardly
follows that none of the standard risk-averse utility functions
(exponential utility, isoelastic utility, and quadratic utility)
can be expressed using Markovian reward functions:

Corollary 6. For any non-trivial reward R1 and any con-
stant α 6= 0, if γ ≥ 0.5 then there is no reward R2 such that
G2(ξ) = −eαG1(ξ) for all ξ ∈ (S ×A)ω .

Corollary 7. For any non-trivial reward R1 and any con-
stant α > 0, α 6= 1, if γ ≥ 0.5 then there is no reward R2

such that G2(ξ) = G1(ξ)1−α for all ξ ∈ (S ×A)ω .

Corollary 8. For any non-trivial reward R1, if γ ≥ 0.5
then there is no reward R2 such that G2(ξ) = ln(G1(ξ))
for all ξ ∈ (S ×A)ω .

Corollary 9. For any non-trivial reward R1 and any α >
0 where maxξ G1(ξ) ≤ 1

2α , if γ ≥ 0.5 then there is no
reward R2 such that G2(ξ) = G1(ξ) − αG1(ξ)2 for all
ξ ∈ (S ×A)ω .

Theorem 2 thus implies that none of the standard risk-averse
utility functions can be expressed using scalar, Markovian

reward functions. To get an intuition on Theorem 2, consider
the fact that the expected cumulative return of a Markovian
reward function always is maximised by some stationary
(i.e. Markovian) policy. However, a risk-averse objective
may require the optimal policy to be non-stationary, be-
cause whether or not it is worth taking a particular gamble
could depend on how much reward you have accrued in
the past. This suggests that there should be instances where
risk-sensitive objectives cannot be expressed as Markovian
reward functions. Theorem 2 formalises this intuition.

It is also worth remarking on the fact that Theorem 2 consid-
ers the value of G1 and G2 for all trajectories in (S ×A)ω .
For any particular transition function τ , most of these tra-
jectories are likely to be impossible (unless τ allows you to
transition between any two states via any action with non-
zero probability). We could therefore alternatively consider
the condition where G1(ξ1) ≤ G1(ξ2) ⇐⇒ G2(ξ1) ≤
G2(ξ2) for those trajectories ξ1, ξ2 that are possible in a
given environment. In this case, it can be possible for G2

to be non-affine in G1. For example, consider the case of
a tree-shaped MDP, where τ(s, a) = s and R1(s, a) = 0
for all actions a if s is a leaf-node. In that case, G2 can be
an arbitrary transformation of G1. However, to construct
the corresponding reward function R2, we would need to
have a detailed understanding of the environment (which is
against the main tenet in RL), and furthermore the resulting
reward function would no longer induce the same behaviour
if it were used in a different environment. For this reason,
we believe that it is more relevant to consider the set of all
trajectories in (S ×A)ω . Nonetheless, an interesting direc-
tion for further work could be to more extensively study
what happens if the set of trajectories under consideration is
restricted in various ways.

Finally, note that Theorem 2 assumes that the discount pa-
rameter γ ≥ 0.5. It is not clear if this is strictly necessary, so
it might be possible to generalise Theorem 2 by removing
this requirement. This would, however, require a different
proof strategy. Nonetheless, this assumption is not very re-
strictive, as in practice γ is almost always set to be greater
than 0.5 (typically γ ≥ 0.9).

5 MODAL PROBLEMS

The final class of problems that we will examine is a class
of tasks that we refer to as modal tasks. Before we give a
formal definition of this class, we will first provide some
intuition. In analytic philosophy, a distinction is made be-
tween categorical facts and modal facts. In short, categorical
facts only concern what is true in actuality, whereas modal
facts concern what must be true, could have been true, or
cannot be true, etc. For example, it is a categorical fact that
the Eiffel Tower is brown, and a modal fact that it could
have had a different colour. It is (arguably) a categorical fact
that the number 3 is prime, and a modal fact that it could
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not have been otherwise. To give another example, there is
a difference between stating that nothing can travel faster
than light and that nothing does travel faster than light – the
former statement, which is modal, is stronger than the latter,
which is categorical. One can further distinguish between
different kinds of possibility (e.g. logical vs physical pos-
sibility, etc), and discussions about modality also involves
topics such as causality and counterfactuals, etc. A com-
plete treatment of this subject is beyond the scope of this
paper, but for an overview see Menzel [2021].

Modality does of course relate to modal logic, and thus also
to temporal logic. In particular, computational tree logic
(CTL, see e.g. Baier and Katoen [2008]), and its extensions,
can express many modal statements. 1

The intuition behind this section is that a reward function
always is expressed in terms of categorical facts, whereas
many tasks are naturally expressed in terms of modal facts.
For example, consider an instruction such as “you should
always be able to return to the start state”. This instruction
seems quite reasonable, but it is not obvious how to translate
it into a reward function. Note that this instruction is not
telling the agent to actually return to the start state, it merely
says that it should maintain the ability to do so. This illus-
trates the motivation behind modal tasks; they let us reward
the agent based on what is possible or impossible along its
trajectory, rather than just in terms of what in fact occurs
along that trajectory. Given this background motivation, we
can now give a formal definition of modal tasks:

Definition 7. Given a set of states S and a set of actions
A, a modal reward function R♦ is a function R♦ : S ×
A× (S ×A → ∆(S))→ R which takes a state s ∈ S , an
action a ∈ A, and a transition function τ over S and A,
and returns a real number.

R♦(s, a, τ) is the reward that is obtained when taking ac-
tion a in state s in an environment whose transition function
is τ . Here we allow R♦ an unrestricted dependence on τ ,
to make our results as general as possible, even if a prac-
tical algorithm for solving modal tasks presumably would
require restrictions on what this dependence can look like
(see Appendix D). Modal reward functions can be used to
express instructions such as that we gave above. For ex-
ample, a simple case might be “you get 1 reward if you
reach this goal state, and -1 reward if you ever enter a state

1To avoid a possible confusion, we should emphasise that we
here use the term “modal” in a somewhat more narrow sense than
the sense of “modal logic”. In particular, we use it to mean “per-
taining to what is possible or impossible”, as in e.g. Kment [2021].
In that sense, Linear Temporal Logic (LTL) does not express modal
statements, even though it is a modal logic, because LTL can only
make assertions about what in fact occurs. For that reason, not
everything that relates to modal logic will be related to the setting
we discuss here. The type of possibility we discuss is specifically
“possibility according to the transition function”.

from which you cannot reach the initial state”. This reward
depends on the transition function, because the transition
function determines from which states you can reach the
initial state. As usual, R♦ then induces a Q-function Q♦,
value function V ♦, and evaluation function J♦, etc. We
say that a modal reward R♦ and an ordinary reward R are
contingently equivalent given a transition function τ if J♦

and J induce the same ordering of policies given τ , and
that they are robustly equivalent if J♦ and J induce the
same ordering of policies for all τ . We use R♦

τ to denote the
reward function R♦

τ (s, a) = R♦(s, a, τ). We will also use
the following definition.

Definition 8. A modal reward function R♦ is vacuous if
there is a reward function R such that for all τ , R and R♦

τ

have the same policy ordering under τ .

The intuition here is that a vacuous modal reward function
does not actually depend on τ in any important sense. Note
that this is not necessarily to say that R♦

τ = R for all τ . For
example, it could be the case that R♦

τ is a scaled version
of R, or that R♦

τ and R differ by potential shaping Ng
et al. [1999], or that R♦

τ is modified in a way such that
ES′∼τ(s,a)[R

♦
τ (s, a, S′)] = ES′∼τ(s,a)[R(s, a, S′)], since

none of these differences affect the policy ordering (for a
more in-depth examination, see Skalse et al. [2022a]). From
this, we get the following straightforward result:

Theorem 3. For any modal reward R♦ and any transition
function τ , there exists a reward R that is contingently
equivalent to R♦ given τ . Moreover, unless R♦ is vacuous,
there is no reward that is robustly equivalent to R♦.

In other words, every modal task can be expressed with
an ordinary reward function in each particular given envi-
ronment, but no reward function expresses a (non-vacuous)
modal task in all environments. Is this enough? We argue
that it is not, because the construction of R♦

τ will invariably
be laborious, and require detailed knowledge of the environ-
ment. For example, consider the task “you should always
be able to return to the start state”; here, constructing R♦

τ

would amount to manually enumerating all the states from
which the start state is reachable: this would be very much
against the spirit of RL, where much of the point is that we
want to be able to specify tasks which can be pursued in
unknown environments. In short, a method which requires
a model of the environment is arguably not an RL method.
We thus argue that reward functions are largely unable to
capture modal tasks in a satisfactory way.

One remaining question might be why one would want to
express tasks for RL agents in terms of modal properties.
After all, what benefit is there to the instruction “never enter
a state from which it is possible to quickly enter an unsafe
state” over the instruction “never enter an unsafe state”? One
reason is that the former task might lead to behaviour that
is more robust to changes in the environment. For example,
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if an RL agent is trained in a simulated environment, and
deployed in the real world, then it seems like it would be
preferable to tell the agent to avoid risky states, rather than
unsafe states, since imperfections in the simulation could
lead to an underestimation of the risk involved. Another
example is the existing work on avoiding side effects (e.g.
[Krakovna et al., 2018, 2020, Turner et al., 2020, Griffin
et al., 2022]), which it is natural to express in modal terms.
This work can be viewed as being aimed at making the
behaviour of an RL agent more robust to misspecification
of the reward function.

6 SOLVING TASKS THAT ARE
INEXPRESSIBLE BY MARKOVIAN
REWARDS

We have pointed to three broad classes tasks that cannot be
expressed using scalar, Markovian reward functions, namely
multi-objective, risk-sensitive, and modal tasks. A natural
next question is whether these tasks can be solved at all
using RL, or whether only tasks corresponding to Markovian
reward functions can be effectively learnt. We briefly discuss
this issue below. In short, it is indeed possible to design RL
algorithms for tasks in each of these categories.

First of all, the existing literature already contains several
bespoke RL algorithms that solve some of the problems that
we have discussed. Multi-objective reinforcement learning
is particularly well-explored, with many existing algorithms.
Most of these algorithms are designed to solve a specific
MORL objective; for example, Skalse et al. [2022b] solve
the LexMax objective, and Tessler et al. [2019] solve the
ConSat objective. Similarly, there are existing algorithms
for risk-sensitive RL (e.g. Chow et al. [2017]), and even
algorithms that solve certain modal tasks [Krakovna et al.,
2018, 2020, Turner et al., 2020, Wang et al., 2020, Griffin
et al., 2022]. We give a more complete overview of this
existing work in Section 7.1.

It should also be possible to design algorithms that can flex-
ibly solve many different tasks from the classes we have
discussed, instead of having to be designed for just one par-
ticular task. For example, suppose a MORL objective can be
represented by a function U : Rk → R, such that π1 ≺ π2
when U(J1(π1) . . . Jk(π1)) < U(J1(π2) . . . Jk(π2)), and
that U is differentiable. We give a few examples of such
objectives in Appendix C, including e.g. a “soft” version
of MaxMin. With such an objective, if we have a policy
π that is differentiable with respect to some parameters θ,
then one could compute the gradient of U(J1(π) . . . Jk(π))
with respect to θ, and then use a policy gradient method to
increase U . This means that it should be possible to design
an actor-critic algorithm that can solve any differentiable
MORL objective. We consider the development of such
methods to be a promising direction for further work.

In Appendix D, we also outline a possible approach for
solving a wide class of modal tasks. Further exploration of
this setting would also be interesting for further work.

7 DISCUSSION

In this paper, we have studied the ability of Markovian re-
ward functions to express different kinds of problems. We
have looked at three classes of tasks; multi-objective tasks,
risk-sensitive tasks, and modal tasks, and found that Marko-
vian reward functions are unable to express most of the tasks
in each of these three classes. In particular, have provided
necessary and sufficient conditions for when a single-policy
MORL problem can be expressed using a scalar, Markovian
reward function, and demonstrated that this only can be done
when the MORL objective corresponds to a linear weighting
of the individual rewards. Moreover, we have also provided
necessary and sufficient conditions for when a monotonic
transformation of the return function, G, can be expressed
as a Markovian reward function, and demonstrated that this
only can be done for affine transformations. Furthermore,
we have also also drawn attention to a class of tasks which
have just barely been explored previously (namely modal
tasks), and shown that most of these tasks cannot be ex-
pressed using Markovian reward functions. Finally, we have
shown that many of these problems still can be solved with
RL, and even outlined some methods for doing this.

Our work has a number of immediate practical implications.
First of all, we have contributed to a more precise demar-
cation of what types of problems can be expressed within
the most common RL formalism. This makes it easier to
determine whether standard RL techniques are applicable
to a given problem, or whether more specialised methods
must be used. In particular, our results show that there are
situations in which careful reward specification and reward
shaping will not be sufficient to robustly incentivise the
desired behaviour. In those cases, we must instead use an al-
ternative policy synthesis method, such as e.g. those offered
by MORL. Secondly, in the area of reward learning, most
algorithms attempt to fit a scalar, Markovian reward func-
tion to their training data [e.g. Christiano et al., 2023]. Our
work clarifies the implicit modelling assumptions behind
these algorithms, and shows that there are many situations
in which these models will be misspecified.

Our work also suggests several directions for further work.
The fact that the common settings of MORL and risk-
sensitive RL indeed are genuine extensions over the standard
(scalar, Markovian) setting provides additional motivation
for further work in these areas. Our work also suggests that
it could be interesting to further explore the modal setting,
or other directions that aim to extend the expressivity of the
standard RL setting. We give an overview of the existing
work in this area in Section 7.1. Our work also motivates
work on reward learning algorithms which do not assume
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that the preferences of the demonstrator can be captured by
a scalar, Markovian reward. There is some existing work
in this area [e.g. Abate et al., 2022], but it remains quite
limited. Moreover, another interesting direction for further
work would be to quantify the consequences of taking a
task which cannot be perfectly represented using a Marko-
vian reward function, and trying to approximate it using a
Markovian reward function. For example, could we bound
the worst-case regret that might be incurred if a MORL
problem is approximated using a scalar reward? Finally,
another interesting direction for further work would be to
more thoroughly explore the expressivity of other types of
problem settings, and their relationship to each other.

7.1 RELATED WORK

There has been a lot of recent work on the expressivity of
Markovian reward functions. Here, we summarise relevant
contributions, and detail differences with our work.

Notably, there are three recent papers which provide nec-
essary and sufficient conditions for when a particular type
of task can be expressed using a particular type of reward
function. The first of these is Pitis [2019], who consider
a task to be a preference relation defined over prospects,
where a prospect is defined as a pair of a state and a policy.
Moreover, they generalise the discount function by allowing
it to depend on the transition (instead of always being a
constant value γ). They then add two axioms (and one as-
sumption) to the famous vNM-axioms (from von Neumann
and Morgenstern [1947]), to obtain necessary and sufficient
conditions for when a task (as they formalise it) can be ex-
pressed as a Markovian reward with transition-dependent
discounting. Our work differs from their in several ways, as
explained shortly.

The next paper is Shakerinava and Ravanbakhsh [2022],
who provide an alternative, simpler axiomatisation of the
setting considered by Pitis [2019], and also provide further
axioms to describe two additional types of environments.
They consider environments without any discount factor,
but instead use termination probabilities, which can be used
to simulate the standard case with exponential discounting.

The third paper is Bowling et al. [2022], who generalise the
results of Shakerinava and Ravanbakhsh [2022] even further,
and provide an alternative axiom to add to the vNM axioms.
They start by considering preference relations over finite
trajectories, and then extend this to a preference relation
over policies by saying that a policy π1 is preferred to π2
if there exists a time t after which the trajectory distribu-
tion induced by π1 is always preferable to the trajectory
distribution induced by π2. This encompasses the setting
with exponentially discounted reward, the setting with limit-
average reward, and the episodic setting. They consider both
the case where the discount function is transition-dependent,

and the case when it is constant.

Our work differs from that by Pitis [2019], Shakerinava and
Ravanbakhsh [2022], Bowling et al. [2022] in a few ways.
First of all, these papers aim to establish general necessary
and sufficient conditions for when a task can be formalised
as a Markovian reward, whereas we instead focus on three
specific classes of tasks that we believe to be especially
interesting. It might in principle be possible to derive our
results as a special case of theirs. However, doing this would
be quite non-trivial, and possibly more difficult than our di-
rect derivations. Secondly, the axiomatisations provided by
Pitis [2019], Shakerinava and Ravanbakhsh [2022], Bowl-
ing et al. [2022] are difficult to use in practice. Our results,
on the other hand, are arguably intuitive to understand, and
concern some settings that are both popular and important.
Our work could thus be construed as a study on the practical
consequences of the work by Pitis [2019], Shakerinava and
Ravanbakhsh [2022], Bowling et al. [2022], with results that
may be more directly useful to practitioners. There are also
several differences in how we formalise the problem com-
pared to Pitis [2019], Shakerinava and Ravanbakhsh [2022],
Bowling et al. [2022]. For example, we consider the case
with fixed discount rates, whereas Pitis [2019] and Bowling
et al. [2022] consider transition-dependent discount rates.
To give another example, Shakerinava and Ravanbakhsh
[2022] consider finite trajectories, whereas we consider infi-
nite trajectories (noting that the latter can model the former,
but not vice versa). These differences further contribute to
distinguishing our results from theirs.

Another notable piece of related work is Abel et al. [2021],
who point to three different ways to formalise the notion
of a “task” (namely, as a set of acceptable policies, as an
ordering over policies, or as an ordering over trajectories).
They then demonstrate that each of these classes contains
at least one instance which cannot be expressed using a
Markovian reward function, and provide algorithms which
compute reward functions for these types of tasks. Our work
is different from theirs in a few different ways. First of all,
we consider three different ways to specify a policy ordering,
and then derive necessary and sufficient conditions which
can be used to directly determine when the resulting policy
ordering can be expressed as a Markovian reward function.
Abel et al. [2021] do not provide necessary and sufficient
conditions, but instead only provide a counter-example for
each type of task, showing that Markovian rewards cannot
formalise all tasks of that type.

Another important paper is the work by Vamplew et al.
[2022], who argue that there are many important aspects
of intelligence which can be captured by MORL, but not
by scalar RL. Like them, we also argue that MORL is a
genuine extension of scalar RL, but our approach is quite
different. They focus on the question of whether MORL
or (scalar) RL is a better foundation for the development
of general intelligence (considering feasibility, safety, and
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etc), and they provide qualitative arguments and biological
evidence. By contrast, we are more narrowly focused on
what incentive structures can be expressed by MORL and
scalar RL, and our results are mathematical.

Miura [2022] considers the question of when a task can be
expressed as a constrained MDP (CMDP), or as a Marko-
vian reward. They formalise a task as two sets of policies,
〈ΠG,ΠB〉, and consider a CMDP to express the task if all
policies in ΠG, and none of the policies in ΠB , are feasible,
and consider a Markovian reward to express the task if all
policies in ΠG, and none of the policies in ΠB , are optimal
under that reward. They then derive necessary and sufficient
conditions for both of these cases, and show that CMDPs are
strictly more expressive than Markovian rewards for these
types of tasks. The CMDP framework is a special case of
the MORL framework we discuss in Section 3, roughly cor-
responding to the MaxSat objective. On the other hand, we
formalise the notion of a task as a policy ordering, whereas
Miura [2022] formalises it as a set of feasible policies.

Also relevant is the work by Pitis et al. [2022], who consider
a task to consist of multiple Markovian reward functions,
each of which may use a different discount parameter, and
where the goal is to maximise the sum of these rewards.
They then show that this setting may lead to the optimal pol-
icy being non-stationary, which demonstrates that it cannot
always be expressed using Markovian rewards. Our analysis
of the MORL setting allows for more general objectives
than the case where the goal is to maximise the sum of the
individual rewards. On the other hand, we assume that the
same discount parameter is used for each reward. Our anal-
ysis is therefore in some ways more general, and in other
ways more restrictive, than that of Pitis et al. [2022].

Also related is the work by Skalse et al. [2022c], who demon-
strate that if for two rewards R1, R2 there are no policies
π1, π2 such that J1(π1) < J2(π2) and J2(π1) > J2(π2),
then either R1 and R2 are equivalent, or one of them is
trivial. This means that there are some policy orderings that
cannot be expressed using Markovian rewards. We consider
different kinds of policy orderings than they do.

There is also other relevant work that is less strongly related.
For example, Icarte et al. [2022] point out that there are
certain tasks which cannot be expressed using Markovian
rewards, and propose a way extend their expressivity by aug-
menting the reward function with an automaton that they call
a reward machine. Similar approaches have also been used
by Hasanbeig et al. [2020], Hammond et al. [2021], tackling
infinite-horizon tasks for single- and multi-agent systems.
There are also other ways to extend Markovian rewards to
a more general setting, such as convex RL, as studied by
e.g. Hazan et al. [2019], Zhang et al. [2020], Zahavy et al.
[2021], Geist et al. [2022], Mutti et al. [2022], and vectorial
RL, as studied by e.g. Cheung [2019a,b]. Analysing the ex-
pressivity of these problem settings more extensively would

be an interesting direction for further work.

There is a large literature on (the overlapping topics of)
single-policy MORL, constrained RL, and risk-sensitive
RL. These areas are too large for it to be possible to give a
fully complete overview of this work here. Some notable
examples include Achiam et al. [2017], Chow et al. [2017],
Miryoosefi et al. [2019], Tessler et al. [2019], Skalse et al.
[2022b]. This existing literature typically focuses on the cre-
ation of algorithms for solving particular MORL problems,
rather than on characterising when MORL problems can
(or cannot) be reduced to scalar RL. Modal RL has (to the
best of our knowledge) never been discussed explicitly in
the literature before. However, it relates to some existing
work, such as side-effect avoidance [Krakovna et al., 2018,
2020, Turner et al., 2020, Griffin et al., 2022], and the work
by Wang et al. [2020].

Finally, our work also relates to existing work in deci-
sion theory, social choice theory, and related fields. This
of course includes the famous work by von Neumann and
Morgenstern [1947]. As discussed previously, the work by
Harsanyi [1955] is also particularly relevant. Note that work
in decision theory and social choice theory typically only
considers single-step decision problems, whereas the RL set-
ting of course considers sequential decision making. There
are also a few other modelling assumptions that are common
in decision theory and social choice theory which do not
hold in the RL setting. For example, in these fields, it is
common to assume that the choice set is finite (whereas the
set of trajectories in RL may be infinite), that preferences are
defined over all distributions over the choice set (whereas it
in RL is more common to only consider distributions that
can be realised by some policy for a given transition func-
tion), and that a utility function can be any function from the
choice set to real numbers (whereas many of these functions
cannot be expressed as reward functions). Consequently,
results from decision theory and social choice theory only
sometimes generalise to the RL setting. For example, in
Section 3, we provide some examples of results that do gen-
eralise to the RL setting, and in Section 4, we provide some
examples of results which do not generalise.
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