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1 ADDITIONAL RESULTS
1.1 VARIANCE REDUCTION

In this paragraph, we elaborate on the need to parametrize also Doob’s h; function, along with the drift b,. Introducing m?
removes the need to evaluate (11) which is difficult to approximate in practice on high-dimensional spaces. This equation
amounts, in fact, to a Gaussian Kernel Density Estimation of the conditional probability P(X; = x1|X; = x) along
(unconditional) paths obtained from (5). Faithful approximations of (11) would, therefore, require:

» good-quality paths, which are scarce at the beginning of training when the drift b¢ has not yet been learned;
» exponentially many trajectories (in the dimension of the state space);

* that points x; (obtained from conditional trajectories, Eq. 6) be reasonably close to 2 (obtained from unconditional
trajectories, Eq. 5);

Even if all the above conditions were satisfied, the quantity i, (x) = P(X; = x1|X; = x) would still be challenging to
directly manipulate. It is, in fact, much smaller at earlier times ¢ (see Table 1), since knowledge of the far past has a weaker
influence on the location X of particles at time ¢ = 1. Precision errors at t =~ 0 would then be amplified when computing
the score of h; (i.e, V log h;) —which appears in the loss (8)— and accumulate over timesteps, eventually leading trajectories
astray. By directly parameterizing the score, we instead sidestep this problem. The magnitude of mf ~ V log h; can, in fact,
be more easily controlled and regularized.

Time ¢
0 0.15 0.30 0.45 0.60 0.75 0.90

Mean h; , value ‘ 2.92e-14 4.03e-13  2.54e-11 1.72e-09 1.47e-07 2.66e-05 8.53e-3

Table 1: Average h; . values along paths, at different timesteps. P(X; = x;1|X; = x) ranges over 11 orders of magnitude
across the time interval and is smallest when ¢ ~ 0.

1.2 RIGID PROTEIN DOCKING

Baselines. We compare our method to EQUIDOCK as well as traditional docking software including ATTRACT [Schindler
et al., 2017, de Vries et al., 2015], HDOCK [Yan et al., 2020], CLUSPRO [Desta et al., 2020, Kozakov et al., 2017],
and PATCHDOCK [Mashiach et al., 2010, Schneidman-Duhovny et al., 2005]. As mentioned in the paragraph above, for
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Table 2: Rigid docking results. Complex and interface RMSD between predicted and true bound structures (after Kabsch
alignment). * denotes methods for which we use values directly from [Ganea et al., 2022]. All other results show the
performance on our test set.

DBS5.5 Test Set
Complex RMSD Interface RMSD
Methods Median Mean Std Median Mean Std
ATTRACT* 9.55 10.09 9.88 7.48 10.69 10.90
HDock* 0.30 534 12.04 0.24 476 10.83
CLUSPRrO* 3.38 8.25 7.92 2.31 8.71 9.89

PATCHDOCK* 18.26 18.00 10.12  18.88 18.75 10.06
EqQuiDocCK* 14.13 14.72  5.31 11.97 13.23 493

EqQuiDock 1412 1473 531 11.97 1323 493
SBALIGN 6.59 6.69 2.04 7.69 8.11 2.39

ligands in the test set, we generate the corresponding unbound versions by applying the rotation and translation sampled
during training. We evaluate the trained model from EQUIDOCK and SBALIGN on these unbound structures and report
corresponding evaluation metrics. For the remaining baselines, we include the numbers from [Ganea et al., 2022]. These
baselines typically sample several candidate complexes by considering small increments of rotation angles. We expect this
makes them somewhat invariant to arbitrary initialization, and the corresponding docking scores to not be severely impacted.
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Figure 1: Ground truth and predicted bound structures for the complex with PDB ID: INW9. SBALIGN is able to identify
the true binding pocket.

Results. The model performance is summarized in Table 2. Our method SBALIGN considerably outperforms EQUIDOCK
across all metrics. SBALIGN also achieves comparable or better performance than traditional docking software without
relying on extensive candidate sampling and re-ranking or learning surface templates from parts of the current test set. An
example of docked structures, in direct comparison with EQUIDOCK is displayed Fig. 5. Beyond the results in Table 2, we
display the ground truth and docked complexes in Figs. 5, 1, and 2.
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Figure 2: Ground truth and predicted bound structures for the complex with PDB ID: 1JIW. SBALIGN is able to find the true
binding interface compared to EQUIDOCK.



2 DATASETS

2.1 SYNTHETIC DATASETS

In the following, we provide further insights and experimental results in order to access the performance of SBALIGN in
comparison with different baselines and across tasks of various nature. For each dataset, we describe in detail its origin as
well as preprocessing and featurization steps.

a. Spiral Dataset b. T Dataset

e Source
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Figure 3: Initial (blue) and final (red) marginals for the two toy datasets (a) moon and (b) T, together with arrows indicating
a few alignments

Moon dataset. The moon toy dataset (Fig. 3a) is generated by first sampling PP, and then applying a clockwise rotation
of 233° around the origin to obtain Py. The points on the two semi-circumferences supporting P, are initially placed
equally-spaced along each semi-circumference and then moved by applying additive Gaussian noise to both coordinates.
While classic generative models will choose the shortest path and connect ends of both moons closest in Euclidean distance,
only methods equipped with additional knowledge or insight on the intended alignment will be able to solve this task.

T dataset. This toy dataset (Fig. 3b) is generated by placing an equal amount of samples at each of the four extremes of a
T-shaped area having ratio between x and y dimensions equal to 51/55. If run with a Brownian prior, classical Schrodinger
bridges (SBs) also fail on this dataset because they produce swapped pairings: i.e., they match the left (resp. top) point cloud
with the bottom (resp. right) one. At the same time, though, this dataset prevents reference drifts with simple analytical
forms (such as spatially-symmetric or time-constant functions) from fixing classical SBs runs. It therefore illustrates the
need for general, plug-and-play methods capable of generating approximate reference drifts to use in the computation of
classical SBs.

2.2 CELL DIFFERENTIATION DATASETS

Dataset description. We obtain the datapoints used in our cell differentiation task from the dataset generated by Weinreb
et al. [2020], which contains 130861 observations/cells. We follow the preprocessing steps in Bunne et al. [2021] and use
the Python package scanpy [Wolf et al., 2018]. After processing, each observation records the level of expression of 1622
different highly-variable genes as well as the following meta information per cell:

* a timestamp, expressed in days and taking values in {2, 4, 6};

* a barcode, which is a short DNA sequence that allows tracing the identity of cells and their lineage by means of
single-cell sequencing readouts;

¢ an additional annotation, which describes the current differentiation fate of the cell.

Dataset preparation. We only retain cells with barcodes that appear both on days 2 and 4, taking care of excluding cells
that are already differentiated on day 2. We construct matchings by pairing cells measured at two different times but which
share the barcode. Additionally, we filter cells to make sure that no one appears in more than one pair. To reduce the very
high dimensionality of these datapoints, we perform a PCA projection down to 50 components.

We end up with a total of 4702 pairs of cells, which we partition into train, validation, and test sets according to the split
80%/10%/10%.
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Figure 4: Overview of SBALIGN in the setting of cell differentiation with the goal of learning the evolutionary process that
morphs a population from its stat at ¢ to ¢ + 1. Through genetic tagging (i.e., barcodes) we are able to trace progenitor cells at
time point ¢ into their descendants ¢ + 1. This provides us with an alignment between populations at consecutive time steps.
Our goal is then to recover a stochastic trajectory from xq to x;. To achieve this, we connect the characterization of a SDE
conditioned on x( and x; (utilizing the Doob’s h-transform) with that of a Brownian bridge between x( and x; (classical
Schrodinger bridge theory), leading to a simpler training procedure with lower variance and strong empirical results.

a. Ground Truth b. SBALIGN
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Figure 5: Distribution of the cell population (i.e., marginals) at time ¢t = ¢ and ¢ = ¢; for (a) the ground truth, and (b)
SBALIGN, after projection along their first two principal components.

2.3 PROTEIN DOCKING

2.3.1 Conformational Changes

Dataset description. For the task of predicting protein conformational changes, we utilize the D3PM dataset. The dataset
consists of both unbound and bound structures for 4330 proteins, under different types of protein motions. The PDB IDs
were downloaded from https://www.d3pharma.com/D3PM/. For the PDB IDs making up the dataset, we download the
corresponding (.cif) files from the Protein Data Bank.

Dataset preparation. For the scope of this work, we only focus on protein structure pairs, where the provided RMSD
between the Cov carbon atoms is > 3A, amounting to 2370 examples in the D3PM dataset. For each pair of structures, we first
identify common residues, and compute the RMSD between Ca carbon atoms of the common residues after superimposing
them using the Kabsch [Kabsch, 1976] algorithm, and only accept the structure if the computed Cao RMSD is within a
certain margin of the provided Ca RMSD. The rationale behind this step was to only retain examples where we could
reconstruct the RMSD values provided with the dataset. Common residues are identified through a combination of residue
position and name. This step is however prone to experimental errors, and we leave it to future steps to improve the common
residue identification step (using potentially, a combination of common subsequences and/or residue positions).

After applying the above preprocessing steps, we obtain a dataset with 1591 examples, which is then split into a train/valid/test
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split of 1291/150/150 examples respectively. The structures used in training and inference are the Kabsch superimposed
versions, therefore ensuring that the Brownian bridges are sampled between the unbound and bound states of the proteins,
and no artifacts are introduced by 3D rotations and translations, which do not contribute to conformational changes.

Featurization. Following standard practice and for memory and computational efficiency, we only use the Ca coordinates
of the residues to represent our protein structures instead of the full-atom structures. For each amino acid residue, we
compute the following features: a one hot encoding of the amino acid identity f, of size 23, hydrophobicity f;, € [—4.5,4.5],
volume f,, € [60.1,227.8], the charge f. € {—1,0,1}, polarity f, € {0,1}, and whether the amino acid residue is a
hydrogen bond donor f; € {0, 1} or acceptor f, € {0,1}. The hydropathy and volume features are expanded into a radial
basis with interval sizes 0.1 and 10 respectively. To equip the model with a notion of time, we use a sinusoidal embedding of
time ¢(t) of embedding dimensionality 32. These are concatenated to the amino acid features to form our input features for
the amino acid residues. The edge features consist of a radial basis expansion of the distances between the residues. We also
compute the spherical harmonics of the edge vectors between the residues, which is used in the tensor product message
passing layers.

Position at t. For any time ¢, we sample the positions of the Ca atoms using the Brownian Bridge - given the co-
ordinates xy at ¢ = 0 and the coordinates x; at ¢ = 1 with a Brownian bridge between xy and x;, we know that
xp ~ N (245 (1 — t)xg + tx1,t(1 — 1)).

2.3.2 Rigid Protein Docking

Dataset description. We use the DB5.5 dataset [Vreven et al., 2015] for our empirical evaluation. The DB5.5 dataset
is a standard dataset used in protein-protein docking, however, it only has 253 complexes. The dataset was downloaded
from https://zlab.umassmed.edu/benchmark/. The dataset consists of both unbound and bound structures, but the
structures are largely rigid, with an average complex RMSD of 0.96 between the bound and unbound structures. We utilize
the same splits as EquiDock [Ganea et al., 2022], with 203 complexes in the training set, 25 complexes in the validation set,
and 25 complexes in the test set. For the evaluation in Table 2, we use the full DBS5.5 test set. For ligands in the test set, we
generate the corresponding unbound versions by applying the rotation and translation sampled during training.

Dataset preparation. Following similar convention as EQUIDOCK [Ganea et al., 2022], we treat the receptor as fixed.
We use the same splits as EquiDock [Ganea et al., 2022], with 203 complexes in the training set, 25 complexes each in the
validation and test sets. For each ligand, the final 3D structure corresponds to its bound version, and the unbound version is
generated by applying a random rotation R and translation b to the bound version. However, applying a different rotation
and translation to each ligand would result in a different Brownian bridge, thus providing limited learning signal for the
drift bf . To avoid this, we create a rotation matrix R during training by sampling a random angle between 30 — 45° along
each axis, and a translation b with a maximum magnitude between 5.0 — 10.0. The same R and b are also applied to the
validation and test sets. We leave it to future work to extend the algorithm to work for arbitrary rotations and translations.

Featurization. Following standard practice and for memory and computational efficiency, we only use the Ca coordinates
of the residues to represent our protein structures instead of the full-atom structures. For each amino acid residue, we
compute the following features: a one hot encoding of the amino acid identity f, of size 23, hydrophobicity f;, € [—4.5,4.5],
volume f,, € [60.1,227.8], the charge f. € {—1,0,1}, polarity f, € {0,1}, and whether the amino acid residue is a
hydrogen bond donor f; € {0, 1} or acceptor f, € {0,1}. The hydropathy and volume features are expanded into a radial
basis with interval size 0.1 and 10 respectively. To equip the model with a notion of time, we use a sinusoidal embedding of
time ¢(t) of embedding dimensionality 32. These are concatenated to the amino acid features to form our input features for
the amino acid residues.

Position at t. For any time ¢, we sample the positions of the Ca atoms using the Brownian Bridge - given the co-
ordinates xg at t = 0 and the coordinates x; at ¢ = 1 with a Brownian bridge between xq and x;, we know that
xp ~ N (x5 (1 — £)x0 + tx1, (1 — 1)).
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3 EXPERIMENTAL DETAILS

In the following, we provide further experimental details on the chosen evaluation metrics, network architectures, and
hyperparameters.

3.1 EVALUATION METRICS
3.1.1 Cell Differentiation

For fairness of comparison between our method and the baseline (FBSB) —which only works at the level of distribution
of cells— we also consider three evaluation metrics (i.e., W, MMD and ¢5) that capture the similarity between the end
marginal P; and our prediction 77, irrespective of matchings.

In what follows, we denote with © the predicted end marginal 77 —i.e., the predicted status of cells at day 4— and with v
the distribution of observed transcriptomes.

Wasserstein-2 distance. We measure accuracy of the predicted target population © to the observed target population v
using the entropy-regularized Wasserstein distance [Cuturi, 2013] provided in the OTT library [Bradbury et al., 2018, Cuturi
et al., 2022] defined as

ey

where H(P) := — 3, P;;(log P;; — 1) and the polytope U(i,v) is the set of n x m matrices {P € R}*™, P1,, =
7, P11, =v}.

Maximum mean discrepancy. Kernel maximum mean discrepancy [Gretton et al., 2012] is another metric to measure
distances between distributions, i.e., in our case between predicted population © and observed one v. Given two random
variables x and y with distributions © and v, and a kernel function w, Gretton et al. [2012] define the squared MMD as:

MMD (7, v;w) = By o [w(w, &)] + By yr[w(y, y')] = 2Bay [w (2, y)].

We report an unbiased estimate of MMD(?, v/), in which the expectations are evaluated by averages over the population
particles in each set. We utilize the RBF kernel, and as is usually done, report the MMD as an average over the length scales:
2,1,0.5,0.1,0.01, 0.005.

Perturbation signature />. A common method to quantify the effect of a perturbation on a population is to compute
its perturbation signature [Stathias et al., 2018, (PS)], computed via the difference in means between the distribution of
perturbed states and control states of each feature, e.g., here individual genes. ¢5(PS) then refers to the /5-distance between
the perturbation signatures computed on the observed and predicted distributions, v and 2. The £5(PS) is defined as

PS(v, ) = % Zyi* % Z T4,
Yyi €V T, EQ

where n is the size of the unperturbed and m of the perturbed population. We report the /5 distance between the observed
signature PS(v, 1) and the predicted signature PS(?, 1), which is equivalent to simply computing the difference in the
means between the observed and predicted distributions.

RMSD. To measure the quality of matchings sampled from SBALIGN (&, &% ) —compared to the observed ones (), x%)—
we compute:

i AL IRS % %
RMSD({z1}", {1}") = || - D _llaf — &2 )
i=1

which, when squared, represents the mean of the square norm of the differences between predicted and observed statuses of
the cells on day 4.



Cell type classification accuracy. We assess the quality of SBALIGN trajectories by trying to predict the differentiation
fate of cells, starting from (our compressed representation of) their transcriptome. For this, we train a simple MLP-based
classifier on observed cells and use it on the last time-frame of trajectories sampled from SBALIGN to infer the differentiation
of cells on day 4. We use the classifier MLPClassifier offered by the library scikit-1learn with the following parameters:

* 2 hidden layers, each with a hidden dimension of 50,
* the logistic function as non-linearity

¢ {5 norm, regularization with coefficient 0.1.

We report the subset accuracy of the predictions on the zest set, measured as the number of labels (i.e., cell types) coinciding
with the ground truth.

3.1.2 Rigid Protein Docking

We report two metrics, Complex Root Mean Square Deviation (Complex RMSD), and Interface Root Mean Square Deviation
(Interface RMSD). Following [Ganea et al., 2022], the ground truth and predicted complex structures are first superimposed
using the Kabsch algorithm [Kabsch, 1976], and the Complex RMSD is then computed between the superimposed versions.
A similar procedure is used for computing Interface RMSD, but only using the residues from the two proteins that are within
8 A of each other. Given a ligand with m residues and a receptor with n residues, we denote the predicted bound structures
with Z’ € R("*™) and the ground truth bound structure with Z* € R("*™)_We first superimpose the predicted and ground

truth bound structures using the Kabsch algorithm and then compute the Complex RMSD as Cynsa = 1/ = |Z" — Z|| 1.

n+m
The Interface RMSD I is computed similarly, but only using the residues from the two proteins that are within 8A of
each other.

3.2 NETWORK ARCHITECTURES
3.2.1 Cell Differentiation and Synthetic Datasets

We parameterize both b% (¢, X;) and m®(t, b, X;) using a model composed of:

1. x_enc: 3-layer MLP performing the expansion of spatial coordinates (or drift) into hidden states (of dimension 64 to
256);

2. t_enc: sinusoidal embedding of time (on 64 to 256 dimensions), followed by a two layer MLP;

3. mlp: 3-layer MLP which maps the concatenation of embedded spatial and temporal information (output of modules 1
and 2 above) to drift magnitude values along each dimension.

After every linear layer (except the last one), we apply a non-linearity and dropout (level 0.1). In all the experiments, we set
the diffusivity function g(t¢) in (5) to a constant g, which is optimized (see § 3.3).

3.2.2 Protein Conformational Changes

As our architecture bY (X;) suitable for approximating the true drift b;, we construct a graph neural networks with tensor-
product message passing layers using e3nn [Thomas et al., 2018, Geiger and Smidt, 2022]. To build the graph, we consider
a maximum of 40 neighbors —located within a radius of 40A for each residue. The model is SE(3) equivariant and receives
node and edge features capturing relevant residue properties, and distance embeddings. For the baseline EGNN model, we
consider the variant of the EGNN model proposed in Xu et al. [2022], owing to its strong performance on the molecule
conformer generation task.

3.2.3 Rigid Protein Docking

For the scope of this paper, we use a MLP as b? and m?. As inputs, both b¢ and m?® receive input node features and the C,,
coordinates at time ¢, as described in Section 3.3.4, with m® receiving the prediction bY as additional input. Both models



have 3 hidden layers, each with a dimension of 64 and an output dimension of 3, with around 50K parameters in total. Our
current architectures are not equivariant to global rotations and translations, which is a desirable property in protein docking
as the structures of the proteins themselves are invariant to the choice of reference coordinates frames. We leave a thorough
exploration of other architectures, such as equivariant GNN architectures similar to those adopted in [Ganea et al., 2022] to
future work.

3.3 HYPERPARAMETERS

In the following, we will provide an overview of the selected hyperparameters as well as chosen training procedures.

3.3.1 Synthetic Tasks

We perform hyper-parameter optimization using the Python package ray . tune [Liaw et al., 2018] on:

* activation, chosen among leaky_relu, relu, selu and silu as implemented in the Python library PyTorch [Paszke
et al., 2019]. We find selu to achieve marginally better performance on toy datasets.

* g, the value of the diffusivity constant, chosen among {1,2,5,10}. We find g = 1 to yield optimal results.

3.3.2 Cell Differentiation

We perform hyper-parameter optimization using the Python package ray . tune [Liaw et al., 2018] on:

* activation, chosen among leaky_relu, relu, selu, and silu as implemented in the Python library PyTorch [Paszke
et al., 2019]. We observe that silu brings noticeable performance improvements on the cell differentiation dataset.

* g, the value of the diffusivity constant, chosen among {0.01,0.1,0.8,1,1.2,2,5}. We find g = 1 to yield optimal
results.

3.3.3 Protein Conformational Changes

We use AdamW as our optimizer with a initial learning rate of 0.001, and training batch size of 2. For each protein pair, we
sample 10 timepoints in every epoch, so the model sees realizations from different timepoints of the corresponding Brownian
Bridge. This was done to improve the training speed. We use a regularization strength of 1.0 for m? for all ¢. Inference on
the validation set using training is carried out using the exponential moving average of parameters, and the moving average
is updated every optimization step with a decay rate of 0.9. The model training is set to a maximum of 1000 epochs but
training is typically stopped after 200 epochs beyond which no improvements in the validation metrics are observed.

Our model has 0.54M parameters and is trained for 200 epochs. After every epoch, we simulate trajectories on the validation
set using our model and compute the mean RMSD. The best model selected using this procedure is used for inference on the
test set. The baseline EGNN model has 0.76M parameters and is trained for 1000 epochs.

3.3.4 Rigid Protein Docking

We use ADAM as our optimizer with a learning rate of 0.001, and training batch size of 2. For each ligand, we sample 5
timepoints during every training epoch so that the model is exposed to different timepoints from the corresponding Brownian
Bridge for each ligand. This number was chosen as a tradeoff between CUDA memory and coverage of timepoints between
0 and 1. We use a regularization strength of 1.0 for m? for all ¢. Inference on the validation set using training is carried
out using the exponential moving average of parameters, and the moving average is updated every optimization step with
a decay rate of 0.999. The model training is set to a maximum of 1000 epochs but training is typically stopped after 100
epochs beyond which no improvements in the validation metrics are observed.

4 REPRODUCIBILITY

Code utilized in this publication can be found at https://github.com/vsomnath/aligned_diffusion_bridges, with
a mirror at https://github.com/IBM/aligned_diffusion_bridges.
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