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Abstract

Diffusion Schrödinger bridges (DSB) have re-
cently emerged as a powerful framework for recov-
ering stochastic dynamics via their marginal ob-
servations at different time points. Despite numer-
ous successful applications, existing algorithms
for solving DSBs have so far failed to utilize the
structure of aligned data, which naturally arises
in many biological phenomena. In this paper, we
propose a novel algorithmic framework that, for
the first time, solves DSBs while respecting the
data alignment. Our approach hinges on a com-
bination of two decades-old ideas: The classical
Schrödinger bridge theory and Doob’s h-transform.
Compared to prior methods, our approach leads to
a simpler training procedure with lower variance,
which we further augment with principled regular-
ization schemes. This ultimately leads to sizeable
improvements across experiments on synthetic and
real data, including the tasks of predicting confor-
mational changes in proteins and temporal evolu-
tion of cellular differentiation processes.

1 INTRODUCTION

The task of transforming a given distribution into another
lies at the heart of many modern machine learning
applications such as single-cell genomics (Tong et al., 2020;
Schiebinger et al., 2019; Bunne et al., 2022a), meteorology
(Fisher et al., 2009), and robotics (Chen et al., 2021a). To
this end, diffusion Schrödinger bridges (De Bortoli et al.,
2021; Chen et al., 2022a; Vargas et al., 2021; Liu et al.,
2022b) have recently emerged as a powerful paradigm due
to their ability to generalize prior deep diffusion-based mod-
els, notably score matching with Langevin dynamics (Song
and Ermon, 2019; Song et al., 2021) and denoising diffusion
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Figure 1: Overview of SBALIGN: In biological tasks such as
protein docking, one is naturally provided with aligned data
in the form of unbound and bound structures of participating
proteins. Our goal is to therefore recover a stochastic tra-
jectory from the unbound (x0) to the bound (x1) structure.
To achieve this, we connect the characterization of an SDE
conditioned on x0 and x1 (utilizing the Doob’s h-transform)
with that of a Brownian bridge between x0 and x1 (classical
Schrödinger bridge theory). We show that this leads to a
simpler training procedure with lower variance and strong
empirical results.

probabilistic models (Ho et al., 2020), which have achieved
the state-of-the-art on many generative modeling problems.

Despite the wide success of DSBs solvers, a significant
limitation of existing frameworks is that they fail to cap-
ture the alignment of data: If P̂0, P̂1 are two (empirical)
distributions between which we wish to interpolate, then a
tacit assumption in the literature is that the dependence of
P̂0 and P̂1 is unknown and somehow has to be recovered.
Such an assumption, however, ignores important scenar-
ios where the data is aligned, meaning that the samples
from P̂0 and P̂1 naturally come in pairs (xi0,x

i
1)
N
i , which

is common in many biological phenomena. Proteins, for
instance, undergo conformational changes upon interactions
with other biomolecules (protein docking, see Fig. 1). The
goal is to model conformational changes by recovering a
(stochastic) trajectory xt based on the positions observed at
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two-time points (x0,x1). Failing to incorporate this align-
ment would mean that we completely ignore information on
the correspondence between the initial and final points of
the molecules, resulting in a much harder problem than nec-
essary. Beyond, the recent use of SBs has been motivated
by an important task in molecular biology: Cells change
their molecular profile throughout developmental processes
(Schiebinger et al., 2019; Bunne et al., 2022b) or in response
to perturbations such as cancer drugs (Lotfollahi et al., 2019;
Bunne et al., 2021). As most measurement technologies are
destructive assays, i.e., the same cell cannot be observed
twice nor fully profiled over time, these methods aim at re-
constructing cell dynamics from unpaired snapshots. Recent
developments in molecular biology, however, aim at over-
coming this technological limitation. For example, Chen
et al. (2022b) propose a transcriptome profiling approach
that preserves cell viability. Weinreb et al. (2020) capture
cell differentiation processes by clonally connecting cells
and their progenitors through barcodes (see Appendix).

Motivated by these observations, the goal of this paper
is to propose a novel algorithmic framework for solving
DSBs with (partially) aligned data. Our approach is in
stark contrast to existing works which, due to the lack
of data alignment, all rely on some variants of iterative
proportional fitting (IPF) (Fortet, 1940; Kullback, 1968) and
are thus prone to numerical instability. On the other hand,
via a combination of the original theory of Schrödinger
bridges (Schrödinger, 1931; Léonard, 2013) and the key
notion of Doob’s h-transform (Doob, 1984; Rogers and
Williams, 2000), we design a novel loss function that
completely bypasses the IPF procedure and can be trained
with much lower variance.

To summarize, we make the following contributions:

• To our best knowledge, we consider, for the first time,
the problem of interpolation with aligned data. We rig-
orously formulate the problem in the DSB framework.

• Based on the theory of Schrödinger bridges and h-
transform, we derive a new loss function that, unlike
prior work on DSBs, does not require an IPF-like pro-
cedure to train. We also propose principled regulariza-
tion schemes to further stabilize training.

• We describe how interpolating aligned data can pro-
vide better reference processes for use in classical
DSBs, paving the way to hybrid aligned/non-aligned
Schrödinger bridges (SBs).

• We evaluate our proposed framework on both synthetic
and real data. For experiments utilizing real data, we
consider two tasks where such aligned data is naturally
available. The first is the task of developmental
processes in single-cell biology, and the second
involves protein docking. For the protein docking
task, a comprehensive treatment is elusive, owing to
lack of appropriate datasets. Instead, we consider two

associated subproblems: (i) modeling conformational
changes between unbound and bound states of a
protein, and (ii) rigid protein docking, i.e., identifying
the best relative orientation. Our method demonstrates
a considerable improvement over prior methods across
various metrics, thereby substantiating the importance
of taking the data alignment into account.

Related work. Solving DSBs is a subject of significant
interest in recent years and has flourished in a number of
different algorithms (De Bortoli et al., 2021; Chen et al.,
2022a; Vargas et al., 2021; Bunne et al., 2023; Liu et al.,
2022a). However, all these previous approaches focus on
unaligned data, and therefore the methodologies all rely
on IPF and are hence drastically different from ours. In
the experiments, we will demonstrate the importance of
considering the alignment of data.

An important ingredient in our theory is Doob’s h-transform,
which has recently also been utilized by Liu et al. (2023)
to solve the problem of constrained diffusion. However,
their fundamental motivation is different from ours. Liu
et al. (2023) focus on learning the drift of the diffusion
model and the h-transform together, whereas ours is to read
off the drift from the h-transform with the help of aligned
data. Consequently, there is no overlap between the two
algorithms and their intended applications.

To the best of our knowledge, the concurrent work of Tong
et al. (2023) is the only existing framework that can tackle
aligned data, which, however, is not their original motiva-
tion. In the context of solving DSBs, their algorithm can
be seen as learning a vector field that generates the correct
marginal probability (cf. Tong et al., 2023, Proposition 4.3).
Importantly, this is different from our aim of finding the
pathwise optimal solution of DSBs: If (xi0,test)

m
i=1 is a test

data set for which we wish to predict their destinations, then
the framework of Tong et al. (2023) can only ensure that the
marginal distribution (xi1,test)

m
i=1 is correct, whereas ours is

capable of predicting that xi1,test is precisely the destination
of xi0,test for each i. This latter property is highly desirable
in tasks like ML-accelerated protein docking.

To solve aligned SB problems, we rely on mixtures of diffu-
sion processes. Like in Peluchetti (2023), we construct them
from pairings and define an associated training objective
inspired by score-based modeling. However, we represent
the learned drift as a sum of the solution to an SB problem
(b) and a pairing-related term (∇ log h). We parametrize the
second part of the drift with neural networks, unlike Schauer
et al. (2017) which use an auxiliary (simpler) process.

2 BACKGROUND

Problem formulation. Suppose that we are given access
to i.i.d. aligned data (xi0,x

i
1)
N
i=1, where the marginal distri-

1986



bution of xi0’s is P̂0 and of xi1’s is P̂1. Typically, we view P̂0

as the empirical marginal distribution of a stochastic process
at time t = 0, and P̂1 as the empirical marginal observed at
t = 1. The goal is to reconstruct the stochastic process Pt
based on (xi0,x

i
1)
N
i=1, i.e., to transform P̂0 into P̂1.

Such a task is ubiquitous in biological applications.
For instance, understanding how proteins dock to other
biomolecules is of significant interest in biology and has
become a topic of intense study in recent years (Ganea et al.,
2022; Tsaban et al., 2022; Corso et al., 2023). In the pro-
tein docking task, xi0 represents the 3D structures of the
unbound proteins, while xi1 represents the 3D structure of
the bound complex. Reconstructing a stochastic process
that diffuses xi0’s to xi1’s is tantamount to recovering the
energy landscape governing the docking process. Similarly,
in molecular dynamics simulations, we have access to tra-
jectories

(
xit
)
t∈[0,1], where xi0 and xi1 represent the initial

and final positions of the i-th molecule respectively. Any
learning algorithm using these simulations should be able
to respect the provided alignment.

Diffusion Schrödinger bridges. To solve the interpola-
tion problem, in Section 3, we will invoke the framework of
DSBs, which are designed to solve interpolation problems
with unaligned data. More specifically, given two marginals
P̂0 and P̂1, the DSB framework proceeds by first choosing
a reference process Qt using prior knowledge, for instance
a simple Brownian motion, and then solve the entropy-
minimization problem over all stochastic processes Pt:

min
P0=P̂0, P1=P̂1

DKL(Pt‖Qt). (SB)

Despite the fact that many methods exist for solving (SB)
(De Bortoli et al., 2021; Chen et al., 2022a; Vargas et al.,
2021; Bunne et al., 2023), none of these incorporate data
alignment. This can be seen by inspecting the objective
(SB), in which the coupling information (xi0,x

i
1) is com-

pletely lost as only its individual marginals P̂0, P̂1 play a
role therein. Unfortunately, it is well-known that tackling the
marginals separately necessitates a forward-backward learn-
ing process known as the iterative proportional fitting (IPF)
procedure (Fortet, 1940; Kullback, 1968), which constitutes
the primary reason of high variance training, thereby con-
fronting DSBs with numerical and scalability issues. Our
major contribution is therefore to devise the first algorith-
mic framework that solves the interpolation problem with
aligned data without resorting to IPF.

3 ALIGNED DIFFUSION SCHRÖDINGER
BRIDGES

In this section, we derive a novel loss function for DSBs
with aligned data by combining two classical notions: The

theory of Schrödinger bridges (Schrödinger, 1931; Léonard,
2013; Chen et al., 2021b) and Doob’s h-transform (Doob,
1984; Rogers and Williams, 2000). We then describe how
solutions to DSBs with aligned data can be leveraged in the
context of classical DSBs.

3.1 LEARNING ALIGNED DIFFUSION
SCHRÖDINGER BRIDGES

Static SB and aligned data. Our starting point is the
simple and classical observation that (SB) is the continuous-
time analogue of the entropic optimal transport, also known
as the static Schrödinger bridge problem (Léonard, 2013;
Chen et al., 2021b; Peyré and Cuturi, 2019):

π? := argmin
P0=P̂0, P1=P̂1

DKL(P0,1‖Q0,1) (1)

where the minimization is over all couplings of P̂0 and P̂1,
and Q0,1 is simply the joint distribution of Qt at t = 0, 1. In
other words, if we denote by P?t the stochastic process that
minimizes (SB), then the joint distribution P?0,1 necessarily
coincides with the π? in (1). Moreover, since in DSBs, the
data is always assumed to arise from P?t , we see that:

The aligned data (xi0,x
i
1)
N
i=1 constitutes samples

of π?.

This simple but crucial observation lies at the heart of all
derivations to come.

Our central idea is to represent P?t via two different, but
equivalent, characterizations, both of which involve π?:
That of a mixture of reference processes with pinned end
points, and that of conditional stochastic differential equa-
tions (SDEs).

P?t from π?: Qt with pinned end points. For illustration
purposes, we will assume that the reference process Qt is a
Brownian motion with diffusion coefficient gt:*

dQt = gt dWt. (2)

In this case, it is well-known that Qt conditioned to start at
x0 and end at x1 can be written in another SDE (Mansuy
and Yor, 2008; Liu et al., 2023):

dXt = g2t
x1 −Xt

β1 − βt
dt+ gt dWt (3)

where X0 = x0 and

βt :=

∫ t

0

g2s ds. (4)

*Extension to more involved reference processes is con-
ceptually straightforward but notationally clumsy. Furthermore,
reference processes of the form (2) are dominant in practical
applications (Song et al., 2021; Bunne et al., 2023), so we omit
the general case.
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We call the processes in (3) the scaled Brownian bridges
as they generalize the classical Brownian bridge, which
corresponds to the case of gt ≡ 1.

The first characterization of P?t is then an immediate conse-
quence the following classical result in Schrödinger bridge
theory: Draw a sample (x0,x1) ∼ π? and connect them via
(3). The resulting path is a sample from P?t (Léonard, 2013;
Chen et al., 2021b). In other words, P?t is a mixture of scaled
Brownian bridges, with the mixing weight given by π?.

P?t from π?: SDE representation. Another characteriza-
tion of P?t is that it is itself given by an SDE of the form
(Léonard, 2013; Chen et al., 2021b)

dXt = g2t bt(Xt) dt+ gt dWt. (5)

Here, bt : Rd → Rd is a time-dependent drift function that
we wish to learn.

Now, by Doob’s h-transform, we know that the SDE (5)
conditioned to start at x0 and end at x1 is given by another
SDE (Doob, 1984; Rogers and Williams, 2000):

dXt = g2t [bt(Xt) +∇ log ht(Xt)] dt+ gt dWt (6)

where ht(x) := P(X1 = x1|Xt = x) is the Doob’s h
function. Notice that we have suppressed the dependence of
ht on x0 and x1 for notational simplicity.

Loss function. Since both (3) and (6) represent P?t , the
solution of the DSBs, the two SDEs must coincide. In other
words, suppose we parametrize bt as bθt , then, by matching
terms in (3) and (6), we can learn the optimal parameter θ?

via optimization of the loss function

L(θ) := E

[∫ 1

0

∥∥∥∥
x1 −Xt

β1 − βt
−∇ log hθt (Xt)

∥∥∥∥
2

dt

]
(7)

where hθt depends on bθt as well as the drawn samples
(x0,x1). This is the case since ht is defined as an expec-
tation using trajectories sampled under bθt with given end-
points. Therefore, assuming that, for each θ, we can compute
hθt based only on bθt , we can then backprop through (7) and
optimize it using any off-the-shelf algorithm.

A slightly modified (7). Even with infinite data and a
neural network with sufficient capacity, the loss function
defined in (7) does not converge to 0. For the purpose of
numerical stability, we instead propose to modify (7) to:

L(θ) := E

[∫ 1

0

∥∥∥∥
x1 −Xt

β1 − βt
−
(
bθt +∇ log hθt (Xt)

)∥∥∥∥
2

dt

]

(8)
which is clearly equivalent to (7) at the true solution of bt.
Notice that (8) bears a similar form as the popular score-
matching objective employed in previous works (Song and

Algorithm 1 SBALIGN

Input: Aligned data (xi0,x
i
1)
N
i=1, learning rates γθ, γφ,

number of iterations K
Initialize θ ← θ0, φ← φ0.
for k = 1 to K do

Draw a mini-batch of samples from (xi0,x
i
1)
N
i=1

Compute empirical average of (12) with mini-batch.
Update φ← φ− γφ∇L(θ, φ)
Update θ ← θ − γθ∇L(θ, φ)

end for

Ermon, 2019; Song et al., 2021):

L(θ) := E
[∫ 1

0

∥∥∇ log p(xt|x0)− sθ(Xt, t)
∥∥2 dt

]
, (9)

where the term x1−Xt

β1−βt
is akin to ∇ log p(xt|x0), while(

bθt +∇ log hθt (Xt)
)

corresponds to sθ(Xt, t).

Computing hθt . Inspecting ht in (6), we see that, given
(x0,x1), it can be written as the conditional expectation of
an indicator function:

ht(x) = P(X1 = x1|Xt = x) = E
[
1{x1} |Xt = x

]

(10)
where the expectation is over (5). Functions of the form (10)
lend itself well to computation since it solves simulating
the unconditioned paths. Furthermore, in order to avoid
overfitting on the given samples, it is customary to replace
the “hard” constraint 1{x1} by its smoothed version (Zhang
and Chen, 2022; Holdijk et al., 2022):

ht,τ (x) := E
[
exp

(
− 1

2τ
‖X1 − x1‖2

)
|Xt = x

]
. (11)

Here, τ is a regularization parameter that controls how much
we “soften” the constraint, and we have limτ→0 ht,τ = ht.

Although the computation of (11) can be done via a stan-
dard application of the Feynman–Kac formula (Rogers
and Williams, 2000), an altogether easier approach is to
parametrize ht,τ by a second neural network mφ and per-
form alternating minimization steps on bθt and mφ. This
choice reduces the variance in training, since it avoids the
sampling of unconditional paths described by (5) (see Ap-
pendix for a detailed explanation).

Regularization. Since it is well-known that∇ log ht typi-
cally explodes when t→ 1 (Liu et al., 2023), it is important
to regularize the behavior of mφ for numerical stability,
especially when t → 1. Moreover, in practice, it is desir-
able to learn a drift bθt that respects the data alignment in
expectation: If (x0,x1) is an input pair, then multiple runs
of the SDE (5) starting from x0 should, on average, produce
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samples that are in the proximity of x1. This observation im-
plies that we should search for drifts whose corresponding
h-transforms are diminishing.

A simple way to simultaneously achieve the above two
requirements is to add an `2-regularization term, resulting
in the loss function:

L(θ, φ) := E

[∫ 1

0

∥∥∥∥
x1 −Xt

β1 − βt
−
(
bθt +mφ(Xt)

)∥∥∥∥
2

(12)

+ λt‖mφ(xt)‖2 dt
]

where λt can either be constant or vary with time. The
overall algorithm is depicted in Algorithm 1.

3.2 PAIRED SCHRÖDINGER BRIDGES AS PRIOR
PROCESSES

Our algorithm finds solutions to SBs on aligned data by rely-
ing on samples drawn from the (optimal) coupling π?. This
is what differentiates it from classical SBs –which instead
only consider samples from P̂0 and P̂1– and plays a critical
role in avoiding IPF-like iterates. However, SBALIGN re-
liance on samples from π? may become a limitation, when
the available information on alignments is insufficient.

If the number of pairings is limited, it is unrealistic to hope
for an accurate solution to the aligned SB problem. However,
the interpolation between P̂0 and P̂1 learned by SBALIGN
can potentially be leveraged as a starting point to obtain a
better reference process, which can then be used when solv-
ing a classical SB on the same marginals. In other words, the
drift baligned

t (Xt) learned through SBALIGN can be used as
is to construct a data-informed alternative Q̃ to the standard
Brownian motion, defined by paths:

X̃t = baligned
t (X̃t)dt+ gtdWt

Intuitively, solving a standard SB problem with Q̃ as ref-
erence is beneficial because the (imperfect) coupling of
marginals learned by SBALIGN (Q̃01) is, in general, closer
to the truth than Q01.

Improving reference processes through pre-training or data-
dependent initialization has been previously considered in
the literature. For instance, both De Bortoli et al. (2021)
and Chen et al. (2022a) use a pre-trained reference process
for challenging image interpolation tasks. This approach,
however, relies on DSBs trained using the classical score-
based generative modeling objective between a Gaussian
and the data distribution. It, therefore, pre-trains the ref-
erence process on a related –but different– process, i.e.,
the one mapping Gaussian noise to data rather than P̂0 to
P̂1. An alternative, proposed by Bunne et al. (2023) draws
on the closed-form solution of SBs between two Gaussian
distributions, which are chosen to approximate P̂0 and P̂1,

respectively. Unlike our method, these alternatives construct
prior drifts by falling back to simpler and related tasks, or
approximations of the original problem. We instead propose
to shape a coarse-grained description of the drift based on
alignments sampled directly from π?01.

4 EXPERIMENTS

In this section, we evaluate SBALIGN in different settings
involving 2-dimensional synthetic datasets, the task of re-
constructing cellular differentiation processes, as well as
predicting the conformation of a protein structure and its
ligand formalized as rigid protein docking problem.

4.1 SYNTHETIC EXPERIMENTS

We run our algorithm on two synthetic datasets (Figures in
Appendix), and compare the results with classic diffusion
Schrödinger bridge models, i.e., the forward-backward SB
formulation proposed by Chen et al. (2022a), herein referred
to as FBSB. We equip the baseline with prior knowledge, as
elaborated below, to further challenge SBALIGN.

Moon dataset. The first synthetic dataset (Fig. 2a-c) con-
sists of two distributions, each supported on two semi-circles
(P̂0 drawn in blue and P̂1 in red). P̂1 was obtained from P̂0

by applying a clockwise rotation around the center, i.e., by
making points in the upper blue arm correspond to those
in the right red one. This transformation is clearly not the
most likely one under the assumption of Brownian motion
of particles and should therefore not be found as the solution
of a classical SB problem. This is confirmed by FBSB tra-
jectories (Fig. 2a), which tend to map points to their closest
neighbor in P̂1 (e.g., some points in the upper arm of P̂0

are brought towards the left rather than towards the right).
While being a minimizer of (SB), such a solution completely
disregards our prior knowledge on the alignment of parti-
cles, which is instead reliably reproduced by the dynamics
learned by SBALIGN (Fig. 2c).

One way of encoding this additional information on the
nature of the process is to modify Qt by introducing a clock-
wise radial drift, which describes the prior tangential veloc-
ity of particles moving circularly around the center. Solving
the classical SB with this updated reference process indeed
generates trajectories that respect most alignments (Fig. 2b),
but requires a hand-crafted expression of the drift that is
only possible in very simple cases.

T dataset. In most real-world applications, it is very dif-
ficult to define an appropriate reference process Qt, which
respects the known alignment without excessively distorting
the trajectories from a solution to (SB). This is already visi-
ble in simple examples like (Fig. 2d-f), in which the value

1989



Figure 2: Experimental results on the Moon dataset (a-c) and T-dataset (d-f). The top row shows the trajectory sampled
using the learned drift, and the bottom row shows the matching based on the learnt drift. Compared to other baselines,
SBALIGN is able to learn an appropriate drift respecting the true alignment. (f) further showcases the utility of SBALIGN’s
learnt drift as a suitable reference process to improve other training methods.

of good candidate prior drifts at a specific location needs
to vary wildly in time. In this dataset, P̂0 and P̂1 are both
bi-modal distributions, each supported on two of the four
extremes of an imaginary T-shaped area. We target align-
ments that connect the two arms of the T as well as the top
cloud with the bottom one. We succeed in learning them
with SBALIGN (Fig. 2e) but unsurprisingly fail when using
the baseline FBSB (Fig. 2d) with a Brownian motion prior.

In this case, however, attempts at designing a better
reference drift for FBSB must take into account the
additional constraint that the horizontal and vertical particle
trajectories intersect (see Fig. 2e), i.e., they cross the
same area at times th and tv (with th > tv). This implies
that the drift bt, which initially points downwards (when
t < tv), should swiftly turn rightwards (for t > th). Setting
imprecise values for one of th and tv when defining custom
reference drifts for classical SBs would hence not lead to
the desired result and, worse, would actively disturb the
flow of the other particle group.

As described in § 3.2, in presence of hard-to-capture require-
ments on the reference drift, the use of SBALIGN offers a
remarkably easy and efficient way of learning a parameter-
ization of it. For instance, when using the drift obtained by
SBALIGN as reference drift for the computation of the SB
baseline (FBSB), we find the desired alignments (Fig. 2f).

4.2 CELL DIFFERENTIATION

Biological processes are determined through heterogeneous
responses of single cells to external stimuli, i.e., develop-
mental factors or drugs. Understanding and predicting the
dynamics of single cells subject to a stimulus is thus crucial
to enhance our understanding of health and disease and

the focus of this task. Most single-cell high-throughput
technologies are destructive assays —i.e., they destroy cells
upon measurement— allowing us to only measure unaligned
snapshots of the evolving cell population. Recent methods
address this limitation by proposing (lower-throughput)
technologies that keep cells alive after transcriptome profil-
ing (Chen et al., 2022b) or that genetically tag cells to obtain
a clonal trace upon cell division (Weinreb et al., 2020).

Dataset. To showcase SBALIGN’s ability to make use of
such (partial) alignments when inferring cell differentiation
processes, we take advantage of the genetic barcoding sys-
tem developed by Weinreb et al. (2020). With a focus on
fate determination in hematopoiesis, Weinreb et al. (2020)
use expressed DNA barcodes to clonally trace single-cell
transcriptomes over time. The dataset consists of two snap-
shots: the first, recorded on day 2, when most cells are still
undifferentiated (see Fig. 4a), and a second, on day 4, com-
prising many different mature cell types (see Fig. 4b). Using
SBALIGN as well as the baseline FSSB, we attempt to re-
construct cell evolution between day 2 and day 4, all while
capturing the heterogeneity of emerging cell types. More
details on the dataset can be found in the Appendix.

Baselines. We benchmark SBALIGN against previous
DSBs such as (Chen et al., 2022a, FBSB) and also use it
to learn a prior reference process. Cell division processes
and subsequently the propagation of the barcodes are
naturally very noisy. While this genetic annotation provides
some form of assignment, it does not capture the full
developmental process. We thus test SBALIGN in a setting
where it learns a prior from such partial alignments and,
plugged into FBSB, is fine-tuned on the full dataset.
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Figure 3: Cell differentiation trajectories based on (a) the ground truth and (b-d) learned drifts. SBALIGN is able to learn an
appropriate drift underlying the true differentiation process while respecting the alignment. (d) Using the learned drift from
SBALIGN as a reference process helps improve the drift learned by other training methods.
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fbSB Cell Types

Figure 4: Cell type prediction on the differentiation dataset. All distributions are plotted on the first two principal components.
a-b: Ground truth cell types on day 2 and day 4 respectively. c-d: FBSB and SBALIGN cell type predictions on day 4.
SBALIGN is able to better model the underlying differentiation processes and capture the diversity in cell types.

Evaluation metrics. To assess the performance of
SBALIGN and the baselines, we monitor several metrics,
which include distributional distances, i.e., MMD (Gret-
ton et al., 2012) and Wε (Cuturi, 2013), as well as average
(perturbation scores), i.e., `2(PS) (Bunne et al., 2022a) and
RMSD. Moreover, we also train a simple neural network-
based classifier to annotate the cell type on day 4 and we
report the accuracy of the predicted vs. actual cell type for
all the models (more details in the Appendix).

Results. SBALIGN finds matchings between cell states on
days 2 and 4 (Fig. 3c, bottom) which resemble the observed
ones (Fig. 3a) but also reconstructs the entire evolution
path of transcriptomic profiles (Fig. 3c, top). It outperforms
the baseline FBSB (Tab. 1) in all metrics: Remarkably, our
method exceeds the performances of the baseline also on

distributional metrics and not uniquely on alignment-based
ones. We also leverage SBALIGN predictions to recover
the type of cells at the end of the differentiation process
(Fig. 4d): We train a classifier on differentiated cells ob-
served on day 4, and subsequently classify our predictions.
While capturing the overall differentiation trend, SBALIGN
(as well as FBSB) struggles to isolate rare cell types. Lastly,
we employ SBALIGN to learn a prior process from noisy
alignments based on genetic barcode annotations. When
using this reference process within FBSB, we learn an SB
which compensates for inaccuracies stemming from the
stochastic nature of cell division and barcode redistribution
and which achieves better scores on distributional metrics
(Tab. 1). Additional results can be found in the Appendix.
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Table 1: Cell differentiation prediction results. Means and
standard deviations (in parentheses) of distributional metrics
(MMD, Wε), alignment-based metrics (`2, RMSD), and cell
type classification accuracy.

Cell Differentiation

Methods MMD ↓ Wε ↓ `2(PS) ↓ RMSD ↓ Class. Acc. ↑

FBSB
1.55e-2

(0.03e-2)
12.50
(0.04)

4.08
(0.04)

9.64e-1
(0.02e-1)

56.2%
(0.7%)

FBSB with
SBALIGN

5.31e-3
(0.25e-3)

10.54
(0.08)

0.99
(0.12)

9.85e-1
(0.07e-1)

47.0%
(1.5%)

SBALIGN
1.07e-2

(0.01e-2)
11.11
(0.02)

1.24
(0.02)

9.21e-1
(0.01e-1)

56.3%
(0.7%)

4.3 PROTEIN DOCKING

Proteins are dynamic, flexible biomolecules that form com-
plexes upon interaction with other biomolecules. This is
a central step in many biological processes, namely sig-
nal transduction, DNA replication, and repair. The forma-
tion of complexes is guided by appropriate energetics, best
orienting the participating proteins relative to each other,
along with a dynamic alteration in structure (conformational
changes). Modelling this process is thus a central problem
in biology and could allow one to engineer protein inter-
actions for desired responses. In (computational) protein
docking, the goal is to predict the 3D structure of the bound
(docked) state of a protein pair, given the unbound states
of the corresponding proteins. These proteins are denoted
(arbitrarily) as the ligand and receptor respectively.

A comprehensive treatment of the protein docking prob-
lem is still elusive, owing to the lack of high-quality large
datasets comprising 3D structures of participating proteins
in the unbound and bound states. We tackle, instead, two re-
lated subproblems: (i) prediction of conformational changes
between unbound and bound states of proteins and (ii) iden-
tification of the best orientation between interacting proteins,
modeled as rigid bodies. This separation into related sub-
problems was also adopted in (Dominguez et al., 2003), one
of the earliest works for the full protein docking problem.

4.3.1 Conformational Changes in Proteins

In this task, we are interested in predicting the 3D structure
of the bound state of a protein, given the 3D structure in the
unbound state. While it is possible to frame this problem
as a (conditional) point cloud translation, an approach us-
ing Schrödinger bridges is more natural since it leverages
the flexibility of proteins and accounts for the underlying
stochasticity in the conformational change process.

Dataset. The task of modeling conformational changes
starting from a given protein structure is largely unexplored,

mainly due to the lack of high-quality large datasets. Here
we utilize the recently proposed D3PM dataset (Peng et al.,
2022) that provides protein structures before (apo) and af-
ter (holo) binding, covering various types of protein mo-
tions. We generate samples by collecting Protein Data Bank
(PDB) entries containing the same protein bound to differ-
ent biomolecules and applying additional quality-control
criteria. We only focus on protein pairs where the provided
Root Mean Square Deviation (RMSD) of the Cα carbon
atoms between unbound and bound 3D structures is> 3.0Å,
which amounts to 2370 examples in the D3PM dataset.

For each pair of structures, we first identify common
residues and compute the RMSD between Cα carbon atoms
of the common residues after superposition using the Kab-
sch (Kabsch, 1976) algorithm. The pair is accepted only if
the relative error between the computed and provided Cα
RMSD is less than 0.1. The rationale here is to only retain
examples where we can reconstruct the provided RMSD
values. The resulting dataset has 1591 examples, which is
then divided into a train/valid/test split of 1291/150/150
examples respectively (see Appendix).

Baselines. Since the goal of the task is to predict 3D struc-
tures, our model must satisfy the relevant SE(3) symme-
tries of rotation and translations. To this end, we evaluate
SBALIGN against the EGNN model (Satorras et al., 2021),
which satisfies the SE(3) symmetries and is a popular ar-
chitecture used in many point-cloud transformation tasks
(Satorras et al., 2021; Hoogeboom et al., 2022).

Table 2: Conformational changes results. RMSD between
predicted and true structures in the bound state. The first
term (parentheses) refers to the number of poses sampled,
and the second term refers to the number of simulation steps.

D3PM Test Set
RMSD (Å) % RMSD (Å) < τ

Methods Median Mean Std τ = 2 τ = 5 τ = 10

EGNN 19.99 21.37 8.21 1% 1% 3%
SBALIGN (10, 10) 3.80 4.98 3.95 0% 69% 93%
SBALIGN (10, 100) 3.81 5.02 3.96 0% 70% 93%

Results. To evaluate our model, we report (Tab. 2) sum-
mary statistics of the RMSD between the Cα carbon atoms
of the predicted structure and the ground truth, and the frac-
tion of predictions with RMSD values< 2.0, 5.0 and 10.0Å.
SBALIGN outperforms EGNN by a large margin and is
able to predict almost 70% examples with an RMSD< 5Å.
One of the drawbacks attributed to diffusion models is their
slow sampling speed, owing to multiple function calls to a
neural network. Remarkably, our model is able to achieve
impressive performance with just 10 steps of simulation.
We leave it to future work to explore the tradeoff between
sampling speed and quality of the predicted conformations.
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Figure 5: Ground truth and predicted bound structures for the complex with PDB ID: 1QA9. SBALIGN is able to find the
true binding interface compared to EQUIDOCK

Table 3: Rigid docking results. Complex and interface
RMSD between predicted and true bound structures (after
Kabsch alignment). Comparison with values reported in
(Ganea et al., 2022) can be found in the Appendix.

DB5.5 Test Set
Complex RMSD Interface RMSD

Methods Median Mean Std Median Mean Std

EQUIDOCK 14.12 14.73 5.31 11.97 13.23 4.93
SBALIGN 6.59 6.69 2.04 7.69 8.11 2.39

4.3.2 Rigid Protein Docking

In this task, we want to identify the best relative orientation
between the two proteins, modeled as rigid bodies.

Experimental setup. Our setup follows a similar conven-
tion as EQUIDOCK (Ganea et al., 2022). To summarize, the
unbound structure of the ligand is derived by applying a
random rotation and translation to the corresponding bound
structure, while the receptor is held fixed w.l.o.g. Applying
a different rotation and translation to each ligand can how-
ever result in a different Brownian bridge for each complex,
resulting in limited meaningful signal for learning bθt . To
avoid this, we sample a rotation and translation at the start
of training and apply the same rotation and translation to
all complexes across training, validation, and testing (more
details in the Appendix).

Dataset. We evaluate our method on the DB5.5 dataset
(Vreven et al., 2015) which is a standard choice for protein-
protein docking but contains only 253 complexes. We use
the same splits as EquiDock (Ganea et al., 2022) –containing
203/25/25 complexes in the training, validation and test sets
respectively– and show the results in Tab. 3. For ligands in
the test set, we generate the corresponding unbound versions
by applying the rotation and translation sampled during
training. We compare our method to EQUIDOCK as well as
to traditional docking software (see Appendix for details).

Evaluation metrics. We report two metrics, Complex
RMSD and Interface RMSD. Following (Ganea et al., 2022),
we first superimpose the ground truth and the predicted com-
plex structures using the Kabsch algorithm (Kabsch, 1976),
and then calculate Complex RMSD. A similar procedure
is used for computing Interface RMSD, but only using the
residues from the two proteins that are within 8Å of each
other (see Appendix for more details).

Results. SBALIGN considerably outperforms EQUIDOCK
across all metrics (Table 3). An example of docked struc-
tures, in direct comparison with EQUIDOCK is displayed in
Fig. 5, with more visualizations & results in the Appendix.

Future outlook. In this section, we presented a proof of
concept application of SBALIGN for the subproblems asso-
ciated with the protein docking task. While SBALIGN pro-
vides a principled method to model conformational changes,
our setup for rigid protein docking is limited by utilizing the
same rotation and translation across training and testing. A
combination of SBALIGN for conformational change mod-
eling, with more recent methods for rigid-protein docking
(Ketata et al., 2023) can provide a complete solution for the
protein docking task, which we leave to future work.

5 CONCLUSION

In this paper, we propose a new framework to tackle the in-
terpolation task with aligned data via diffusion Schrödinger
bridges. Our central contribution is a novel algorithmic
framework derived from the Schrödinger bridge theory and
Doob’s h-transform. Via a combination of the two notions,
we derive novel loss functions which, unlike all prior meth-
ods for solving diffusion Schrödinger bridges, do not rely
on the iterative proportional fitting procedure and are hence
numerically stable. We verify our proposed algorithm on var-
ious synthetic and real-world tasks and demonstrate notice-
able improvement over the previous state-of-the-art, thereby
substantiating the claim that data alignment is a highly rele-
vant feature that warrants further research.
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