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1 EXTRA ILLUSTRATION

1.1 DIRICHLET DISTRIBUTION ILLUSTRATION

Given different values of the concentration parameter α for the Dirichlet distribution, datasets with different degrees of
heterogeneity can be generated. In particular, higher values of α lead to a more uniform distribution, indicating that each
client has an almost equally weighted combination of labels. Lower values of α imply weights concentrated more heavily
on only one of the labels, or more extreme label membership. Table 1 is an example of Dirichlet distribution used in the
experiments. As shown in the Table 1, the data distribution on each client is different, and in the case of extreme non-IID,
i.e., α→ 0, most of the data are concentrated under only one label, while the amount of others is almost zero.

1.2 GRADIENT COMPRESS ALGORITHM

Algorithm 1: GC(Gradient Compress)

Input: Raw updates in the tth round of the kth client Gk
t = {g1, g2, . . . , gd}

1 Initialize Randomly select d′ gi as the group centers {x1, x2, . . . , xd′};
2 Initialize Cj = ∅ (1 ≤ j ≤ d′);
3 repeat
4 for each gi, i = 1, 2, . . . , d do
5 λi = argminj∈{1,2,...,d′} ∥gi − xj∥2;
6 Cλi = Cλi

⋃
{gi};

7 end
8 for each cluster j = 1, 2, . . . , d′ do
9 Calculate new center x′

j =
1

|Cj |
∑

gi∈Cj
gi;

10 xj ← x′
j ;

11 end
12 until ∀ j = {1, 2, . . . , d′}, x′

j = xj ;
Output: Xk

t = {x1, x2, · · · , xd′};

*The first three authors contribute equally to this work.
†Contact author.
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Table 1: The actual Dirichlet Distribution (non-IID) generated from CIFAR-10 with α = 0.001

Client ID Numbers of Samples in the Classes Distribution
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

k=0 2 1 33 117 100 6 1 0 1 239

k=1 0 0 0 1 1 29 467 0 0 2

k=2 2 397 5 1 2 86 0 1 0 6

k=3 1 0 0 0 0 3 0 0 125 371

k=4 1 67 5 0 15 304 0 0 34 74

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

k=95 32 213 0 94 17 3 138 0 0 3

k=96 51 36 166 32 0 0 8 203 0 4

k=97 25 0 347 17 7 0 0 44 0 60

k=98 0 1 0 2 1 18 3 60 413 2

k=99 465 0 4 2 2 3 4 14 4 2

1.3 KEY LEMMAS

Following Li et al. [2019], we present necessary assumptions and extra notations that we used to prove the convergence of
FedAvg with random client selection.

Assumptions. The convergence of FedAvg with random sampling scheme has been derived in Li et al. [2019]. The proof
relies on the assumptions as follows. Assumptions 3 and 4 have been given by Zhang et al. [2013], Stich [2018], Stich et al.
[2018]1.

Assumption 1 (L-Smooth). ∀ v and w, k = 1, · · · , NFk(v) ≤ Fk(w) + (v−w)T∇Fk(w) + L
2 ∥v−w∥22 where the v,w

are different model parameters.

Assumption 2 (Strongly Convex). ∀ v and w, k = 1, · · · , NFk(v) ≥ Fk(w) + (v− w)T∇Fk(w) + µ
2 ∥v −w∥22 where

the v,w are different model parameters.

Assumption 3 (Bounded Variance). Let ξkt be sampled from the kth device’s local data uniformly at random. The variance
of stochastic gradients in each device is bounded:

E
∥∥∇Fk

(
wk

t , ξ
k
t

)
−∇Fk

(
wk

t

)∥∥2 ≤ σ2
k, ∀ k = 1, · · · , N

Assumption 4 (Bounded Expectation). The expectation of stochastic gradients in squared norm is bounded by G2, i.e.,

E
∥∥∇Fk

(
wk

t , ξ
k
t

)∥∥2 ≤ G2,∀ k = 1, · · · , N, t = 1, · · ·T − 1

Additional Notation. We assume that FedAvg always activates all devices at the beginning of each round and then uses
the parameters maintained in only a few sampled devices to produce the next-round parameter. This updating scheme is

1Note that the strong assumptions are only used for convergence analysis, and variance comparison does not require these assumptions.



equivalent to the original. Let IE be the set of global synchronization, i.e., IE = {nE | n = 1, 2, · · · }. If t+ 1 ∈ IE , i.e.,
the time step to communicate. Then the update of FedAvg with partial devices active can be described as: for all k ∈ [N ],

vk
t+1 = wk

t − ηt∇Fk

(
wk

t , ξ
k
t

)
(1)

wk
t+1 =

{
vk
t+1 ,if t+ 1 /∈ IE

average
{
vk
t+1

}
k∈St+1

,if t+ 1 ∈ IE ,
(2)

where St+1 denotes the subset of (t+1)th round. Here, an additional variable vk
t+1 is introduced to represent the immediate

result of one step SGD update from wk
t . We interpret wk

t+1 as the parameter obtained after communication steps. Let F ∗ and
F ∗
k be the minimum values of F and Fk, respectively. We use the term Γ = F ∗ −

∑N
k=1 pkF

∗
k for quantifying the degree of

non-IID, where the pk denotes the aggregation weight. If the data are IID, then Γ goes to zero as the number of samples
grows. If the data are non-IID, then Γ is nonzero, and its magnitude reflects the heterogeneity of the data distribution.

Lemma 1 (Results of one step SGD). Assume Assumption 1 and 2. If ηt ≤ 1
4L , we have

E ∥vt+1 −w⋆∥2 ≤ (1− ηtµ)E ∥wt −w⋆∥2

+ η2tE
∥∥Gt −Gt

∥∥2 + 6Lη2tΓ + 2E
N∑

k=1

pk
∥∥wt −wk

t

∥∥2
where Γ = F ∗ −

∑N
k=1 pkF

⋆
k ≥ 0,

Lemma 2 (Bounding the variance). Assume Assumption 3 holds, and σk defined there. It follows that

E
∥∥Gt −Gt

∥∥2 ≤ N∑
k=1

p2kσ
2
k,

where the Gt is the gradient vector of tth round.

Lemma 3 (Bounding the divergence of
{
wk

t

}
). Assume Assumption 4, that ηt is non-increasing and ηt ≤ 2ηt+E for all

t ≥ 0. It follows that

E

[
N∑

k=1

pk
∥∥wt −wk

t

∥∥2] ≤ 4η2t (E − 1)2G2.

Lemma 4 (Unbiased sampling scheme). If (t+ 1)
th round is the communication round, for our selection with St =

{i1, · · · , im} ⊂ [N ] we have
E [w(St)] = w(K),

where K denotes the population of clients.

Proof.

E [w(St)] = ESt

m∑
k=1

wik = mESt [wi1 ] = m

N∑
k=1

pkwk (3)

Lemma 5 (Bounding the variance of w(St)). For t+ 1 ∈ IE , assume that ηt is non-increasing and ηt ≤ 2ηt+E for all
t ≥ 0. We have the following result assuming p1 = p2 = · · · = pmh

= 1
Nh

, the expected difference between vt+1 and wt+1

is bounded by

ESt ∥vt+1 −wt+1∥2 ≤
4

K
η2tE

2G2



2 PROOF OF THEOREM

2.1 PROOF OF THEOREM 1 VARIANCE REDUCTION

Additional Notation. Divide the population K consisting of N clients into H clusters via clustering.

• Nh denotes the number of clients in hth cluster, s.t.
∑H

h=1 Nh = N

• mh denotes the number of sampled clients from the hth cluster

• m denotes the sample size, s.t.
∑H

h=1 mh = m

• whi denotes the model update w of the ith client in the hth cluster

• wh =
∑mh

i=1

whi

mh
is the sampled averaged model update of the hth cluster

• w =
∑H

h=1
mhwh

m is the overall sampled averaged model update

• Wh =
∑Nh

i=1

whi

Nh
is the averaged model update of the hth cluster

• W(K) =
∑H

h=1

∑Nh

i=1

whi

N is the averaged model update of entire set K

• wcluster = 1
N

∑H
h=1 Nhwh is an unbiased estimator of W(K)

• S2 = 1
N

∑N
i=1 ∥wi −W(K)∥22 := 1

N

∑N
i=1 σ

2

• Sh
2 =

∑Nh

i=1

∥whi
−Wh∥2

2

Nh−1

• sh
2 =

∑mh

i=1

∥whi
−wh∥2

2

mh−1

• Qh = Nh

N is the proportion of clients in the hth cluster

• qh = mh

m is the proportion of sampled clients in the hth cluster

Proof of Theorem 1. Derive the Variance of Random Selection. Assuming that each observation has variance σ2, then
we get

V(wrand) = E ∥w −W(K)∥22 (4)

=
1

m2
E

∥∥∥∥∥
m∑
i=1

[wi −W(K)]

∥∥∥∥∥
2

2

(5)

=
1

m2
E

[
m∑
i=1

∥wi −W(K)∥22

]
︸ ︷︷ ︸

Quadratic Term

(6)

+
1

m2
E

 m∑
i

m∑
̸=j

[wi −W(K)]T [wj −W(K)]


︸ ︷︷ ︸

Cross−Product Term

(7)

=
1

m2

m∑
i=1

E ∥wi −W(K)∥22 (8)

+
1

m2

m∑
i

m∑
̸=j

E
[
[wi −W(K)]T [wj −W(K)]

]
︸ ︷︷ ︸

Setting to K

(9)

=
1

m2

m∑
i=1

σ2 +
K

m2
(10)

=
N − 1

Nm
S2 +

K

m2
, (11)



where we set K =
∑m

i

∑m
̸=j E

[
[wi −W(K)]T [wj −W(K)]

]
for convenience.

Find the Expression of K. In order to find K, we consider,

E [[wi −W(K)] [wj −W(K)]]

=
1

N(N − 1)

N∑
k

N∑
̸=ℓ

[
[wk −W(K)]T [(wl −W(K)]

]
.

(12)

Meanwhile, we have,

N∑
k=1

[wk −W(K)] =
N∑

k=1

wk −NW(K) (13)

= NW(K)−NW(K) = 0, (14)

i.e., ∥∥∥∥∥
N∑

k=1

[wk −W(K)]

∥∥∥∥∥
2

2

= 0. (15)

And the left can be constructed as, ∥∥∥∥∥
N∑

k=1

[wk −W(K)]

∥∥∥∥∥
2

2

=

N∑
k=1

∥wk −W(K)∥22

+

N∑
k

N∑
̸=ℓ

[
[wk −W(K)]T [wℓ −W(K)]

]
.

(16)

Simplify it, we will get

0 = (N − 1)S2 +

N∑
k

N∑
̸=ℓ

[
[wk −W(K)]T [wℓ −W(K)]

]
, (17)

equal to,

N∑
k

N∑
̸=ℓ

[
[wk −W(K)]T [wℓ −W(K)]

]
= −(N − 1)S2. (18)

Therefore,

1

N(N − 1)

N∑
k

N∑
̸=ℓ

[
[wk −W(K)]T [wℓ −W(K)]

]
(19)

=
1

N(N − 1)

[
−(N − 1)S2

]
(20)

= −S2

N
, (21)

thus

K =

m∑
i

m∑
̸=j

E
[
[wi −W(K)]T [wj −W(K)]

]
(22)

= m(m− 1)
1

N(N − 1)

N∑
k

N∑
̸=ℓ

[
[wk −W(K)]T [(wl −W(K)]

]
(23)

= −m(m− 1)
S2

N
, (24)



and substitute the value of K, the variance of wrand is

V (wrand) =
N − 1

Nm
S2 − 1

n2
m(m− 1)

S2

N
(25)

=
N −m

Nm
S2. (26)

If N is infinite (large enough), we can get

V (wrand) =
N −m

Nm
S2 (27)

= (
1

m
− 1

N
)S2 ∼=

S2

m
. (28)

Derive the Variance of Plain Clustering Selection. As prior work constructed, clustering selection is always applied
under plain proportional allocation, where the number of sampled clients mh from the hth cluster is proportional to its
cluster size Nh, i.e., mh = mNh

N . And we have

V(wcluster) =

H∑
h=1

Qh
2V (wh)

+

H∑
h(̸=j)=1

mh∑
j=1

QhQj Cov (wh,wj) .

(29)

For the former we have

V (wh) =
Nh −mh

Nhmh
Sh

2, (30)

and for the latter (covariance) we have

Cov (wh,wj) = 0, h ̸= j, (31)

where

Sh
2 =

1

Nh − 1

Nh∑
j=1

∥∥whj −Wh

∥∥2
2
, (32)

thus

V(wcluster) =

H∑
h=1

(
Nh −mh

Nhmh

)
Qh

2Sh
2. (33)

Therefore we can get

V(wcluster) =

H∑
h=1

(
Nh − m

NNh

Nh
m
NNh

)(
Nh

N

)2

Sh
2 (34)

=
N −m

Nm

H∑
h=1

NhSh
2

N
(35)

=
N −m

Nm

H∑
h=1

QhSh
2 (36)

∼=
∑H

h=1 NhSh
2

mN
. (37)



Derive the Variance of Clustering Selection with Sample Size Re-allocation. We apply clustering selection under
sample size re-allocation, where the number of sampled clients mh from the hth cluster is proportional to both cluster’s size
Nh and the variability of cluster measured by Sh, i.e.,

mh =
NhSh∑H
h=1 NhSh

·m. (38)

We can get

V (wcludiv) =

H∑
h=1

(
1

mh
− 1

Nh

)
Qh

2Sh
2 (39)

=

H∑
h=1

Qh
2Sh

2

mh
−

H∑
h=1

Qh
2Sh

2

Nh
(40)

=

H∑
h=1

[
Qh

2Sh
2

(∑H
h=1 NhSh

mNhSh

)]
−

H∑
h=1

Qh
2Sh

2

Nh
(41)

=

H∑
h=1

[
1

m
· NhSh

N2

(
H∑

h=1

NhSh

)]
−

H∑
h=1

Qh
2Sh

2

Nh
(42)

=
1

m

(
H∑

h=1

NhSh

N

)2

−
H∑

h=1

Qh
2Sh

2

Nh
(43)

=
1

m

(
H∑

h=1

QhSh

)2

− 1

N

H∑
h=1

QhSh
2 (44)

=
1

N2

(∑H
h=1 NhSh

)2
m

− 1

N2

H∑
h=1

NhSh
2 (45)

∼=
1

mN2

(
H∑

h=1

NhSh

)2

. (46)

Based on all the above, We have these equations below when approximations are used,

V (wrand) =
N −m

Nm
S2 (47)

∼=
S2

m
, (48)

V (wcluster) =
N −m

N
·
∑H

h=1 NhSh
2

mN
(49)

∼=
∑H

h=1 NhSh
2

mN
, (50)

V (wcludiv) =
1

N2
·

(∑H
h=1 NhSh

)2
m

− 1

N2

H∑
h=1

NhSh
2 (51)

∼=
1

mN2

(
H∑

h=1

NhSh

)2

. (52)



Relationship. In order to compare V(wrand) and V(wcluster), we first attempt to express S2 as a function of Sh
2.

(N − 1)S2 =

H∑
h=1

mh∑
i=1

∥whi
−W(K)∥22 (53)

=

H∑
h=1

mh∑
i=1

∥whi −Wh∥22 (54)

+

H∑
h=1

Nh ∥Wh −W(K)∥22 (55)

=

H∑
h=1

(Nh − 1)Sh
2 +

H∑
h=1

Nh ∥Wh −W(K)∥22 (56)

N − 1

N
S2 =

H∑
h=1

Nh − 1

N
Sh

2 +

H∑
h=1

Nh

N
∥Wh −W(K)∥22 (57)

We assume that Nh is large enough to permit the approximation for simplification

Nh − 1

Nh
≈ 1 and

N − 1

N
≈ 1 (58)

Thus

S2 =

H∑
h=1

Nh

N
Sh

2 +

H∑
h=1

Nh

N
∥Wh −W(K)∥22 (59)

Therefore

V (wrand) =
S2

m
=

∑H
h=1 NhSh

2

mN
(60)

+

∑H
h=1 Nh ∥Wh −W(K)∥22

mN
(61)

= V (wcluster) +

∑H
h=1 Nh ∥Wh −W(K)∥22

mN
(62)

which shows that
V (wcluster) ≤ V (wrand) (63)

Unless Wh = W(K) for every h, we must have V (wcludiv) ≤ V (wcluster).
The difference is

V (wcluster) = V (wcludiv) +
1

mN

H∑
h=1

Nh

(
Sh − S

)2
. (64)

This shows that
V (wcludiv) ≤ V (wcluster) , (65)

unless Sh = S for every h, i.e., the clusters have equal variability. Therefore, we get

V (wcludiv) ≤ V (wcluster) ≤ V (wrand) (66)

In this paper, we proposed to apply the importance selection based on the norm of the gradient to each cluster instead of
random selection. Here we present the variance-reduction relationship between random selection and importance selection.
Please note that this part is directly adapted from prior importance sampling work Katharopoulos and Fleuret [2018], which
is not our contribution.

Tr (Vrand [Gi])− Tr (Vimport [ciGi]) (67)

= Erand

[
∥Gi∥22

]
− Eimport

[
c2i ∥Gi∥22

]
(68)



Using the fact that ci = 1
NhGi

, Ii =
∥Gi∥2∑Nh
i=1∥Gi∥2

, u = 1
Nh

, we have

Eimport

[
c2i ∥Gi∥22

]
=

(
1

Nh

Nh∑
i=1

∥Gi∥2

)2

(69)

Then simplify it, we can get

Tr (Vrand [Gi])− Tr (Vimport [wiGi]) (70)

=
1

Nh

Nh∑
i=1

∥Gi∥22 −

(
1

Nh

Nh∑
i=1

∥Gi∥2

)2

(71)

=

(∑Nh

i=1 ∥Gi∥2
)2

N3
h

Nh∑
i=1

N2
h

∥Gi∥22(∑Nh

i=1 ∥Gi∥2
)2 − 1

 (72)

=

(∑Nh

i=1 ∥Gi∥2
)2

Nh

Nh∑
i=1

(
I2i − u2

)
(73)

Using the fact that
∑Nh

i=1 u = 1, we can complete the derivation.

Tr (Vrand [Gi])− Tr (Vimport [wiGi]) (74)

=

(∑Nh

i=1 ∥Gi∥2
)2

Nh

Nh∑
i=1

(Ii − u)
2 (75)

=

(
1

Nh

∑
i=1

∥Gi∥2

)2

Nh∥I − u∥22 (76)



3 ADDITIONAL EXPERIMENTS

3.1 INFLUENCE OF THE SAMPLING RATIO

Table 2: Final test accuracy of multiple FL algorithms with different sampling schemes under convex model on MNIST,
FMNIST, setting parameters q ∈ {0.1, 0.2, 0.3, 0.5}, N = 100, nSGD = 50, η = 0.05, B = 50.

Methods MNIST FMNIST

IID non-IID IID non-IID

q=0.1

Random 86.8 ±0.0 79.3 ±0.6 75.9 ±0.0 62.6 ±1.0
SCAFFOLD 84.2 ±0.2 78.8 ±1.3 73.5 ±0.0 70.7 ±0.0
Importance 90.9 ±0.0 87.2 ±1.2 82.5 ±0.1 73.2 ±1.6
Cluster 90.91 ±0.0 88.0 ±0.4 82.6 ±0.1 74.3 ±2.0
HCSFed 90.9 ±0.0 89.0 ±0.0 82.5 ±0.1 78.8 ±0.0

q=0.2

Random 88.4 ±0.0 83.2 ±0.3 78.6 ±0.1 71.6 ±1.1
SCAFFOLD 85.2 ±0.0 86.6 ±0.2 74.2 ±0.0 71.0 ±0.0
Importance 90.8 ±0.0 87.5 ±1.0 82.6 ±0.1 75.1 ±2.0
Cluster 90.89 ±0.0 88.6 ±0.3 82.5 ±0.1 77.3 ±1.1
HCSFed 91.0 ±0.0 89.1 ±0.1 82.5 ±0.1 78.9 ±0.1

q=0.3

Random 89.3 ±0.0 86.1 ±0.2 80.1 ±0.1 71.3 ±0.2
SCAFFOLD 84.9 ±0.1 87.0 ±0.1 74.4 ±0.0 71.1 ±0.0
Importance 90.8 ±0.0 88.4 ±0.4 82.6 ±0.0 75.4 ±1.9
Cluster 90.85 ±0.0 89.1 ±0.1 82.5 ±0.0 77.4 ±0.5
HCSFed 90.9 ±0.0 89.0 ±0.0 82.6 ±0.1 78.9 ±0.0

q=0.5

Random 90.0 ±0.0 87.2 ±0.1 81.2 ±0.0 75.5 ±0.3
SCAFFOLD 85.0 ±0.1 87.2 ±0.1 74.5 ±0.0 70.9 ±0.0
Importance 90.9 ±0.0 89.0 ±0.2 82.5 ±0.0 77.2 ±1.0
Cluster 90.87 ±0.0 89.0 ±0.1 82.5 ±0.0 78.7 ±0.4
HCSFed 90.9 ±0.0 89.0 ±0.0 82.5 ±0.0 78.9 ±0.0

Table 3: Final test accuracy of multiple FL algorithms with different sampling schemes under non-convex model on MNIST,
FMNIST and CIFAR-10, setting parameters q ∈ {0.1, 0.2, 0.3, 0.5}, N = 100, nSGD = 50 for MNIST and FMNIST,
nSGD = 80 for CIFAR-10, η = 0.05, B = 50.

Methods MNIST FMNIST CIFAR-10

IID non-IID IID non-IID IID α = 0.01 α = 0.001

q=0.1

Random 87.0 ±0.0 59.7 ±1.4 87.6 ±0.1 76.9 ±0.2 40.3 ±0.2 25.8 ±0.4 20.5 ±0.5
Importance 92.9 ±0.1 71.2 ±9.5 90.4 ±0.1 85.1 ±2.2 66.0 ±0.2 39.5 ±3.3 24.9 ±2.6
Cluster 92.9 ±0.0 73.6 ±3.7 90.6 ±0.2 88.9 ±4.6 65.5 ±0.3 37.2 ±3.9 30.0 ±4.7
HCSFed 92.9 ±0.0 83.3 ±0.0 90.5 ±0.1 92.0 ±0.2 65.7 ±0.3 41.2 ±1.8 38.8 ±0.6

q=0.2

Random 89.3 ±0.0 70.8 ±1.6 88.8 ±0.0 80.5 ±0.5 49.8 ±0.4 29.7 ±0.3 25.1 ±0.2
Importance 92.9 ±0.0 72.9 ±9.0 90.3 ±0.0 90.8 ±0.6 65.7 ±0.2 40.7 ±2.9 30.5 ±2.0
Cluster 92.9 ±0.0 80.3 ±1.7 90.4 ±0.1 90.7 ±1.0 65.6 ±0.3 42.0 ±1.4 33.0 ±3.6
HCSFed 92.8 ±0.0 83.5 ±0.1 90.4 ±0.1 92.1 ±0.2 65.4 ±0.3 41.6 ±0.9 39.2 ±2.0

q=0.3

Random 90.1 ±0.0 73.4 ±2.1 89.4 ±0.0 83.7 ±0.3 54.8 ±0.4 34.9 ±0.6 26.6 ±0.5
Importance 92.9 ±0.0 76.3 ±3.5 90.6 ±0.1 90.5 ±1.3 65.7 ±0.2 42.0 ±2.3 32.6 ±3.4
Cluster 92.9 ±0.0 81.8 ±1.5 90.5 ±0.1 91.6 ±0.5 66.1 ±0.3 43.0 ±1.0 34.6 ±2.1
HCSFed 92.8 ±0.0 83.3 ±0.1 90.2 ±0.1 92.2 ±0.1 65.4 ±0.3 42.3 ±0.6 39.7 ±0.7

q=0.5

Random 91.4 ±0.0 80.9 ±1.3 90.1 ±0.1 87.9 ±0.3 61.1 ±0.2 39.4 ±0.4 30.5 ±0.6
Importance 92.9 ±0.0 80.8 ±3.8 90.6 ±0.1 90.5 ±1.5 65.8 ±0.3 43.2 ±1.2 35.4 ±1.7
Cluster 92.9 ±0.0 83.5 ±0.2 90.4 ±0.1 92.0 ±0.2 65.9 ±0.4 44.0 ±0.6 36.3 ±1.0
HCSFed 92.9 ±0.0 83.3 ±0.1 90.4 ±0.1 92.0 ±0.2 65.7 ±0.5 42.4 ±0.7 39.8 ±0.6
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Figure 1: Impact of sampling ratio q on the performance with convex model. We compare HCSFed with simple ran-
dom sampling, importance sampling, cluster sampling, SCAFFOLD on MNIST under non-IID, setting parameters
q ∈ {0.1, 0.2, 0.3, 0.5}, N = 100, nSGD = 50, η = 0.01, B = 50.
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Figure 2: Impact of sampling ratio q on the performance with convex model. We compare HCSFed with simple random
sampling, importance sampling, cluster sampling, SCAFFOLD on FMNIST under non-IID, setting parameters q ∈
{0.1, 0.2, 0.3, 0.5}, N = 100, nSGD = 50, η = 0.01, B = 50.
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Figure 3: Impact of sampling ratio q on the performance with non-convex model. We compare HCSFed with simple
random sampling, importance sampling, cluster sampling, SCAFFOLD on MNIST under non-IID, setting parameters
q ∈ {0.1, 0.2, 0.3, 0.5}, N = 100, nSGD = 50, η = 0.01, B = 50.

3.2 EXTRA EXPERIMENTS ON FEDNOVA

We carry out extra experiments on FedNova, a modified FL algorithm, to further verify the compatibility of our sampling
scheme. We use all datasets mentioned above and take different distributions into consideration. As illustrated in Figure 6,
our sampling scheme achieves superb performance on FedNova, especially under heterogeneity.
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Figure 4: Impact of sampling ratio q on the performance with non-convex model. We compare HCSFed with simple random
sampling, importance sampling, cluster sampling, SCAFFOLD on CIFAR-10, using a Dirichlet Distribution with α = 0.01,
setting parameters q ∈ {0.1, 0.2}, N = 100, nSGD = 80, η = 0.05, B = 50.
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Figure 5: Impact of the heterogeneity on the performance with non-convex model. We compare HCSFed with simple
random sampling, importance sampling, cluster sampling and SCAFFOLD on CIFAR-10, using a Dirichlet Distribution
with α = 0.001, setting parameters q ∈ {0.1, 0.2, 0.3, 0.5}, N = 100, nSGD = 80, η = 0.05, B = 50.
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Figure 6: Results on the MNIST, FMNIST and CIFAR10 under FedNova. We compare HCSFed with simple random
sampling, using a Dirichlet Distribution with α = 0.001 and Shard, setting parameters q = 0.1, N = 100, nSGD = 50 for
MNIST and FMNIST, nSGD = 80 for CIFAR-10, η = 0.05, B = 50.



4 WIDELY USED DATASETS IN PREVIOUS INFLUENTIAL FL OPTIMIZATION WORKS

As for the datasets, we would like to state that constructing the heterogeneous dataset to verify our ideas with a non-iid
setting deserves more attention in FL optimization. Meanwhile, we would like to make a fair comparison with the previous
Influential FL optimization works shown in table 4, so we choose the widely used dataset including MNIST, FMNIST, and
CIFAR-10.

Table 4: Comparison of widely used datasets in previous influential FL optimization works.

Articles Datasets they use

Cluster samplingFraboni et al. [2021] MNIST, CIFAR-10

Importance sampingChen et al. [2022] FEMNIST, Shakespeare

SCAFFOLDKarimireddy et al. [2020] EMNIST

FedNovaWang et al. [2020] Synthetic Federated dataset, CIFAR-10

FedProxLi et al. [2020] MNIST, FEMNIST, Shakespeare, Sent140
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