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A PRACTICAL GUIDANCE ON HUMAN SOFT LABEL ELICITATION

Our framework provides users with a way to quantify the relative amount of information contained in each type of label so
that they can optimize which labels to collect for their dataset. Specifically, the findings from our theory, simulations, and
experimental results are that the relative informativeness of labels depends on three factors associated with the dataset (the
number of labeled examples, the number of classes, and the latent dimensionality) and two factors associated with labels
(error rate and sparsity). Out of these, most factors are not under the user’s control but the primary factor that users can
control (in supervised learning settings) is label sparsity. Our guidance to users is thus the following:

• Use our framework to estimate the relative informativeness of the label types you are considering collecting. The key
parameter to optimize is label sparsity so compute the informativeness of soft labels with different levels of sparsity.

• Pick out promising label types and run a small pilot study collecting each label type for a small set of objects. Compute
error rates and per-label costs for each label type.

• Update the relative informativeness estimates based on error rates and calculate the cost-benefit tradeoff for each label
type. Pick the type with the most favorable tradeoff.

For users who want a simpler procedure, we offer the following rule-of-thumb guidance: Generally, softer labels are
preferable in smaller data regimes (e.g. one-shot and less-than-one-shot learning) while harder labels are preferable in big
data regimes (i.e. many-shot learning).

B LABEL OPTIMIZATION SIMULATIONS

See Figure 1.

C ELICITED-HUMAN VS MODEL-PREDICTED ENTROPY

We investigate the hypothesis that the labels which confer the best downstream performance may strike a natural resonance
with the models they are used as supervision signals for. In Figure 2, we compare the entropy of the training labels against
the entropy of the trained models’ predicted distributions. In other words, we compare the probability distributions produced
by each model, to the probability distributions that the model was trained on. We find a remarkable alignment between the
entropy of models’ predictions trained on the CIFAR-10S varieties. Future work could investigate the links between the
inductive biases of models and the labels best suited for training specific architectures.
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Figure 1: Loss curves for soft labels (solid green), sparse labels (purple), top-class labels (red), and hard labels (dashed
green) based on subjective utility function (u(ρ)), cost weighting parameter (β), sparsity (k̂), number of points (n), and
number of classes (k). Global minima for sparse labels and top-class labels are marked with a point.

Figure 2: Comparing the entropy of the models’ predictions against the entropy of the labels used to train them. The training
label type is listed as the title for the respective histogram.

D ADDITIONAL DETAILS ON HUMAN SOFT LABELS

D.1 COLLECTING CIFAR-10DS AND SIMILARITY JUDGMENTS

Soft labels for CIFAR-10DS, as well as similarity judgments, were collected on Amazon Mechanical Turk (AMT). The
recruitment and experimental pipelines were automated using the PsyNet framework for online experiment design Harrison
et al. [2020]. Prior to participation in the studies, participants provided informed consent in accordance with an Institutional
Review Board (IRB), and were paid at a rate of $12 per hour. In addition, participants were required to have successfully
completed at least 2000 tasks on AMT.

To collect CIFAR-10DS, participants observed individual images and were given a set of sliders (10, one for each category)
ranging from 0 to 1 and were asked to move the sliders in accordance with how well they thought each category matched a
given image, with 0 being “not at all matching” and 1 being “completely matching”. We aimed for about 10 multi-ratings
per image and each participant completed 50 such multi-ratings.

As for similarity judgments, participants were presented with pairs of unlabeled images and were required to rate their



similarity on a 7-point Likert scale ranging from 0 (“completely dissimilar”) to 6 (“completely similar”). Here we aimed for
5 judgments per pair of images and each participant completely an average of 80 such judgments.

D.2 IN-FILLING CIFAR-10S LABELS

The CIFAR-10S labels collected in Collins et al. [2022] included only 1,000 of the full 10,000 CIFAR-10 test set. Note,
however, that these 1,000 examples were already enriched to be those that are naturally more confusing – so it can be
considered a sensible sampling of what -10S labels may look like more generally. However, for adequate comparison against
the other label types, we needed to choose a labeling method to label the remaining 9,000. We elected two variants: 1)
using hard labels, or 2) simulating CIFAR-10S labels via sparsified version of CIFAR-10DS. The former represents a
real-world cost efficient scenario; we could imagine a researcher only having the budget to annotate a subset of a dataset
with soft labels. The second case is designed to mimic what the labels may have been like had we elicited CIFAR-10S
over the full set. Taking only the scalar values for the top two highest sliders from CIFAR-10DS offered a nice entropy-
and conceptual-match (entropy of 0.69 for CIFAR-10S to 0.75 for the adjusted -10DS labels). Future work could explore
automated measures to extend label conversions (e.g., learning a mapping from CIFAR-10DS to simulated CIFAR-10S
labels). We note that the CIFAR-10S labels used in this work are the T2 Clamp varieties, with a redistribution factor of
10% following Collins et al..

CIFAR-10T The CIFAR-10T labels are a novel set of labels we crowdsourced, comprising over 350,000 typicality ratings
for each image under the ground truth category (about 35 judgements per image). 1759 unique participants were recruited on
Amazon Mechanical Turk, and presented with a sequence of 200 randomly sampled CIFAR-10 test set images, upsampled
to 160x160 pixels (see Peterson et al. [2019], Battleday et al. [2020]. Participants were given the category of each image,
and asked to rate how typical it was of the category on a sliding scale of “Not at all typical" to “Extremely typical". We
interpret an image’s typicality as the probability of the ground truth class, and spread the remaining probability mass over
the 9 remaining labels—a smoothed version of a sparse soft label with K=1).

D.3 ADDITIONAL SIMILARITY JUDGMENT STUDIES

We extend the GNMDS analyses in the main text by examining the similarity structure of image representations extracted
from the penultimate layer of each network. For each image and network, we derive an abstract vector representation by
storing the unit activations of the last layer during classification. Then, for each image we compute the pairwise cosine
similarity between the representations derived from our classifiers. We correlate these to the ground truth similarity ratings,
and present the results in Figure 3. The images used for these analyses are discussed below, and displayed in Figures 6 and 7.

Figure 3: Correlation between ground-truth similarity judgments and the cosine similarity of image representations for
different model architectures.



E ADDITIONAL COMPUTATIONAL EXPERIMENT DETAILS AND OBSERVATIONS

E.1 MODELS

We use ten fold cross-validation to partition the images of the CIFAR-10 test subset into train and validation sets for each
set of soft labels. We train a number of models using stochastic gradient descent over a range of learning rates and seeds,
and use the best performing seed for all subsequent analyses (Table 1). We use ten fold cross-validation to partition the
images of the CIFAR-10 test subset into train and validation sets for each set of soft labels.

Table 1: Image Classifiers.

Model Key Features Parameters Citation

VGG very deep connections 14,728,266 Simonyan and Zisserman [2014]
ResNet residual connections He et al. [2016]

WRN wide residual connections 36,479,194 Zagoruyko and Komodakis [2016]
DenseNet dense connections 769,162 Huang et al. [2017]

Shake shake shake shake regularization 11,709,514 Gastaldi [2017]

E.2 DATASETS

In order of increasing distributional shift, CIFAR-10 50K is the training subset of CIFAR10 (50,000 images; Krizhevsky
et al. [2009], CIFAR10.1v6,v4 are two near-sample datasets constructed from the same TinyImages classes Torralba
et al. [2008] as CIFAR-10 (2,000 images each; Recht et al. [2018]), our subset of CINIC10 contains rescaled images
from ImageNet using the CIFAR-10 classes (210,000 images; Darlow et al. [2018]), and ImageNet-Far contains a
label-coarsened version of rescaled ImageNet images such that the CIFAR classes now contain a more diverse range of
examples (for example, now “deer” contains “ibex” and “gazelle”; 63,895 images; Peterson et al. [2019], Darlow et al.
[2018]).

E.3 SOFTNESS, TASK ACCURACY, AND INFORMATION CONTENT

In the main text, we depicted the relationship between label softness and task performance using crossentropy (CE) as our
principal metric. We focus on CE as it better captures the fidelity of the models’ predictive distributions. This is particularly
important when we evaluate the model on held-out soft labels; CE offers more information about model performance than
just top-1 accuracy. However, we include top-1 accuracy in Figure 4 for completeness.

We also depict performance in Figure 5 as function of the information content of the labels. Here, we use the Spearman
rank correlation coefficient between the CIFAR-10 GNMDS and elicited similarity judgments as a proxy for information
content. Note, here, CIFAR-10S+hard and CIFAR-10S+dense have the same score, as the similarity judgments are
collected over the 1000 shared original CIFAR-10S examples.

E.4 EFFECTIVE DIMENSIONALITY OF SOFT LABELS

Our theory and simulations address the number of features available for representation learning but did not discuss the
nature of these features—i.e., whether they are essential or superfluous. Estimating the effective dimensionality of a dataset
is tied to the nature of the computational task required. For classification, there is a range of methods for estimating this
(e.g., [Vapnik and Chervonenkis, 1971, Jha et al., 2023]).

E.5 VARYING LABEL SOFTNESS

We further investigate how the amount of softness we elicit from humans when constructing our supervision signals impacts
downstream performance: a selective ablation for increasing levels of sparsity. In our real-world soft label experiments, we
in-fill missing CIFAR-10S labels by simulating if CIFAR-10DS labels had only provided uncertainty over k̂ = 2 labels.
As we have softness over all k = 10, we can simulate varying k̂. We train additional models in-filling with k̂ = 3 and 4,



Figure 4: Cross-label (top) and generalization results (bottom), scored by top-1 accuracy against the respective labels.

Figure 5: Top: Model performance on different label types at test time, as a function of information content of the labels.
Information content is approximated by the Spearman rank correlation with similarity judgments. Bottom: Generalization
performance under increasing distributional shift, as a function of training label information content.

respectively. We find that the extra softness does not add substantial value over k̂ = 2 when evaluating on near-domain
generalization (i.e. CIFAR10-50k, .1v4, and .1v6), but does appear to have a positive effect when evaluating on further
out-of-domain generalization (e.g., CINIC10 and ImageNet-Far).

E.6 REPRESENTATIVE IMAGES AND MODEL PREDICTIONS

In Figures 6 and 7 we present the images used as the basis of the similarity experiments (see above for details on label and
similarity judgment collection). These images were chosen using our trained classification models to include images that



Table 2: Crossentropy (lower is better) as a function of varying the classes we permit human uncertainty specification over.

Classes per Label CIFAR10-50k CIFAR10.1v4 CIFAR10.1v6 CINIC10 ImageNet-Far

k = 2 0.46 0.77 0.76 1.32 1.57
k = 3 0.48 0.77 0.76 1.30 1.51
k = 4 0.49 0.77 0.77 1.26 1.47
k = 10 0.76 1.09 1.08 1.40 1.60

were likely to have high label entropy (Figure 6), and images where model predictions diverged (Figure 7). The models
making the predictions had not been trained on these images (i.e., the predictions were based on the held-out cross-validation
folds).
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Figure 6: 100 images from the CIFAR-10 testing subset. These were chosen to include images that were likely to have
high label entropy.
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Figure 7: 100 images from the CIFAR-10 testing subset. These were chosen to include images that were likely to cause
model disagreement.

In Figures 8-17, we present four exemplars from each class, along with the soft labels and model predictions. We see that
this analysis picks out genuinely ambiguous images, with borderline cases between two classes, many classes, noisy images,
and categorically uncertain images. For each image, the top row are images in which models agree on high likely entropy
(average prediction entropy). The bottom row is where models maximally disagree (average symmetric relative entropy
between pairwise comparisons of models).

F ENLARGED MAIN RESULTS FIGURE

See Figure 18.



Figure 8: Representative ambiguous plane images. Top row: model agreement on high entropy image. Bottom row: maximal
model disagreement.

Figure 9: Representative ambiguous automobile images. Top row: model agreement on high entropy image. Bottom row:
maximal model disagreement.



Figure 10: Representative ambiguous bird images. Top row: model agreement on high entropy image. Bottom row: maximal
model disagreement.

Figure 11: Representative ambiguous cat images. Top row: model agreement on high entropy image. Bottom row: maximal
model disagreement.



Figure 12: Representative ambiguous deer images. Top row: model agreement on high entropy image. Bottom row: maximal
model disagreement.

Figure 13: Representative ambiguous dog images. Top row: model agreement on high entropy image. Bottom row: maximal
model disagreement.



Figure 14: Representative ambiguous frog images. Top row: model agreement on high entropy image. Bottom row: maximal
model disagreement.

Figure 15: Representative ambiguous horse images. Top row: model agreement on high entropy image. Bottom row: maximal
model disagreement.



Figure 16: Representative ambiguous ship images. Top row: model agreement on high entropy image. Bottom row: maximal
model disagreement.

Figure 17: Representative ambiguous truck images. Top row: model agreement on high entropy image. Bottom row: maximal
model disagreement.
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