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Abstract

Supervised learning typically focuses on learn-
ing transferable representations from training ex-
amples annotated by humans. While rich annota-
tions (like soft labels) carry more information than
sparse annotations (like hard labels), they are also
more expensive to collect. For example, while hard
labels only provide information about the closest
class an object belongs to (e.g., “this is a dog”), soft
labels provide information about the object’s rela-
tionship with multiple classes (e.g., “this is most
likely a dog, but it could also be a wolf or a coy-
ote”). We use information theory to compare how
a number of commonly-used supervision signals
contribute to representation-learning performance,
as well as how their capacity is affected by fac-
tors such as the number of labels, classes, dimen-
sions, and noise. Our framework provides theoreti-
cal justification for using hard labels in the big-data
regime, but richer supervision signals for few-shot
learning and out-of-distribution generalization. We
validate these results empirically in a series of ex-
periments with over 1 million crowdsourced image
annotations and conduct a cost-benefit analysis to
establish a tradeoff curve that enables users to op-
timize the cost of supervising representation learn-
ing on their own datasets.

1 INTRODUCTION

Modern machine learning relies heavily on using large
amounts of labeled data, and those labels typically come
from annotations generated by humans. This raises an im-
portant question: how can we most efficiently use human
annotations to create objective functions for machine learn-
ing systems? This is not just a matter of designing good
interfaces and algorithms for collecting annotations—it in-

volves a subtle interplay between the choices we make about
the supervision signals we use to train our models and the
difficulty of collecting the relevant annotations. For exam-
ple, soft labels for images (indicating uncertainty via a dis-
tribution over classes) are more expensive to collect than
hard labels (indicating a single class), but are also poten-
tially more informative to the learner [Peterson et al., 2019,
Sucholutsky and Schonlau| [2021bla, |(Collins et al., [2022].
Making good choices about what questions to ask humans
about our data requires understanding the informativeness
of different supervision signals.

In this paper, we explore this question for the case of rep-
resentation learning, where the aim is to learn useful latent
embeddings of input stimuli. Generally, training a neural
network means learning successive layers of representations
that will be used to perform some sort of task (e.g., classifi-
cation). The key decision in implementing a representation-
learning framework often revolves around designing a super-
vision signal by quantifying the similarity between stimuli.
Significant work has gone into the design of supervision sig-
nals for deep representation learning resulting in contrastive
objectives [Chen et al., 2020, Khosla et al., 2020]], classi-
fication objectives [Huh et al.| 2016, Ridnik et al.| [2021]],
reconstruction objectives [Devlin et al., 2018 [Kingma and
Welling, [2013|], and many others [Guo et al.,[2019]]. For ex-
ample, recent work has shown that models trained with hard
labels on classification tasks can approximate the structure
of human latent representations at a fraction of the cost of
exhaustively collecting the pairwise-similarity judgments
required for soft contrastive learning [Peterson et al.l 2018,
Marjieh et al.,|2022]]. Thus, in many cases, multiple repre-
sentation learning objectives could work, and it is not clear
when one objective should be preferred.

Our goal in this paper is to compare the informativeness
of various supervision signals (i.e. types of annotations) to
empower researchers to optimize data annotation for
their supervised representation learning tasks (see Fig-
ure[I). We develop an information-theoretic framework
(Section |3) for analyzing supervision signals and use it to
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Figure 1: An example workflow for using our framework
to decide what label type(s) to collect when annotating a
dataset. Top: User specifies the task. Middle: Information-
theoretic characterization of the task (e.g., many classes, but
few examples). Heatmaps show correlation (p) of ground-
truth similarities with pairwise similarities recovered from
simulated labels when varying latent dimensionality (d),
number of points (n), and number of classes (k). Bottom:
Cost-benefit analysis of signal type based on subjective
utility (u(p)), cost (3), number of points (n), and number of
classes (k). Red arrows point to cells corresponding to the
user-specified dataset.

compare two popular supervision signals from the classifi-
cation literature—hard labels and soft labels. We quantify
their relative (representational) information content by com-
paring them to similarity triplets (i.e., queries of the form
“Is « more similar to y than to 2?”), a supervision signal
used in contrastive learning and cognitive science
[and Nowakl, 2011, [Hoffer and Ailon, [2013]. We relate the
information each signal provides to three common features
of machine learning datasets: number of labels, number of
classes, and dimensionality, and find that while both hard
and soft labels provide information about hidden represen-
tations, their responses to these three variables are very
different. Simulations confirm these results (Section ),
showing how the marginal information provided by each
label translates into better representation learning perfor-
mance. A cost-benefit analysis (Section[5) comparing soft
and hard labels shows there are meaningful differences be-
tween them: soft labels are expensive to collect but provide
a considerable amount of representational information while
hard labels are cheap but fairly uninformative (Figure [T)).
To close this gap, we consider several types of sparse rep-
resentations that enable selective interpolation between the
soft- and hard-label regimes (Figures 2] [3). We extend our
analysis with these sparse supervision signals to establish a
tradeoff curve allowing users to optimize the cost of label-
ing their datasets for supervised representation learning
(Section . Finally, we confirm the theoretical and sim-
ulation results by human experiments (Section [7) with
crowdsourced similarity judgments and various types of soft

and hard labels collected for CIFAR-10
2009].

2 BACKGROUND

Throughout this paper, we discuss a variety of supervision
signals. In this section, we identify the practical settings
these signals correspond to and summarize related work.

Pairwise similarity judgments: For every pair of points
in the dataset labelers are asked to rate the similarity on
a fixed, bounded scale (e.g., a Likert scale). This signal
has a long history of being employed by cognitive scien-
tists to learn about (hidden) human representations of stim-
uli, typically by using an embedding method like multi-
dimensional scaling (MDS) [1980]], and more re-
cently can be found in state-of-the-art contrastive learning
objectives [Chen et al.} 2020} [Khosla et al., 2020].

Triplet similarity judgments: For every set of three points
x, v, z in the dataset, labelers are asked to respond to queries
of the form “Is x closer to y than to z?”” This non-metric
signal has also been used as a method for learning human
representations, often by applying embedding techniques
like non-metric MDS [Jamieson and Nowak}, 2011} [Agarwall
et al} 2007, [Davenport, [2013]]; it is considered to be a more
accurate alternative to pairwise similarity judgments as it
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is easier to compare two lengths than to provide consistent
judgments over un-normalized scales. This signal is used
in machine learning (typically with the triplet loss) and
cognitive science [Hoffer and Ailon, [2015} [Hermans et al.,
2017, Hebart et al., 2020, Roads and Love, [2021]].

Hard labels: For each point, labelers pick a single, most
relevant class out of the fixed set of all classes in the
dataset. This signal is typically used for classification,
though it can also be used for representation learning via
pre-training [Huh et al.l 2016/ Ridnik et al.| [2021]].

Soft labels: For each point, labelers assign proximity or
probability to each of the fixed set of all classes in the dataset.
This signal is also used for classification and representation
learning via pre-training, and can be more effective than
hard labels, particularly in settings with small data [Xie
et al., 2020, |Sucholutsky and Schonlaul 2021al [Sucholutskv
et al., 2021} [Liu et al.| 2021} Malaviya et al., | 2022].

Top-class soft labels: The researcher picks a subset of size
k of the classes in the dataset that maximize mutual infor-
mation (estimated based on the already collected subset).
For each point, labelers assign proximity or probability to
each of the fixed set of classes in the subset. The number
of classes can be reduced by simply taking an arbitrary
subset, or more systematically via methods like label coars-
ening [Hanneman and Lavie, 2011].

Sparse soft labels: For each point, labelers assign proximity
or probability to each of the exactly k most relevant classes
out of the fixed set of all classes in the dataset [|Collins et al.,
2022]). In addition to the connections discussed above for
the other soft label variants, this particular variant is also
connected to top-k classification [Lapin et al.| [2017]] and
soft vector quantization [[Seo and Obermayer, 2003|].

3 RELATIVE INFORMATIVENESS OF
SUPERVISION SIGNALS

Setup: We consider the scenario where a researcher collects
an initial set of labels for a small subset of their dataset and
wants to use it to optimize the labelling of their entire dataset
(Figure[T] top). The researcher has a number of options for
what kind of labels to collect and wishes to maximize repre-
sentation learning performance while minimizing labelling
cost. We formalize representation learning as the process of
recovering a hidden (low-dimensional) latent structure from
a set of (high-dimensional) stimuli (e.g. images). In partic-
ular, we focus on the non-metric setting where we want to
recover the correct rank order of pairwise distances between
all latent vectors. Our goal is to determine which supervi-
sion signal is most effective (in terms of both performance
and cost) for representation learning.

Problem Definition: Consider a set of stimuli {z;}; €
R? with some associated latent representations {2;}7* ; €

R”. The distance between each pair of latent vectors induces
a relational order over latent pairs and our goal is to find a
function f : R? — R (where typically h << d) such that
it preserves this relational order, that is, || f(x;) — f(x;)]| <
|| f(x;) — fzp)|| iff ||z — 2] <||2: — 2x]|. Crucially, the
latent vectors are accessible only implicitly via different
supervision signals (or queries) such as hard and soft labels.
We operationalize the informativeness of different supervi-
sion signals as the number of relational constraints that a
naive learner can recover based on them (i.e., a learner that
attempts to follow the signals as is without applying other
geometric constraints such as triangle inequalities).

Triplet Constraints: Conceptually, when training a neu-
ral network for classification, providing a label for a point
roughly corresponds to requiring that the network weights
should be updated such that the embedding of this point will
be closer to one class than to other classes. For this anal-
ysis, we assume that each class can be represented by its
centroid (e.g., each class is unimodal), and so classification
labels provide information about proximity of latent vectors
to these centroidﬂ When training with batches, providing
labels for a batch additionally corresponds to requiring that
the centroid of each class be closer to its associated set of
embeddings than to the other embeddings in the batch. In
both cases, neural networks are optimizing constraints of
the form “z is closer to y than to z,” which we call “triplet
constraints”. We now formalize this concept to use it as a
measure of information content in labels.

Suppose we have a system with n labels, k£ classes
with centroids C4,...,Ck, and stimuli {z;}?; with
latent representations {z;}? ;. A triplet constraint is
an inequality of the form ||z, — z|| < |lza — 2]l
This can be rewritten as the query r;;, =
(o € RY: || f(x;) — flai)ll < | f(x) — f(z)]]. and
each such query provides at most one bit of information as
it cuts in half the space where x; can be located [Jamieson
and Nowak, 2011]]. For any set of three stimuli, there are
three unique queries: 7 j k,7j i k,Tk,i,j- Lhus, the total
number of unique queries for n stimuli is 3(2) However,
in the case of hard and soft labels, we make queries not
only in terms of the n objects but also in terms of the &
class centroids. In other words, we are seeking to recover
embeddings not only for the n points of interest, but also
k additional reference embeddings. As a result, the total
number of unique queries in these cases is 3 (”Jgk)

Hard Labels: We define the hard label for stimulus z
as a vector [ of length k, such that [; = 1if: =
arg min, (|| f(z) — f(C})l|) and 0 otherwise. We can now
extract two types of triplet queries. The first is a triplet
consisting of a class centroid C}, a stimulus zp that is a
“positive” example of this class, and a negative example

!This can easily be generalized to multi-modal classes by
treating them as compositions of multiple unimodal subclasses (i.e.
for an m-modal class, m centroids need to be learned).
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stimulus z 5. The query has the form || f(xp) — f(C))|| <
||f(xn) — f(C;)||- The second is a triplet consisting of a
stimulus x;, the class centroid that is closest to it (Cp), and
another class centroid further away (Cy). This query has
the form [|f(Cp) — f(x:)]| < [IF(Cx) — f(ay)]l. If the
hard labels are distributed evenly between k classes, then
on average there are n/k stimuli per class. Then n hard
labels give us n(k — 1) constraints of the second type and
k(n/k)(n —n/k) = n?(1 — 1/k) of the first type—a total
of Ty (n, k) = n(k — 1) + n?(1 — 1/k) constraints.

Soft Labels: To produce a probability distribution over
classes, neural networks often have a softmax activation
function after the output layer [Bridle, [1989, Martins and
Astudillo}, 2016, [Krizhevsky et al.,[2017]. Accordingly, we
define the soft label for a stimulus « as a vector [ of length

—11f (@)= F @I .
p— €
k, such that [; = T o TT@=TET There are again two

types of triplet queries that we can extract from soft la-
bels. The first is a triplet of the form || f(zp) — f(C;)|] <
||f(xn) — f(Cy)|| where C; is the centroid of class ¢ and
Tp, TN are two training set points with corresponding soft
labels ©, I such that [ > M. The second is a triplet
consisting of the form || /(z) — /(Cy)|| < |Lf(x) — F(C;)]]
where z is a training set point corresponding to label [ and
C;, C; are the centroids of classes 4, j such that I; > [;.
Our n soft labels thus give us nk(k — 1)/2 constraints of
the second type and kn(n — 1)/2 of the first—a total of
Ts(n, k) = kn(k + n — 2)/2 triplet constraints.

Information Ratio: While we now have a measure of how
much information each label provides, it is unclear how
much information is actually needed to recover human-
aligned representations for all the objects. Intuitively, we
would expect that more information is required when more
objects are being embedded (i.e. when n 4 k increases). We
can normalize our results from the previous section to ac-
count for this by taking the ratio of the number of constraints
we can recover from a set of labels to the total number of

possible queries (i.e. IR(n, k) = ?)T(("+'f3 ). This “informa-

tion ratio” may be a proxy for how mucil information we are
recovering about the latent representations. We present the
information ratios for hard and soft labels in the “Analysis”
portion of Figure[T]along with their asymptotic behavior in
three regimes: the many-shot case (where there are many
more points than classes), the one-shot case (where there is
one point per class; [Fei-Fei et al.,2006]), and the less-than-
one-shot case (where there are fewer points than classes;
[Sucholutsky and Schonlau, 2021a]).

Our results predict three scaling phases for soft labels and
two scaling phases for hard labels. In particular, hard la-
bels and soft labels are predicted to have similar asymptotic
behavior in the many-shot case which may explain why
pre-training on very large datasets using hard-label classi-
fication is effective (e.g. [Huh et al., [2016| Ridnik et al.|
2021])). However, soft labels are predicted to have much bet-

ter representation learning performance in the one-shot and
less-than-one-shot cases. Notably, the results predict that
in the one-shot case, the quality of representations learned
from soft labels should not degrade (as it does in every other
case) when the number of points and classes increases.

Representation Learning as Communication: Our repre-
sentation learning setup can be seen as a communication
problem where we want to recover a fixed number of bits
about hidden representations of a black-box model. The
model can be queried via multiple channels, each of which
has its own encoder and corresponds to a different choice of
supervision signal. As established by Jamieson and Nowak
[2011]], each triplet query is a single bit. In information the-
ory, the efficiency, also known as the normalized entropy, of
each channel is defined as (X ) = #f()x) where H,,,42
is max entropy (i.e. the total number of bits) and H is en-
tropy (i.e. the number of bits remaining with unknown states
after transmission). We defined information ratio as the ratio
of the number of bits recovered to the total number of bits,
and thus a stochastic version of information ratio (with data
sampled from a distribution instead of being fixed) can be

defined as IR(X) = Hinae (X)=HX) _ 9 _ n(X).

Honaz (2)

Signal-to-Noise Ratio: Our triplet analysis implicitly as-
sumed that the noise distribution was the same between
each type of label and could thus be ignored when com-
paring their relative informativeness. However, in practice,
eliciting different kinds of annotations may be associated
with different levels of noise due to changes in difficulty,
user interface, participant pools, etc. Within our information-
theoretic framework, noise can be viewed as the probability
€5 of a bit flip (i.e. that we get the incorrect response to
a query of the form “Is z closer to y than to 2?”) during
communication over channel s . If a set of n labels (with k
classes) of type s provides T (n, k) triplet constraints under
our framework in the noise-free case, then the number of
constraints in the noisy case is just (1 — ¢5)Ts(n, k) where
€5 is the bit flip rate for labels of type s.

4 SIMULATIONS

Our analysis predicts soft labels should generally lead to
better performance than hard labels, particularly when there
are few labels and many classes. However, we still need
to understand how information ratios actually translate to
representation learning performance. We conducted simu-
lations to see the effect of four variables (and their inter-
actions) on performance: label type (soft or hard), number
of points (n), number of classes (k), and latent dimension
(d). We consider values of n and k in the range of [3, 90],
and d € {5,25,125}. For each combination of n, k, d we
sample a total of n points from Gaussians centered at k ran-
dom locations C1, ..., Oy € R?. We computed hard and soft
labels for these points using the equations defined above

2039



n=20, k=90

Iy
o

n=90, k=20 n=90, k=90

o
©

o
o

o

L

n (# of points)

Effective Dimensionality
Spearman's p
o o
N

o
o

—— PCA
—— Soft Labels
Effective Dimensionality

25

80 2.

‘5 60 15 .

40 10¢

20 5
20 40 60 8 O

k (# of classes)

40 60

80

0 20 40 60 80 0 20 40 60 80

k (# of principal components)

Figure 2: Left: Effective dimensionality of soft labels at different combinations of n and k. Right: Three examples of PCA
curves used to compute effective dimensionality of soft labels for every combination of n and k.

and then mine all triplet constraints of both types from
both sets of labels. We apply Generalized Nonmetric Multi-
Dimensional Scaling (GNMDS; [2013])) to both
sets of queries to find embeddings that best fit the respective
triplet constraints. The Gram matrix outputted by GNMDS
can be interpreted as predicted (unnormalized) pairwise
cosine similarities between all n + k points and centroids.

To understand how much information we recover from each
of these two sets of queries, we construct a matrix of the true
pairwise cosine similarities for the set of all n+ k points and
class centroids and compute the Spearman rank correlation
(p) between the upper triangle of the Gram matrices and
the ground truth matrix. Thus, a higher p corresponds to
better recovery of the underlying latent representations. We
visualize the simulation results in Figure [I] The results
confirm the theoretical findings from the previous section.
Specifically, the three phases for soft labels and two phases
for hard labels match our analytical results, and a higher
information ratio translates into better performance.

S COST-BENEFIT TRADEOFFS

We can now construct cost-benefit tradeoff curves
to determine when a user would prefer to use
one signal over the other. Suppose we define p
as above, and subjective utility as U(p). This util-
ity function can take many forms (e.g., U(p)
bp or bo (p) where o is the sigmoid function and b > 0). If
we assume that the cost of collecting a soft label over
k classes is about k times more expensive than collect-
ing a hard label, we can define the subjective loss func-
tion as Ly = C(s) — U(p), where C(s) enifs €
Shard and cnk if s € Syop.. This is equivalent to optimiz-

ing L = #¢(s) — u(p) which we can re-parametrize to

a form reminiscent of the information bottleneck
: L = Bé(s) — i(p). Since we have shown that
the information ratio, which we define as p, can provide us
with an estimate for p, we can also replace U (p) by U(p).

We investigate cost-benefit tradeoffs by varying (3, 4),
showing the results for several combinations in Figure [T}
While the results depend greatly on choice of u, a few reg-
ularities emerge. First, in all cases, regardless of 3, when
the number of classes (k) or the number of points (n) is low,
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Figure 3: Label sparsity. Left: Spearman rank correlation (p)
of pairwise similarities recovered from PCA labels, sparse
labels, and top-class labels when varying the maximum num-
ber of features/classes in the labels (l%), number of points
in the dataset (n), and number of classes in the dataset (k).
Right: Comparison of sparsity curves for PCA labels (blue),
sparse labels (purple), and top-class labels (red) for several
combinations of n and k. Straight lines correspond to soft la-
bel (solid green) and hard label (dashed green) performance.

soft labels are roughly as preferred as, or more preferred,
than hard labels. Second, when there is an emphasis on cost
(i.e. high (), hard labels become preferable as n and &k both
increase, but when the emphasis is on performance (i.e. low
B), soft labels remain preferable as n and k increase.

6 LABEL OPTIMIZATION

Effective Dimensionality: While soft labels appear to be
more informative than hard labels, they are not necessarily
an optimal encoding for efficiently communicating informa-
tion about representations. In order to study how an optimal
encoding might perform, we run principal component analy-
sis (PCA) on our simulated datasets and observe the effects
of varying the number of PCs that are retained (k). The
resulting performance curves provide an approximate upper
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bound on how well any set of vectors of length k (e.g. a
set of soft labels) can communicate information about rep-
resentations. We can also use these curves to understand
how efficient soft labels are at this task. Specifically, we
define the “effective dimensionality” of a set of soft labels
as the minimum number of PCs (k) necessary to achieve
the same representation learning performance as when us-
ing the soft labels in the way we described in the previous
section. In Figure[2] we show the effective dimensionality
of soft labels for different combinations of n and k along
with several examples of the PCA curves. We found a strong
positive correlation between information ratio and effective
dimensionality (r = 0.734,p < 10~1®) providing further
evidence information ratio is a useful metric for evaluating
representation learning signals and predicting performance.

Label Sparsity: Since the effective dimensionality of soft
labels appears to generally be much lower than the number
of components of each soft label (k), this suggests that soft
labels are an inefficient encoding for representational infor-
mation, potentially due to redundancy. We now investigate
two methods for remedying this inefficiency by introducing
sparsity into soft labels in a disciplined manner.

The first method, which we call “top-class soft labels”, intro-
duces sparsity globally by ignoring classes that are the least
informative across the entire dataset. Formally, we construct
a matrix X where the ¢-th row correspond to the i-th soft
label and the j-th column corresponds to the j-th class, and
estimate the mutual information between each column and
the ground-truth similarity matrix. We then keep only the
top k most informative columns and set the rest to 0.

The second method, which we call “sparse soft labels”, is to
introduce sparsity locally by ignoring classes that are least
informative for each point. Formally, we again construct a
matrix X as above, but now for each row, we individually
keep only the k largest components and set the rest to 0.
These two methods provide a way to reduce the cost of col-
lecting soft labels, while retaining much of the information.

In Figure [3] we visualize representation learning perfor-
mance when using PCA, sparse labels, or top-class labels at
different levels of sparsity. While sparse labels consistently
outperform top-class labels (which is to be expected since
sparse labels provide finer control over how sparsity is in-
duced), we note that there is also a gap between PCA and
sparse labels. This again suggests that it may be possible
to design more effective labeling methods than soft labels,
potentially by defining a search space over possible classes
and applying a procedure like PCA to optimize over it. We
leave this as a promising direction for future work.

Optimizing Label Collection: Since top-class and sparse
labels provide a way to selectively interpolate between the
soft label and hard label regime, we can now use sparsity
to optimize the cost-benefit tradeoff curves discussed above
beyond the binary preference optimization shown at the bot-

tom of Figure [l We use the same loss functions as above
with several combinations of cost parameter 8 and utility
function p, but we now apply them to top-class and sparse
labels at various levels of sparsity (l%). We visualize a num-
ber of these cost-benefit tradeoff curves in the Supplement.
By picking the k that corresponds to minimal loss, we can
now optimize our label collection to minimize cost while
maximizing performance. The results suggest that using
sparse labels and picking the right level of sparsity (k)
can often provide big gains as opposed to using either hard
labels or regular (dense) soft labels.

7 EXPERIMENTS

In this section, we investigate how our theory applies to real
soft labels crowdsourced from human annotators. First, we
present several methods for collecting soft labels—including
new sets of annotations that we crowdsource for this study—
and place them into the framework described above. Second,
we use a large dataset of similarity judgements to assess
the informativeness of the different label types. Finally, we
assess how the inductive biases conferred by different label
types affect the classification performance of a range of
convolutional neural networks (CNNs).

7.1 EXPERIMENTAL SETUP

We consider a range of supervision signals over the testing
subset of CIFAR-10 images [Krizhevsky et al.| 2009], in-
cluding hard labels, smoothed hard labels, soft labels, and
similarity judgments. Each label type represents a different
supervision signal presented in Section 2] Each type of soft
label was collected using different experimental interfaces,
details of which are in the Supplement.

CIFAR-10H: The CIFAR-10H labels, originally collected
by |Peterson et al.| [2019]], [Battleday et al.| [2020], are de-
rived by averaging over 500,000 crowdsourced hard labels
(roughly 50 per image). These are then normalized at the
image level to return probability distributions.

CIFAR-10DS: The CIFAR-10DS labels, made up of
over 500,000 judgments we crowdsourced for this study,
are dense soft labels (i.e., assigned over all classes in
CIFAR-10). Annotators provided numerical judgments on
a 0 (not at all) to 1 (completely) scale using sliders depend-
ing on how well each category described a certain image.

CIFAR-10S: The CIFAR-10S labels from |[Collins et al.
are sparse soft labels. Annotators provided around 20,000
judgments about the likelihood of the top two categories for
each image and any categories which they believed were
definitely wrong (referred to as a “clamp”, and assigned zero
probability). As the authors only collected such labels over
1,000 examples from the test set, we in-fill the remaining
9,000 with either: 1) hard labels (CIFAR-10S+hard) or

2041



2) simulated top-2 soft labels (CIFAR-10S+dense).

CIFAR-10T The CIFAR-10T labels are a novel set of
labels we crowdsourced, comprising over 350,000 typical-
ity ratings for each image under the ground truth category
(about 35 judgements per image). 1759 unique participants
were recruited on Amazon Mechanical Turk, and presented
with a sequence of 200 randomly sampled CIFAR-10 test
set images, upsampled to 160x160 pixels (see [Peterson et al.
[2019], Battleday et al.|[2020]]. Participants were given the
category of each image, and asked to rate how typical it
was of the category on a sliding scale of “Not at all typical"
to “Extremely typical". We interpret an image’s typicality
as the probability of the ground truth class, and spread the
remaining probability mass over the 9 remaining labels—a
smoothed version of a sparse soft label with K=1).

CIFAR-10LS: We derive two more sets of soft labels by ap-
plying label smoothing (LS) to the CIFAR-10 hard labels.
Unlike human-derived soft labels, the “softness” here is ap-
plied uniformly and independently of the associated image.
This allows us to control for the previously observed regu-
larization effects of label smoothing [Miller et al., 2019].
We pick the smoothing rate, €, to roughly match the distribu-
tions of our crowdsourced labels. The “low” level, € =~ 0.05,
is the average probability mass per soft label for the 9 non-
maximal categories in the CIFAR-10H dataset. The “high”
level, € ~ 0.2, matches the CIFAR-10DS dataset.

Similarity Judgments: We elicited a total of 49,500 pair-
wise similarity judgments over two subsets each consisting
of 100 CIFAR-10 test set images by having human anno-
tators rate the similarity between unlabeled image pairs on
a Likert-scale ranging from O (completely dissimilar) to 6
(completely similar). The images were deliberately chosen
to be ambiguous about class (see Supplement).

7.2 LABEL INFORMATIVENESS

GNMDS Results: We first repeat our GNMDS analy-
ses from the theory and simulation sections on all the
CIFAR-10 label variants for 200 high-entropy images (see
Supplement). We use GNMDS to get triplet-respecting em-
beddings for each label type and then compute several met-
rics. As before, we compute Spearman correlations (p) be-
tween the CIFAR-10 GNMDS and elicited similarity judg-
ments. Our previous analyses assumed a consistent signal-to-
noise ratio, or error rate, across all the label types. However,
with our set of CIFAR-10 label variants coming from differ-
ent participant pools and elicitation pipelines, it is likely that
error rates will vary between label types. We approximate
error rates of each label type by counting the proportion of
triplet queries derived from the GNMDS embedding whose
binary responses do not match the responses from the cor-
responding triplets computed from the human similarity
judgments (i.e. the bit flip rate). Additionally, we compute

GNMDS Comparisons
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Figure 4: Correspondence between various metrics and
Spearman rank correlation for each label variant.

label entropy and the variance of the first order statistic (i.e.
variance of the probability mass assigned to the class with
the highest assigned probability) for each label variant.

We visualize these results in Figure d] We find that rep-
resentation learning performance (measured by Spearman
correlation) generally increases as softness (measured by
entropy and variance) increases, but does not increase when
smoothing hard labels. However, we find there is a “sweet
spot” for softness after which performance begins to de-
crease. We also find the expected linear relationship between
error rate and performance that our framework predicts. We
hypothesize that the U-shaped relationship between softness
and performance may partially be caused by increasing error
rates, and partially by a resonance effect (see Supplement).

Models: We train diverse image classifiers on each of our
supervision sets. These models have distinct architectural
features and reflect seminal developments in the progression
of natural-image classification (see Supplement).

Cross-Label Performance: We first assess how training
classifiers on one set of soft labels impacts their validation
performance when testing on other label types. Our primary
measure of performance is crossentropy between the models’
predictive distributions and soft labels. Consistent with the
GNMDS experiments, we observe a U-shaped relationship
between label entropy and model performance for nearly
all soft-label types (Figure[5] top row). The one exception
is when testing on CIFAR-10DS labels, where training on
higher levels of softness is preferred. These results suggest
that, for image classification, sparse soft labels—of the kind
collected in (Collins et al.| [2022] or formed via averaging
[Peterson et al.| [2019]—best capture the representational in-
formation expressed across different soft label sets. We also
find that this relationship is preserved across different model
architectures, with the Shake Shake model [Gastaldi,
2017]] performing best across all label sets.

7.3 ZERO-SHOT GENERALIZATION

To further test how well image classifiers extract representa-
tional information from soft labels, we assess zero-shot gen-
eralization performance on increasingly out-of-distribution
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Figure 5: Top: Model performance on different label types at test time. Bottom: Generalization performance under increasing
distributional shift. Each point represents the average score for a single model architecture (specified by color), trained on a
particular label type (indicated via shape). Vertical lines represent points for a given label type.

image sets (Figure [5} bottom row; see Supplement). We
find that for near-distribution datasets (CIFAR-10 50K
[Krizhevsky et al.,|2009]]; CIFAR10.1v6, v4 [Rechtetal.
2018]), classifier performance follows the U-shaped relation-
ship described above. However, for far-distribution datasets
(CINIC [Darlow et al.l2018]], ImageNet—-Far [Peterson
et al.| 2019]) a different pattern emerges. As found in |Peter{
son et al|[2019], soft labels increasingly outperform hard
labels as distribution shift increases. The improved rel-
ative performance of the CIFAR-10DS-trained networks
supports this — although these labels are the most noisy, they
also contain the richest supervision signal. It may be that
more expressive classifiers are needed to fully capitalize on
this richness [Battleday et al., [2020, [Singh et al.l 2020].

7.4 LEARNING FROM SMALL DATA

We empirically investigate our theoretical observation that
softness is beneficial in the small data regime. Table
presents model performance with 80 or 8 training exam-
ples per class. We find that soft labels outperform hard
labels, and the same general pattern between softness and
performance holds.

8 DISCUSSION

In this paper, we offer a principled set of theoretical and
empirical findings aimed at helping researchers to determine
which form of supervisory signal they ought to collect for

the task at hand. We have provided theoretical grounding for
how hidden representations can be recovered through super-
vised classification and have related the quality of these re-
covered representations to training parameters such as num-
ber of labels, classes, and dimensions. We found that while
hard labels and soft labels provide comparable amounts of
information in the many-examples-but-few-classes regime,
soft labels become increasingly preferable when the num-
ber of classes increases or the number of labels decreases.
Our findings explain why, for example, pre-training a clas-
sifier on ImageNet 1K (1,000 classes) or ImageNet21k
(21,000 classes) using hard labels may lead to decent trans-
fer learning performance [Huh et al. 2016} [Ridnik et al.}
2021]] but pre-training with (a form of) soft labels may
lead to even better transfer learning performance [Xie et al.,
2020]]. We support our theoretical contributions with em-
pirical results on a suite of human-derived soft labels. We
include a compilation of practical guidance around human

Table 1: Small data regime results (crossentropy).

Labels 801l/c 8l
CIFAR-10 1.80 2.20
CIFAR-10S+hard 1.68 2.15
CIFAR-10H 1.67 2.15
CIFAR-10S+dense 1.69 2.12
CIFAR-10LS (Low) 1.73  2.19
CIFAR-10DS 1.70  2.12
CIFAR-10LS (High) 1.71  2.13
CIFAR-10T 210 225
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soft label elicitation in the Supplement. We also note that our
framework provides a general way to quantify the relative
amount of information contained in each label by decom-
posing it into triplet queries (i.e., like a packet that contains
a number of bits). This framework can be used with any rep-
resentation learning setting where the goal is to efficiently
recover hidden representations from an oracle (i.e., a person
or another model) including classical supervised learning
(which we focus on in this paper), knowledge distillation
(getting a small student model to learn from a large teacher
model), and contrastive learning (i.e., either via pairwise or
triplet losses).

We note that, in our analysis, we made no assumptions
about the data distribution in stimulus space, nor the func-
tion f(z;) = z; that maps from stimulus space to hidden
representations, but when training neural networks we often
assume some level of stability or invariance (i.e., a small per-
turbation in pixel space does not lead to drastically different
perception of the image). When satisfied, inductive biases
like assumptions about stability or invariance allow learners
to extract additional information from training examples,
sometimes even in an unsupervised way when no labels are
present. As a result, our analysis here can be considered as a
sort of lower-bound on how much information about hidden
representations a labeled training dataset can provide. We
also examined each supervision signal in isolation, assum-
ing that only labels of one type are collected. A promising
future direction would be to analyze additional sources of in-
formation (inductive biases, other supervision signals, etc.)
as well as the interactions between them; already, we see
promising indications of mixing label types in the case of
CIFAR-10S+hardand CIFAR-10S+dense.

Notwithstanding these limitations, our analysis of hard la-
bels, soft labels, and sparse labels that interpolate between
them, already enables researchers to develop cost-benefit
tradeoff curves in order to optimize the cost of labeling their
datasets for supervised learning—and support the develop-
ment of data-efficient, generalizable ML systems.
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