
Meta-learning Control Variates: Variance Reduction with Limited Data
(Supplementary Material)

Zhuo Sun1,3 Chris J. Oates2,3 François-Xavier Briol1,3

1Department of Statistical Science, University College London, London, UK
2School of Mathematics, Statistics & Physics, Newcastle University, UK

3The Alan Turing Institute, London, UK

In Appendix A, we provide the proof of the theoretical results stated in the main text. In Appendix B, we provide more
details on the implementation of Neural-CVs and Meta-CVs, together with the full experimental protocol.

A PROOF OF THEOREMS

In this section, we will firstly review the assumptions and theorems in [Ji et al., 2022] in Appendix A.1 as the proof of
the theorems follows the results of [Ji et al., 2022]. We then give the proof of Theorem 1 in Appendix A.2 and proof of
Corollary 1.1 in Appendix A.3.

A.1 CONVERGENCE OF MODEL-AGNOSTIC META-LEARNING

Ji et al. [2022] analysed the convergence of model-agnostic meta-learning, as we will adapt their results to the training of
CVs. Letting Ot be either St or Qt, and phrasing in terms of the notation and setting used in this work, the assumptions of
[Ji et al., 2022] are:

(A1) mint infγ JOt(γ) > −∞;

(A2) χ := maxt supγ ̸=ζ
∥∇γJOt (γ)−∇ζJOt (ζ)∥2

∥γ−ζ∥2
< ∞;

(A3) ρ := maxt supγ ̸=ζ
∥∇2

γJOt (γ)−∇2
ζJOt (ζ)∥2

∥γ−ζ∥2
< ∞;

(A4) σ2 := maxt supγ ∥∇γJOt(γ)∥22 < ∞;

(A5) bt := supγ ∥JSt
(γ)− JQt

(γ)∥2 < ∞.

Theorem A.1 (Theorem 9 and Corollary 10 [Ji et al., 2022]). Let the above assumptions (A1) to (A5) hold. Then, with a
meta step-size ηi =

1
80χηi

for i = 1, . . . , Itr and α = 1
8χL in Algorithm 1 , we attain a solution γ̂meta such that

E∥Et[∇Jt(γ̂meta)]∥2 = O
(

1
Itr

+ σ2

B +
√

1
Itr

+ σ2

B

)
,

where χηi
= (1 + αχ)2L + Cbb+ CχEt[∥∇JQt

(γ̂meta)∥2], with b = Et[bt] and Cb = Cχ = (αρ+ ρ/χ(1 + αχ)L−1)(1 +
αχ)2L.

Lemma A.2 (Lemma 19 [Ji et al., 2022]). Under assumptions (A1) - (A5), for any t and any γ ∈ Rp+1, we have

∥Et[∇JQt
(γ)]∥2 ≤ 1

C′
1
∥Et[∇Jt(γ)]∥2 + C′

2

C′
1
,

where C ′
1 > 0 and C ′

2 > 0 are constants given C ′
1 = 2 − (1 + αχ)2L and C ′

2 = ((1 + αχ)2L − 1)σ + (1 + αχ)L((1 +
αχ)L − 1)b.

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<zhuo.sun.19@ucl.ac.uk>?Subject=Your UAI 2023 paper

A.2 PROOF OF THEOREM 1

To prove Theorem 1, we firstly derive three useful propositions (P1-P3) based on our Assumption 1 and Assumption 2 in
Section 6, and then give the proof based on the above results from [Ji et al., 2022].

For each task t, we claim that

(P1) supγ ̸=ζ
∥∇γJOt (γ)−∇ζJOt (ζ)∥2

∥γ−ζ∥2
< ∞;

(P2) supγ ̸=ζ
∥∇2

γJOt (γ)−∇2
ζJOt (ζ)∥2

∥γ−ζ∥2
< ∞;

(P3) supγ ∥∇γJOt(γ)∥2 < ∞,

for both Ot ∈ {St, Qt}.

Proof of P1-P3. Denote the additive contribution of a single sample to the loss function as lt(x, γ) = (ft(x)− g(x; γ))2.
First we will show that under Assumption 1 and Assumption 2, we have: for each t and x ∈ Dt, the function γ 7→ ∇γℓt(x; γ)
is bounded and Lipschitz; and for each t and x ∈ Dt, the function γ 7→ ∇2

γℓt(x; γ) is Lipschitz. Then (P1-P3) follow
immediately as JQt

(γ) = 1
|Qt|

∑
x∈Qt

lt(x; γ) and JSt
(γ) = 1

|St|
∑

x∈St
lt(x; γ).

From direct calculation, we have:

∇γℓt(x; γ) = −2(ft(x)− g(x; γ))∇γg(x; γ)

∇2
γℓt(x; γ) = 2(ft(x)− g(x; γ))∇γg(x; γ)∇γg(x; γ)

⊤ − 2(ft(x)− g(x; γ))∇2
γg(x; γ)

= 2(ft(x)− g(x; γ))
[
∇γg(x; γ)∇γg(x; γ)

⊤ −∇2
γg(x; γ)

]
and taking differences:

∥∇γℓt(x; γ)−∇ζℓt(x; ζ)∥2 = ∥ − 2(ft(x)− g(x; γ))∇γg(x; γ) + 2(ft(x)− g(x; ζ))∇ζg(x; ζ)∥2
≤ 2|ft(x)|∥∇γg(x; γ)−∇ζg(x; ζ)∥2

+ 2∥g(x; γ)∇γg(x; γ)− g(x; ζ)∇ζg(x; ζ)∥2
≤ 2|ft(x)|∥∇γg(x; γ)−∇ζg(x; ζ)∥2

+ 2|g(x; γ)|∥∇γg(x; γ)−∇ζg(x; ζ)∥2 + 2∥∇ζg(x; ζ)∥2|g(x; γ)− g(x; ζ)|.

So, for each t and x ∈ Dt, the function γ 7→ ∇γℓt(x; γ) is bounded and Lipschitz when the functions γ 7→ g(x; γ) and
γ 7→ ∇γg(x; γ) are bounded and Lipschitz (i.e. Assumption 1).

Then taking differences and bounding terms in a similar manner, we have,

∥∇2
γℓt(x; γ)−∇2

ζℓt(x; ζ)∥2 ≤ 2|ft(x)|∥∇γg(x; γ)∇γg(x; γ)
⊤ −∇2

γg(x; γ)

−∇ζg(x; ζ)∇ζg(x; ζ)
⊤ +∇2

ζg(x; ζ)∥2
+ 2|g(x; γ)|∥∇γg(x; γ)∇γg(x; γ)

⊤ −∇2
γg(x; γ)

−∇ζg(x; ζ)∇ζg(x; ζ)
⊤ +∇2

ζg(x; ζ)∥2
+ 2∥∇ζg(x; ζ)∇ζg(x; ζ)

⊤ −∇2
ζg(x; ζ)∥2|g(x; γ)− g(x; ζ)|

So for each t and x ∈ Dt, the function γ 7→ ∇2
γℓt(x; γ) is Lipschitz when the functions γ 7→ ∇γg(x; γ)∇γg(x; γ)

⊤ −
∇2

γg(x; γ) are bounded and Lipschitz (i.e. Assumption 2).

Proof of Theorem 1:

Proof. Assumption (A1) is automatically satisfied. (P1) and (P2) above imply (A2) and (A3). (P3) above implies (A4).

Note that Assumption 1 implies (A5). This is because, for each t, x ∈ Dt, we have supγ lt(x; γ) := supγ(ft(x) −
g(x; γ))2 < ∞ as we assume that γ 7→ g(x; γ) is bounded and ft(x) is constant in γ. Thus, supγ JOt

(γ) =
1

|Ot|
∑

x∈Ot
lt(x; γ) < ∞ where Ot can be either St or Qt. So supγ ∥JSt

(γ)− JQt
(γ)∥2 < ∞.

Then, Theorem 1 follow from the conclusion of Theorem A.1.

A.3 PROOF OF COROLLARY 1.1

Proof. Since Assumption 1 and Assumption 2 imply (A1) to (A5) in Appendix A.1, we will use the constants defined earlier
in Appendix A.1 here as well. Firstly, note that given γ̂ϵ, with

α <
exp(log 2

2L)−1

χ = 2
1
2L −1
χ ,

we have: E∥Et[∇JQt
(γ̂ϵ)]∥2 ≤ 1

C′
1
ϵ+

C′
2

C′
1

by taking γ = γ̂ϵ in Lemma A.2.

If then additionally ∇2JQt
(γ) ⪰ µIp+1 holds, by (9.11) in Boyd et al. [2004] we have,

∥γ − γ∗
t ∥2 ≤ 2

µ∥∇JQt
(γ)∥2.

Taking the expectation of both sides, we then have

Et[∥γ − γ∗
t ∥2] ≤ 2

µEt[∥∇JQt
(γ)∥2]

(i)

≤ 2
µ (∥Et[∇JQt(γ)]∥2 + σ),

where (i) follows from [Ji et al., 2022] (Page 35, Line 8). Take γ = γ̂ϵ and take the expectation of both sides. Then by
Theorem 1,

E[Et[∥γ̂ϵ − γ∗
t ∥2]] ≤ 2

µE[∥Et[∇JQt
(γ̂ϵ)]∥2] + 2σ

µ

≤ 2
µ

(
1
C′

1
ϵ+

C′
2

C′
1

)
+ 2σ

µ

= 2
µC′

1
ϵ+

2(σC′
1+C′

2)
µC′

1

= C1

µ ϵ+ C2

µ ,

where C1 = 2
C′

1
and C2 =

2(σC′
1+C′

2)
C′

1
.

B EXPERIMENTAL DETAILS

In this section, we provide more experimental details and implementation details of Neural-CVs and Meta-CVs. Details of
the synthetic example are presented in Appendix B.1. Details of the boundary-value ODE are provided in Appendix B.2.
Details of Bayesian inference for the Lotka–Volterra system are provided in Appendix B.3. Details of the Sarcos robot arm
are presented in Appendix B.4.

B.1 EXPERIMENT: OSCILLATORY FAMILY OF FUNCTIONS

Our environment ρ consists of independent distributions on each element of a. For a1, we select a Unif(0.4, 0.6), whilst
for all other parameters we select a Unif(4, 6). Each task is of the form Tt = {ft(x; at), πt} where at := (at,1, at,2:d+1)

⊤

is a sample from ρ. This creates potentially infinite number of integral estimation tasks as a is continuous. The target
distributions are π1(x) = . . . = πT (x) = Unif(0, 1)d where d is the dimension of x.

For all experiments of this example, we set the neural network identical for both Meta CVs and Neural CVs. That is, a
fully connected neural network with two hidden layers. Each layer has 80 neurons while the output layer has 1 neurons
(the output then is multiplied by a identity matrix Id to used as ũ where d is the dimension of the input x). The total
number of parameters of the neural network p = 80d+ 6641 where d the dimension of the input x. The activation function
is the sigmoid function. The neural network is served as ũ and we apply Langevin Stein operator onto ũ(x)δ(x) where
δ(x) =

∏d
j=1 xj(1− xj) to satisfy assumptions in [Oates et al., 2019]. For experiments in this example, we use Adam as

the UPDATE rule in this example and the penalty constant λ is set to be 5× 10−6.

2-dimensional Oscillatory Family of Functions

• For Meta-CVs: The inner step size α = 0.01. The number of inner gradient steps is L = 1. The meta step size
η = 0.002 for all meta iterations. The number of meta iteration Itr is set to be 4, 000. The meta batch size of tasks B is
set to be 5.

• For Neural-CVs: The step size (learning rate) is 0.002. The number of training epochs for each task is set to be 20 with
batch size 5.

• For Control functionals: we use radius basis function k(x, x′) = exp(−∥x−x′∥2
2

2v) with kernel hyperparameter v > 0
as the base kernel for control functionals. The hyper-parameter v is tuned by maximising the marginal likelihood of
the Stein kernel on St for each task. Optimal control functionals are selected by using St and then unbiased control
functional estimators are constructed by using Qt of each task.

Impact of the Number of Inner Updates L

• For Meta-CVs: The inner step size α = 0.01
50×L for L ∈ {1, 3, 5, 7, 10}. The meta step size η = 0.002 for all meta

iterations. The number of meta iteration Itr is set to be 4, 000. The meta batch size of tasks B is set to be 5.

Impact of Dimensions

• For Meta-CVs: The inner step size α = 0.01. The number of inner gradient steps is L = 1. The meta step size
η = 0.002 for all meta iterations. The number of meta iteration Itr is set to be 4, 000. The meta batch size of tasks B is
set to be 5.

• For Neural-CVs: The step size (learning rate) is 0.002. The number of training epochs for each task is set to be 20 with
batch size 5.

• For Control functionals: we use radius basis function k(x, x′) = exp(−∥x−x′∥2
2

2v) with kernel hyperparameter v > 0
as the base kernel for control functionals. The hyper-parameter v is tuned by maximising the marginal likelihood of
the Stein kernel on St for each task. Optimal control functionals are selected by using St and then unbiased control
functional estimators are constructed by using Qt of each task.

Impact of B and Itr of Meta-CVs

• The inner step size α = 0.01. The number of inner gradient steps is L = 1. The meta step size is η = 0.002 for all
meta iterations.

B.2 EXPERIMENT: BOUNDARY VALUE ODES

For all experiments of this example, we set the neural network identical for both Meta-CVs and Neural-CVs. That is, a fully
connected neural network with three hidden layers. Each layer has 80 neurons while the output layer has 1 neurons. The
total number of parameters of the neural network p = 13, 201. The activation function is the sigmoid function. We use
Adam as the UPDATE rule in this example and the penalty constant λ is set to be 5× 10−6.

• For Meta-CVs: The inner step size α = 0.01 and the meta step size η = 0.002 for all meta iterations. The number of
inner updates is L = 1. The number of meta iteration Itr is set to be 2, 000. The meta batch size of tasks is set to be 5.

• For Neural-CVs: The step size (learning rate) is 0.002. The number of training epochs for each task is set to be 20 with
batch size 5.

B.3 EXPERIMENT: BAYESIAN INFERENCE OF LOTKA-VOLTERRA SYSTEM

The log-exp transform is used on the model parameters x to avoid constrained parameters on the ODE directly. We
reparameterised the Lotka—Volterra system as,

du1(s)
ds = x̃1u1(s)− x̃2u1(s)u2(s)

du2(s)
ds = x̃3u1(s)u2(s)− x̃4u2(s),

where

x̃1 = exp(x1), x̃2 = exp(x2),

x̃3 = exp(x3), x̃4 = exp(x4),

where u1 and u2 represents the number of preys and predators, respectively.

The model is,

y1(0) ∼ Log-Normal(log x̃5, x̃7)

y2(0) ∼ Log-Normal(log x̃6, x̃8)

y1(s) ∼ Log-Normal(log u1(s), x̃7)

y2(s) ∼ Log-Normal(log u2(s), x̃8)

where

x̃5 := exp(x5), x̃6 := exp(x6)

x̃7 := exp(x7), x̃8 = exp(x8).

By doing so, x is then on the whole R8. As a result, the prior distribution π(x) is defined on R8 and Stan will return the scores
of these parameters directly as these 8 parameters x themselves are unconstrained through manually reparameterisation
directly.

Priors are,

x1, x4 ∼ Normal(0, 0.52)
x2, x3 ∼ Normal(−3, 0.52)

x5, x6 ∼ Normal(log 10, 12)
x7, x8 ∼ Normal(−1, 12)

Inference of x1 and x2

• For both Meta-CVs and Neural-CVs: We use a fully connected neural network with 3 hidden layers. Each layer has 5
neurons while the output layer has 8 neurons. The total number of parameters of the neural network p = 153. The
activation function is the tanh function. All parameters of neural networks are initialised with a Gaussian distribution
with zero mean and standard deviation 0.01 except of γt,0 is initialised at the Monte Carlo estimator of each task. We
use Adam as the UPDATE rule in this example and the penalty constant λ is set to be 5× 10−5.

• For Meta-CVs: The inner step size α = 0.0001. The number of inner gradient steps is L = 1. The meta step size was
initialised at 0.001 with a step size decay (ηi+10 = 0.9ηi) every 10 meta iterations. The number of meta iteration Itr is
set to be 2, 000. The meta batch size of tasks B is set to be 5. We only use 100 tasks (sub-populations) for learning the
Meta-CVs. For each of these 100 tasks, we have more than Nt data points (also because MCMC sampler will return
more than Nt samples, so we reuse all of them) such that we can learn Meta-CV with Itr = 2000 and B = 5.

• For Neural-CVs: The step size (learning rate) is 0.001. The number of training epochs for each task is set to be 20 with
batch size 5.

Inference of x3 and x4

• For both Meta-CVs and Neural-CVs: We use a fully connected neural network with 3 hidden layers. Each layer has
3 neurons while the output layer has 8 neurons. The total number of parameters of the neural network p = 83. The
activation function is the tanh function. All parameters of neural networks are initialised with a Gaussian distribution
with zero mean and standard deviation 0.01 except of γt,0 is initialised at the Monte Carlo estimator of each task. We
use Adam as the UPDATE rule in this example and the penalty constant λ is set to be 5× 10−5.

• For Meta-CVs: The inner step size α = 0.001. The number of inner gradient steps is L = 1. The meta step size was
initialised at 0.001 with a step size decay (ηi+10 = 0.9ηi) every 10 meta iterations. The number of meta iteration Itr is
set to be 2, 000. The meta batch size of tasks B is set to be 5. We only use 100 tasks (sub-populations) for learning the
Meta-CVs. For each of these 100 tasks, we have more than Nt data points (also because MCMC sampler will return
more than Nt samples, so we reuse all of them) such that we can learn Meta-CV with Itr = 2000 and B = 5.

• For Neural-CVs: The step size (learning rate) is 0.001. The number of training epochs for each task is set to be 20 with
batch size 5.

B.4 EXPERIMENT: SARCOS ROBOT ARM

Approximate Inference of Full Bayesian Gaussian Process Regression We learn full Bayesian hierarchical Gaussian
processes by variational inference [Kucukelbir et al., 2017, Lalchand and Rasmussen, 2020].

We set σ = 0.1, π(x1) = Gamma(25, 25) and π(x2) = Gamma(25, 25), which is the prior used in [Oates et al., 2017].
We transform the kernel hyper-parameters x ∈ R2+ to η = g(x) = log x such that we can learn a variational distribution
qϕ(η) of η in R2 and then transform back to q(x). We use full rank approximation which means the variational family takes
the following form:

qϕ(η) = N(µ, V V ⊤),

with variational parameter ϕ := {µ, V } ∈ Rp+p(p+1)/2 where µ is a column vector and V is a lower triangular matrix. The
objective of variational inference is to maximize the evidence lower with respect to ϕ, which is given by,

ELBO(ϕ) = Eqϕ [log p(y1:q, e
η) + log |Jacobiang−1(η)|]− Eqϕ [log qϕ(η)]

= Eqϕ [log p(y1:q|eη) + log π(eη) + log |Jacobiang−1(η)|]− Eqϕ [log qϕ(η)]

The expectations involved in ELBO(ϕ) are approximated by Monte Carlo estimators and we use re-parametrization trick
[Kingma and Welling, 2014] to learn ϕ. Figure 1 demonstrates the prior and the corresponding posterior of the kernel
hyper-parameters x = (x1, x2) (in the form of 2d histograms).

0.5 1.0 1.5 2.0
x1

0.5

1.0

1.5

2.0

x 2

Prior of x

0.7 0.8 0.9 1.0
x1

1.0

1.2

1.4

1.6

x 2
Posterior of x

Figure 1: Priors and Posteriors of Kernel Hyper-parameters x.

Settings

• For both Meta-CVs and Neural-CVs, a fully connected neural network with 5 hidden layers. Each layer has 20 neurons
while the output layer has 2 neurons (the output then is timed by a identity matrix I2 to used as u since 2 is the
dimension of the input x). The total number of parameters of the neural network p = 10, 401. The activation function
is the sigmoid function. All parameters of neural networks are initialised with a Gaussian distribution with zero mean
and standard deviation 0.001. We use Adam as the UPDATE rule in this example and the penalty constant λ is set to be
1× 10−10.

• For Meta-CVs: The inner step size α = 0.01. The meta step size was initialised at 0.001 with a step size decay
(ηi+10 = 0.9ηi) every 10 meta iterations. The number of meta iteration Itr is set to be 1, 000. The meta batch size of
tasks B is set to be 1.

• For Neural CV: The step size (learning rate) is 0.001. The number of training epochs for each task is set to be 20 with
batch size 5.

• For Control functionals: we use radius basis function k(x, x′) = exp(−∥x−x′∥2
2

2v) with kernel hyperparameter v > 0 as
the base kernel for control functionals. The hyper-parameter v is tuned by maximising the marginal likelihood with
the Stein kernel on St for each task. Optimal control functionals are selected by using St and then unbiased control
functional estimators are constructed by using Qt of each task.

Extra Experiments In addition, we test the performance of Meta-CVs on the same tasks used for learning the Meta-CV.
Under the same setting described above, the comparisons between Meta-CVs and other methods are presented in Figure 2.

MC CF NCV MCV-1 MCV-5 MCV-20 MCV-50 MCV-100

0.050

0.075

0.100

0.125

0.150

0.175

E
st

im
at

ed
 A

bs
ol

ut
e

E
rr

or

Figure 2: Estimated absolute errors over the same training states (which are used for learning the Meta-CV) of the Sarcos
anthropomorphic robot arm (CF: Control functionals; NCV: Neural-CVs; MCV-L: Meta-CVs with L inner steps).

References

S. Boyd, S. P. Boyd, and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

K. Ji, J. Yang, and Y. Liang. Theoretical convergence of multi-step model-agnostic meta-learning. J. Mach. Learn. Res., 23:
29–1, 2022.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.

A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. M. Blei. Automatic differentiation variational inference. J. Mach.
Learn. Res., 2017.

V. Lalchand and C. E. Rasmussen. Approximate inference for fully Bayesian Gaussian process regression. In AABI, pages
1–12. PMLR, 2020.

C. J. Oates, M. Girolami, and N. Chopin. Control functionals for Monte Carlo integration. J. R. Stat. Soc. Series B, 79(3):
695–718, 2017.

C. J. Oates, J. Cockayne, F-X. Briol, and M. Girolami. Convergence rates for a class of estimators based on Stein’s method.
Bernoulli, 25(2):1141–1159, 2019.

	Proof of Theorems
	Convergence of Model-Agnostic Meta-Learning
	Proof of Theorem 1
	Proof of Corollary 1.1

	Experimental Details
	Experiment: Oscillatory Family of Functions
	Experiment: Boundary Value ODEs
	Experiment: Bayesian Inference of Lotka-Volterra System
	Experiment: Sarcos Robot Arm

