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In Appendix [A] we provide the proof of the theoretical results stated in the main text. In Appendix [B] we provide more
details on the implementation of Neural-CVs and Meta-CVs, together with the full experimental protocol.

A  PROOF OF THEOREMS

In this section, we will firstly review the assumptions and theorems in [J1 et al.| 2022] in Appendix as the proof of
the theorems follows the results of [Ji et all [2022]. We then give the proof of Theorem|[I|in Appendix [A.2]and proof of

Corollary [I.T)in Appendix [A.3]

Al CONVERGENCE OF MODEL-AGNOSTIC META-LEARNING

Ji et al|[2022] analysed the convergence of model-agnostic meta-learning, as we will adapt their results to the training of
CVs. Letting O, be either S; or ()¢, and phrasing in terms of the notation and setting used in this work, the assumptions of
U1 et al., [2022] are:

(A1) min, inf, Jo, () > —o0;
IVyJo, (v)=Vedo, (Oll2

(A2) x 1= max; Sup, . v =Clls < 0o0;
,_ V3 Jo, (V) =VZJo, ()2 )
(A3) p:=max;sup, - —— T =ls £ < o0

(A4) 0% := max; sup, ||V, Jo, ()3 < oo;
(A5) by := sup, ||Js,(7) — J@.(7)l]2 < oo.

Theorem A.1 (Theorem 9 and Corollary 10 [Ji et al.,[2022]]). Let the above assumptions (Al) to (A5) hold. Then, with a

meta step-size n; = ﬁfori =1,...,I,and o = &%L in Algorithm, we attain a solution Ymea such that

EHEt[vuﬁ(:}’mem)Hb =0 (I%, + % + I%, + %") ,

where xn, = (1 + ax)*L + Cpb + CLE[[|[VJg, (mew)||2), with b = Ei[bi] and Cy, = Cy = (ap + #/x(1 + ax)*~1) (1 +
ax)?r.

Lemma A.2 (Lemma 19 [Ji et al.l 2022]). Under assumptions (Al) - (A5), for any t and any v € RPT1, we have
Cl
1BV Jg, (D2 < & IEATT )l + .

where C}; > 0 and C} > 0 are constants given C = 2 — (1 + ax)?L and C5 = (1 + ax)*t — 1o + (1 + ax) X ((1 +
ax)t —1)b.
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A2 PROOF OF THEOREMI]|

To prove Theorem [T} we firstly derive three useful propositions (P1-P3) based on our Assumption[T]and Assumption [2]in
Section[6] and then give the proof based on the above results from [Ji et al.| 2022].

For each task ¢, we claim that

IVyJo, (V) =VeJo, (Oll2

(P1) sup,.¢ =<l <%
V2 Jo, (v)=VZJo, (O)ll2 .
P2) SUP, e — L T7=ls L < o0;

(P3) Sup, ||V’YJOt (V)HQ < o0,

for both O; € {S;, Q:}.

Proof of P1-P3. Denote the additive contribution of a single sample to the loss function as I;(x,v) = (fi(z) — g(z;7))%
First we will show that under Assumptionand Assumption we have: for each ¢t and x € Dy, the function v — V. ¢, (xz;7)
is bounded and Lipschitz; and for each ¢ and z € Dy, the function y — V?Yét (z;7) is Lipschitz. Then (P1-P3) follow

immediately as Jg, () = |Q71t\ >veq, (@) and Js, () = 157 Xges, le(@37)-

From direct calculation, we have:

Vali(xiy) = =2(fe(z) — g(z;7))Vy9(737)
V20 (z;7) = 2(fi(x) — g(2;7))Vyg(@:7)Vag(@y) " = 2(fi(z) — g(2:7))Vig(z:7y)
=2(fi(z) — 9(57)) [V49(z; 1) VAg(239) T = V2g(a357)]

and taking differences:

[Vyle(z;v) = Vele(@; Ollz = || = 2(fi(x) — 9(237))Vag(@;y) + 2(fe(2) — 9(25 () Veg(@; Q)2
<2/ fe(@) V4 g(w57) = Veg(@; Q)2
+2[|g(z;7)Vyg(z;7) — 9(z; OV eg(@; Q|2
<2/ fe(2)[IVyg(w57) — Veg(@; ¢l
+ 2|g(2; MIIVAg(237) = Veg(; Oll2 + 2 Veg(z; Oll2lg(z;v) — g(a; ¢l

So, for each t and « € Dy, the function y — V. /;(z;~) is bounded and Lipschitz when the functions vy — g(x;+) and
v — V,g(x;~) are bounded and Lipschitz (i.e. Assumption|T).

Then taking differences and bounding terms in a similar manner, we have,

V28 (5 7) = Vel (x5 O)ll2 < 2| fo ()| V49 (2;7) Vg las ) T - Vig(w'v)
= Veg(@;:O)Veg(@;:0) "+ Vig(m:Q)ll2
+2|g(w;7)lllvvg(x;V)ng(xw) Vzg(x 7)
*ch(m'C)ch( O+ Vig(z; Q)|
+2|Veg(x;O)Veg(;0) T — VEg(a; Ol \9( ) g(z; Q)|

So for each t and & € Dy, the function y — V2¢,(x;) is Lipschitz when the functions v — V. g(z;7)V,g(z; 7T
V2 g(; ) are bounded and Lipschitz (i.e. Assumptlon O

Proof of Theorem I}

Proof. Assumption (A1) is automatically satisfied. (P1) and (P2) above imply (A2) and (A3). (P3) above implies (A4).

Note that Assumption (1| implies (AS). This is because, for each t, z € D, we have sup,, l;(z;7) := sup,(fi(z) —
g(x;7))? < oo as we assume that v — g(x;7) is bounded and f(x) is constant in ~. Thus, sup, Jo,(y) =
ﬁ > wco, lt(x57) < oo where Oy can be either S or Q¢ So sup, [|Js, () — Jo,(7)[l2 < oc.

Then, Theorem I] follow from the conclusion of Theorem [A 1] O



A3 PROOF OF COROLLARY

Proof. Since Assumption [I]and Assumption 2]imply (A1) to (AS) in Appendix [A.T] we will use the constants defined earlier
in Appendix here as well. Firstly, note that given 4., with

1
exp(]&2)-1 _ 23r 1
a < =
X X

b

we have: E||E;[VJg, (Fe)]ll2 < C%e + g—? by taking v = 4. in Lemma

If then additionally V2.Jq, () = ul,+1 holds, by (9.11) in Boyd et al.|[2004] we have,

Iy =ll2 < 21V T, (V)2

Taking the expectation of both sides, we then have

Eiflly = 2¢ll2] < 2E[[VJQ, (7)ll2]

< 2 (&[T o, ()l +0).

a2

where (7) follows from [Ji et al.| 2022] (Page 35, Line 8). Take v = 4. and take the expectation of both sides. Then by
Theorem [T}

E[E:[[l7e — 7 ll2]]) < ZE[[E[V Iq, (Fe)]ll2] + 37
Sileerd) o
- uéi et %&Cé)
_ Cl’tl€+ %7
where C; = C% and Cy = %ﬁ%) -

B EXPERIMENTAL DETAILS

In this section, we provide more experimental details and implementation details of Neural-CVs and Meta-CVs. Details of
the synthetic example are presented in Appendix Details of the boundary-value ODE are provided in Appendix [B.2]
Details of Bayesian inference for the Lotka—Volterra system are provided in Appendix [B.3] Details of the Sarcos robot arm
are presented in Appendix

B.1 EXPERIMENT: OSCILLATORY FAMILY OF FUNCTIONS

Our environment p consists of independent distributions on each element of a. For a;, we select a Unif(0.4, 0.6), whilst
for all other parameters we select a Unif(4, 6). Each task is of the form T; = {fi(x; a;), m } where a; := (a1, as2.4+1) "
is a sample from p. This creates potentially infinite number of integral estimation tasks as a is continuous. The target
distributions are 71 (z) = ... = 7y (z) = Unif(0, 1)? where d is the dimension of x.

For all experiments of this example, we set the neural network identical for both Meta CVs and Neural CVs. That is, a
fully connected neural network with two hidden layers. Each layer has 80 neurons while the output layer has 1 neurons
(the output then is multiplied by a identity matrix I; to used as & where d is the dimension of the input x). The total
number of parameters of the neural network p = 80d 4 6641 where d the dimension of the input z. The activation function
is the sigmoid function. The neural network is served as 4 and we apply Langevin Stein operator onto %(x)d(x) where

o(x) = H?Il xj(1 — x;) to satisfy assumptions in [Oates et al., 2019]]. For experiments in this example, we use Adam as

the UPDATE rule in this example and the penalty constant \ is set to be 5 x 1076,



2-dimensional Oscillatory Family of Functions

* For Meta-CVs: The inner step size a = 0.01. The number of inner gradient steps is L = 1. The meta step size
n = 0.002 for all meta iterations. The number of meta iteration I, is set to be 4, 000. The meta batch size of tasks B is
set to be 5.

 For Neural-CVs: The step size (learning rate) is 0.002. The number of training epochs for each task is set to be 20 with
batch size 5.

_ 2 .
* For Control functionals: we use radius basis function k(z, 2') = exp(—”xzij”?) with kernel hyperparameter v > 0

as the base kernel for control functionals. The hyper-parameter v is tuned by maximising the marginal likelihood of
the Stein kernel on S; for each task. Optimal control functionals are selected by using S; and then unbiased control
functional estimators are constructed by using @Q; of each task.

Impact of the Number of Inner Updates L

* For Meta-CVs: The inner step size a = =2 for L € {1,3,5,7,10}. The meta step size n = 0.002 for all meta

iterations. The number of meta iteration Iy, is set to be 4, 000. The meta batch size of tasks B is set to be 5.

Impact of Dimensions

e For Meta-CVs: The inner step size « = 0.01. The number of inner gradient steps is L = 1. The meta step size
n = 0.002 for all meta iterations. The number of meta iteration Iy is set to be 4, 000. The meta batch size of tasks B is
set to be 5.

* For Neural-CVs: The step size (learning rate) is 0.002. The number of training epochs for each task is set to be 20 with
batch size 5.

* For Control functionals: we use radius basis function k(x, z') = exp(— W) with kernel hyperparameter v > 0
as the base kernel for control functionals. The hyper-parameter v is tuned by maximising the marginal likelihood of
the Stein kernel on S, for each task. Optimal control functionals are selected by using S; and then unbiased control

functional estimators are constructed by using ), of each task.

Impact of B and [, of Meta-CVs

* The inner step size = 0.01. The number of inner gradient steps is L = 1. The meta step size is = 0.002 for all
meta iterations.

B.2 EXPERIMENT: BOUNDARY VALUE ODES

For all experiments of this example, we set the neural network identical for both Meta-CVs and Neural-CVs. That is, a fully
connected neural network with three hidden layers. Each layer has 80 neurons while the output layer has 1 neurons. The
total number of parameters of the neural network p = 13, 201. The activation function is the sigmoid function. We use
Adam as the UPDATE rule in this example and the penalty constant \ is set to be 5 x 1076,

* For Meta-CVs: The inner step size a« = 0.01 and the meta step size n = 0.002 for all meta iterations. The number of
inner updates is L = 1. The number of meta iteration I is set to be 2, 000. The meta batch size of tasks is set to be 5.

* For Neural-CVs: The step size (learning rate) is 0.002. The number of training epochs for each task is set to be 20 with
batch size 5.

B.3 EXPERIMENT: BAYESIAN INFERENCE OF LOTKA-VOLTERRA SYSTEM

The log-exp transform is used on the model parameters = to avoid constrained parameters on the ODE directly. We
reparameterised the Lotka—Volterra system as,

duq(s)
ds

Q209 — Fauy (s)uz(s) — Tausz(s),

= T1u1(s) — Toug(s)ua(s)




where
%1 = exp(x1), T2 = exp(x2),
T3 = exp(zs3), T4 = exp(zq),

where u; and uo represents the number of preys and predators, respectively.

The model is,
y1(0) ~ Log-Normal(log &5, Z7)
y2(0) ~ Log-Normal(log &g, Z3)
y1(s) ~ Log-Normal(log u1 (s), Z7)
y2(s) ~ Log-Normal(log ua(s), Zg)
where

Z5 := exp(xs), Te := exp(zs)
Fr = exp(ar), & = exp(as).
By doing so, x is then on the whole R®. As a result, the prior distribution 7() is defined on R® and Stan will return the scores

of these parameters directly as these 8 parameters = themselves are unconstrained through manually reparameterisation
directly.

Priors are,

x1, 24 ~ Normal(0, 0.52)

(
To, 3 ~ Normal(—3,0.52)
x5, 26 ~ Normal(log 10, 1?)
w7, w3 ~ Normal(—1,12)

Inference of x; and x5

* For both Meta-CVs and Neural-CVs: We use a fully connected neural network with 3 hidden layers. Each layer has 5
neurons while the output layer has 8 neurons. The total number of parameters of the neural network p = 153. The
activation function is the tanh function. All parameters of neural networks are initialised with a Gaussian distribution
with zero mean and standard deviation 0.01 except of 7, ¢ is initialised at the Monte Carlo estimator of each task. We
use Adam as the UPDATE rule in this example and the penalty constant X is set to be 5 x 1072,

* For Meta-CVs: The inner step size o = 0.0001. The number of inner gradient steps is L = 1. The meta step size was
initialised at 0.001 with a step size decay (17,410 = 0.97;) every 10 meta iterations. The number of meta iteration Iy, is
set to be 2, 000. The meta batch size of tasks B is set to be 5. We only use 100 tasks (sub-populations) for learning the
Meta-CVs. For each of these 100 tasks, we have more than /V; data points (also because MCMC sampler will return
more than N; samples, so we reuse all of them) such that we can learn Meta-CV with [, = 2000 and B = 5.

* For Neural-CVs: The step size (learning rate) is 0.001. The number of training epochs for each task is set to be 20 with
batch size 5.

Inference of x3 and 4

* For both Meta-CVs and Neural-CVs: We use a fully connected neural network with 3 hidden layers. Each layer has
3 neurons while the output layer has 8 neurons. The total number of parameters of the neural network p = 83. The
activation function is the tanh function. All parameters of neural networks are initialised with a Gaussian distribution
with zero mean and standard deviation 0.01 except of v, ¢ is initialised at the Monte Carlo estimator of each task. We
use Adam as the UPDATE rule in this example and the penalty constant ) is set to be 5 x 107>,

* For Meta-CVs: The inner step size o = 0.001. The number of inner gradient steps is L = 1. The meta step size was
initialised at 0.001 with a step size decay (7,410 = 0.97;) every 10 meta iterations. The number of meta iteration I, is
set to be 2, 000. The meta batch size of tasks B is set to be 5. We only use 100 tasks (sub-populations) for learning the
Meta-CVs. For each of these 100 tasks, we have more than /V; data points (also because MCMC sampler will return
more than V; samples, so we reuse all of them) such that we can learn Meta-CV with I;, = 2000 and B = 5.

 For Neural-CVs: The step size (learning rate) is 0.001. The number of training epochs for each task is set to be 20 with
batch size 5.



B.4 EXPERIMENT: SARCOS ROBOT ARM

Approximate Inference of Full Bayesian Gaussian Process Regression We learn full Bayesian hierarchical Gaussian
processes by variational inference [Kucukelbir et al., 2017, |Lalchand and Rasmussenl 2020]].

We set 0 = 0.1, m(z1) = Gamma(25, 25) and m(x2) = Gamma(25, 25), which is the prior used in [Oates et al., [2017].
We transform the kernel hyper-parameters = € R?* to = g(z) = log = such that we can learn a variational distribution
¢ (n) of 7 in R? and then transform back to g(z). We use full rank approximation which means the variational family takes
the following form:

46(n) =N(u, VV'T),

with variational parameter ¢ := {u, V'} € RPP(PT1)/2 where 1 is a column vector and V is a lower triangular matrix. The
objective of variational inference is to maximize the evidence lower with respect to ¢, which is given by,
ELBO(¢) = Eq, [log p(y1:q, €") + log |Jacobian,—i (n)|] — Eq, [log g4 (n)]
= Eq, [log p(y1:le”) + log w(e") + log |Jacobian, -1 (n)]] — Eq, [log g (n)]
The expectations involved in ELBO(¢) are approximated by Monte Carlo estimators and we use re-parametrization trick

([Kingma and Welling] 2014] to learn ¢. Figure [T] demonstrates the prior and the corresponding posterior of the kernel
hyper-parameters © = (x1, x2) (in the form of 2d histograms).

Prior of x Posterior of x
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Figure 1: Priors and Posteriors of Kernel Hyper-parameters x.

Settings

* For both Meta-CVs and Neural-CVs, a fully connected neural network with 5 hidden layers. Each layer has 20 neurons
while the output layer has 2 neurons (the output then is timed by a identity matrix I to used as u since 2 is the
dimension of the input z). The total number of parameters of the neural network p = 10, 401. The activation function
is the sigmoid function. All parameters of neural networks are initialised with a Gaussian distribution with zero mean
and standard deviation 0.001. We use Adam as the UPDATE rule in this example and the penalty constant ] is set to be
1 x 10710,

e For Meta-CVs: The inner step size « = 0.01. The meta step size was initialised at 0.001 with a step size decay
(Mi+10 = 0.97m;) every 10 meta iterations. The number of meta iteration I, is set to be 1, 000. The meta batch size of
tasks B is set to be 1.

* For Neural CV: The step size (learning rate) is 0.001. The number of training epochs for each task is set to be 20 with
batch size 5.

7112
* For Control functionals: we use radius basis function k(z, z’) = exp(—“acgiﬂb) with kernel hyperparameter v > 0 as

the base kernel for control functionals. The hyper-parameter v is tuned by maximising the marginal likelihood with
the Stein kernel on S; for each task. Optimal control functionals are selected by using S; and then unbiased control
functional estimators are constructed by using @), of each task.

Extra Experiments In addition, we test the performance of Meta-CVs on the same tasks used for learning the Meta-CV.
Under the same setting described above, the comparisons between Meta-CVs and other methods are presented in Figure 2]
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Figure 2: Estimated absolute errors over the same training states (which are used for learning the Meta-CV) of the Sarcos
anthropomorphic robot arm (CF: Control functionals; NCV: Neural-CVs; MCV-L: Meta-CVs with L inner steps).
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