
Meta-learning Control Variates: Variance Reduction with Limited Data

Zhuo Sun1,3 Chris J. Oates2,3 François-Xavier Briol1,3

1Department of Statistical Science, University College London, London, UK
2School of Mathematics, Statistics & Physics, Newcastle University, UK

3The Alan Turing Institute, London, UK

Abstract

Control variates can be a powerful tool to reduce
the variance of Monte Carlo estimators, but con-
structing effective control variates can be challen-
ging when the number of samples is small. In this
paper, we show that when a large number of re-
lated integrals need to be computed, it is possible
to leverage the similarity between these integra-
tion tasks to improve performance even when the
number of samples per task is very small. Our ap-
proach, called meta learning CVs (Meta-CVs), can
be used for up to hundreds or thousands of tasks.
Our empirical assessment indicates that Meta-CVs
can lead to significant variance reduction in such
settings, and our theoretical analysis establishes
general conditions under which Meta-CVs can be
successfully trained.

1 INTRODUCTION

Estimating integrals is a significant computational challenge
encountered when performing uncertainty quantification
in statistics and machine learning. In a Bayesian context,
integrals arise in the estimation of posterior moments, mar-
ginalisation of hyperparameters, and the computation of
predictive distributions. In frequentist statistics, it is often
necessary to integrate out latent variables. In machine learn-
ing, integrals arise in gradient-based variational inference
or reinforcement learning algorithms. These problems can
usually be formulated as the task of computing

Eπ[f] :=
∫
X f(x)π(x)dx, (1)

where X ⊆ Rd is the domain of integration, f : X → R is
an integrand, and π : X → [0,∞) is a probability density
function. (For convenience, we will use π to denote both a
density and the distribution associated to it.)

It is rare that such integrals can be exactly computed. This
has led to the development of a range of approximation tech-
niques, including both deterministic and randomised cub-
ature rules. The focus of this paper is on Monte Carlo (MC)
methods and their correlated extensions such as Markov
chain Monte Carlo (MCMC), which make use of a finite
collection of evaluations f(xi) at locations {xi}Ni=1 that are
randomly sampled; see Green et al. [2015].

Since the variance of standard MC estimators can be large,
control variates (CVs) are often also employed. The idea
behind CVs is to approximate f using a suitable family of
functions with known integral. Once an approximation g
is identified, the CV estimator consist of the sum of Eπ[g]
and a MC (or MCMC) estimator for Eπ[f − g]. An effect-
ive control variate is one for which the difference f − g
has smaller MC variance than f (or asymptotic variance,
in the case of MCMC). CVs have proved successful in a
range of challenging tasks in statistical physics [Assaraf and
Caffarel, 1999], Bayesian statistics [Dellaportas and Kon-
toyiannis, 2012, Mira et al., 2013, Oates et al., 2017, South
et al., 2022c], gradient estimation in variational inference
[Grathwohl et al., 2018, Shi et al., 2022] and MCMC [Baker
et al., 2019], reinforcement learning [Liu et al., 2018, 2019],
and computer graphics [Müller et al., 2020].

Unfortunately, construction of an effective CV usually re-
quires a large number of samples N . This limits their useful-
ness in settings when either sampling from π or evaluating f
is expensive, or when the computational budget is otherwise
limited. High-dimensional settings also pose a challenge,
since such functions are more difficult to approximate due to
the curse of dimensionality. In the latter case, sparsity can be
exploited for integrands with low effective dimension [South
et al., 2022b, Leluc et al., 2021], but many integrands do
not admit convenient structure that can be easily exploited.

This paper proposes a radically different solution, which
borrows strength from multiple related integration tasks to
aid in the construction of effective CVs. Our approach re-
quires a setting where T integration tasks of the form in

Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:2047–2057.

mailto:<zhuo.sun.19@ucl.ac.uk>?Subject=Your UAI 2023 paper

(1) need to be tackled, and where the integrands f1, . . . , fT
and densities π1, . . . , πT are different, but related. Related
integration tasks arise in a broad range of settings, including
multifidelity modelling [Peherstorfer et al., 2018, Li et al.,
2023], sensitivity analysis [Demange-Chryst et al., 2022],
policy gradient methods [Liu et al., 2018], and thermody-
namic integration [Oates et al., 2016]. Further examples
are considered in Section 5, including marginalisation of
hyper-parameters in Bayesian inference (see the hierarchical
Gaussian process example) and the computation of predict-
ive distributions (see the Lotka–Volterra example). In all
cases the integrands and densities are closely related, and
sharing information across tasks can be expected to deliver
a substantial performance improvement.

To date, the only CV method able to exploit related integ-
ration tasks is the vector-valued CVs of Sun et al. [2021a].
This algorithm learns the relationship between integrands
through a multi-task learning approach in a vector-valued
reproducing kernel Hilbert space. It has shown potential, but
suffers from a prohibitive computational cost of O(T 6) and
a significant memory cost ofO(T 2). The largest experiment
in Sun et al. [2021a], which focused on computation of the
model evidence for a dynamical system, was for T = 4.
This lack of scalability in T is a significant limitation; in
many of the motivating examples mentioned above, it can
be desirable to share information across hundreds or thou-
sands of tasks. A key question is therefore: “How can we
construct CVs at scale, sharing information across a large
number of tasks?”

Our answer to this question is an algorithm we call Meta-
learning CVs (Meta-CVs). As the name indicates, Meta-
CVs are built on the meta-learning framework [Finn et al.,
2017, 2018]. The benefits of this approach are three-fold: (i)
the computational cost grows as O(T), making Meta-CVs
feasible for large T , (ii) the effective number of paramet-
ers for a given task is constant in T , limiting significantly
the memory cost, and (iii) the construction of the Meta-CV
occurs offline, and a new CV can be computed at minimal
computational cost whenever a new task arises. Before intro-
ducing Meta-CVs in Section 4, we first recall background
on CV methods in Section 2 and highlighted relevant tech-
niques from related fields in Section 3.

2 BACKGROUND

This section contains background information on general
techniques used to construct CVs, which will be adapted to
Meta-CVs in Section 4.

Control Variate Methods In the remainder, we will as-
sume f is in L2(π) = {f : X → R s.t. Eπ[f2] < ∞},
the space of π-square-integrable functions on X . This as-
sumption is necessary to ensure the variance of f , denoted
Vπ[f] := Eπ[f2]− (Eπ[f])2, exists. The MC estimator of

Eπ[f] is ÊMC
π [f] = 1

N

∑N
i=1 f(xi), where {xi}Ni=1 are in-

dependent and identically distributed (IID) samples from
π. Under the L2(π) assumption, this estimator satisfies a
central limit theorem:

√
N
(
ÊMC
π [f]− Eπ[f]

)
→ N (0,Vπ[f])

This result justifies the common use of Vπ[f] as a proxy for
the accuracy of the MC estimator; analogous results hold for
MCMC [Dellaportas and Kontoyiannis, 2012, Belomestny
et al., 2020, 2021, Alexopoulos et al., 2023] and (random-
ised) quasi-Monte Carlo [Hickernell et al., 2005], where the
asymptotic variance and the Hardy–Krause variation serve
as analogues of Vπ[f]. To limit scope, we focus on MC in
the sequel.

A potentially powerful strategy to improve MC estimators
is to identify a function g ∈ L2(π) for which Vπ[f − g] is
small, and for which the expectation Eπ[g] can be exactly
computed. From a practical perspective, the identification of
a suitable g can be performed using a subset {xi}mi=1 of all
available samples (and corresponding integrand evaluations)
for the integration task (as described below), and we denote
the associated estimator as ĝm. The selected control variate
ĝm forms the basis of an improved estimator

ÊCV
π [f] := ÊMC

π [f − ĝm] + Eπ[ĝm] (2)

= 1
N−m

∑N
i=m+1 (f(xi)− ĝm(xi)) + Eπ[ĝm].

Conditional on the training samples {xi}mi=1, a central limit
theorem holds for the CV estimator with Vπ[f−ĝm] in place
of Vπ[f]. If ĝm is an accurate approximation to f , the CV
estimator will therefore tend to have a smaller error than the
original MC estimator. Refined analysis is possible when m
and N jointly go to infinity and ĝm converges to a limiting
CV, but such asymptotic settings are not representative of
the limited data scenarios that motivate this work.

In the remainder of this section, we detail various ways to
estimate a CV from data.

Zero-Mean Functions A first challenge when selecting
a CV is that we require a known mean Eπ[g]. Although
ad-hoc approaches, such as Taylor expansions of f [Paisley
et al., 2012, Wang et al., 2013], can be used when π is
relatively simple, this is usually a challenge whenever π is
a more complex density, such as can be encountered in a
Bayesian inference task. One way forward is through Stein’s
method, and we will call any CV constructed in this way
a Stein-based CV; see Anastasiou et al. [2023]. The main
components of Stein’s method are a function class U , called
a Stein class, and an operator Sπ acting on U , called a Stein
operator, such that g := Sπ[u] satisfies Eπ[g] = 0 for any
u ∈ U . One such operator is the Langevin–Stein operator

Sπ[u](x) := u(x) · ∇ log π(x) +∇ · u(x)

2048

acting on vector fields u : X → Rd. From the divergence
theorem, this operator satisfies Eπ[Sπ[u]] = 0 under stand-
ard tail conditions on the vector field u; see [Oates et al.,
2019] for full detail. In addition, evaluation of this operator
requires only pointwise evaluation of ∇ log π(x), which is
possible even when π involves an unknown normalisation
constant, i.e. π = π̃/C where π̃ is known pointwise and
C > 0 is an unknown constant. This is a significant advant-
age in the present setting since many applications, including
problems where π is a Bayesian posterior distribution, fall
into this category.

The first Stein-based CVs were proposed by Assaraf and
Caffarel [1999], in which U was a finite-dimensional vector
space of functions of the form u = ∇p, with p polynomial
of fixed degree; see also Mira et al. [2013], Papamarkou
et al. [2014], Friel et al. [2014], South et al. [2022b]. For
additional flexibility, Oates et al. [2017] proposed to take
U to be a Cartesian product of reproducing kernel Hilbert
spaces; see also Oates and Girolami [2016], Oates et al.
[2019], Barp et al. [2022], calling this approach control
functionals (CFs). Since CFs are based on a non-parametric
space of functions, they have the capability to approximate
complex integrands, but will also have an effective number
of parameters growing with N , leading to high memory and
computational costs. It is on these types of CVs that vector-
valued CVs are built [Sun et al., 2021a]. Alternatively, one
may take U to be a (parametric) set of neural networks
[Wan et al., 2019, Si et al., 2021, Ott et al., 2023], or even
a combination of neural networks and the aforementioned
spaces [South et al., 2022a, Si et al., 2021]. In this paper,
we will focus on CVs constructed with neural networks,
which are known as neural control variates (Neural-CVs).
The rationale for this choice stems from the fact that neural
networks are also able to approximate complex functions
well, but have a fixed number of parameters, and thus a more
manageable memory and computational cost.

Selecting Control Variates Once a family of CVs has
been identified, we need to select from this family an ef-
fective CV for the integrand f of interest. We will limit
ourselves to parametric families, and will aim to identify
a good parameter value so that the variance of the CV
estimator is minimised. Let g(x; γ) = γ0 + gγ1:p where
γ := γ0:p ∈ Rp+1 consists of p parameters γ1:p determin-
ing the zero-mean Stein-based CV gγ1:p , and an additional
parameter γ0 that will be used to approximate Eπ[f]. Fol-
lowing the framework of empirical loss minimisation with
samples S = {xi,∇ log π(xi), f(xi)}mi=1, the parameter γ
can be estimated by minimising

JS(γ) :=
1
m

∑m
i=1 (f(xi)− g(xi; γ))

2
.

The value of γ0 minimising this objective is a consistent es-
timator for Eπ[f] in the m→∞ limit. To avoid over-fitting
when m is small, penalised objectives have also been pro-
posed [Wan et al., 2019, Si et al., 2021], but determining the

strength of the penalty can represent a very challenging task.
To limit scope, we proceed to minimise the un-regularised
objective in this work.

Conveniently, in the specific case of Neural-CVs, the back-
ward propagation of gradients with respect to the parameters
γ can be done end-to-end via automatic differentiation tech-
niques implemented in modern deep learning frameworks
such as PyTorch [Paszke et al., 2019] (which we use in
our experiments). Unfortunately, Neural-CVs can require
a large number of training samples to learn an accurate ap-
proximation to the integrand. As a result, Neural-CVs are
not well-suited to solving single integration tasks when the
total number of samples N is small. The contribution of this
work seeks to leverage information from related integration
tasks to directly address this weakness of Neural-CVs.

3 RELATED WORK

The idea of sharing information across integrations tasks
has been explored in a range of settings, each building on a
specific structure for the relationship between tasks. Unfor-
tunately, as highlighted below, none of the main approaches
can be used in the general setting of large T and arbitrary
integrands and densities.

Multi-task Learning for Monte Carlo Multi-output
Bayesian quadrature [Xi et al., 2018, Gessner et al., 2019]
and vector-valued CVs [Sun et al., 2021a] are both ap-
proaches based on multi-task learning. These methods think
of f1, . . . , fT as the output of a vector-valued function with
a specific structure shared across outputs, and use this struc-
ture to construct an estimator. These approaches can per-
form very well when the algorithm is able to build on the
relationship between tasks, but they also suffer from a com-
putational cost between O(T 3) and O(T 6) where T is the
number of tasks. These methods are therefore not applicable
in settings with a large T .

Multilevel and Multi-fidelity Integration Multilevel
Monte Carlo [Giles, 2015] and related methods are applic-
able in the specific case where f1, . . . , fT are all approxim-
ations of some function f with varying levels of accuracy.
Although their cost is usually O(T), these methods are
mostly used for problems with small T and where the com-
putational cost of function evaluation varies per integrand.
In particular, they are commonly used with a large N for
cheaper but less accurate integrands, and a small N for ex-
pensive but accurate integrands. This setting is therefore
different from that considered in the present work.

Monte Carlo Methods for Parametric and Conditional
Expectations Parametric expectation or conditional ex-
pectation methods [Longstaff and Schwartz, 2001, Krum-
scheid and Nobile, 2018] consider the task of approximat-

2049

ing EX∼π[f(X, y)] or EX∼π(·|Y=y)[f(X)] uniformly over
y in some interval. These methods can be applied when T
is large, but they usually rely on a specific structure of the
problem: smoothness of these quantities as y varies. The
methodological development in our work does not rely on
smoothness assumptions of this kind.

Importance Sampling Importance sampling is com-
monly used to tackle an integration task with respect to
π when samples from a related distribution π′ are available.
It works by weighting samples according to the ratio π/π′,
and is applicable to multiple tasks with a O(T) cost. How-
ever, the challenge is that π′ needs to be chosen carefully in
order for the estimator to have low variance. The problem
of multiple related integrals was considered by [Glynn and
Igelhart, 1989, Section 8] and Madras and Piccioni [1999],
Demange-Chryst et al. [2022], where the authors seek an
importance distribution π′ which performs well across a
range of tasks. However, identifying such an importance
distribution will usually not be possible when T is large.

4 METHODOLOGY

We now set out the details of our proposed Meta-CVs.

Problem Set-up Consider a finite (but possibly large)
number, T , of integration tasks

Eπ1 [f1], . . . ,EπT
[fT]

and denote by Tt := {ft, πt} the components of the tth task,
consisting of a density πt : X → [0,∞) and an integrand
ft ∈ L2(πt). For each task, we assume we have access to
data of the form

Dt = {xi,∇ log πt(xi), ft(xi)}Nt
i=1,

where Nt ∈ N+ is relatively small. In addition, we will
assume that these tasks are related. Informally, we may
suppose that T1, . . . , TT are independent realisations from a
distribution over tasks arising from an environment, but we
do not attempt to make this notion formal. This set-up allows
us to frame Meta-CVs in the framework of gradient-based
meta-learning.

Meta-learning CVs Gradient-based meta learning [Finn
et al., 2017, 2019, Grant et al., 2018, Yoon et al., 2018, Sun
et al., 2021b] was first proposed in the context of model-
agnostic meta-learning [Finn et al., 2017, 2019]. It was
originally designed for “learning-to-learn” in a supervised-
learning context, with a specific focus on regression and
image classification. The focus of this approach is on the
ability to rapidly adapt to new tasks. This is achieved by
identifying a meta-model, which acts as an initial model
which can be quickly adapted to a new task by taking a few
steps of some gradient-based optimiser on its parameters.

In this paper we adapt gradient-based meta learning to the
construction of CVs. This leads to a two-step approach: The
first step, highlighted in Algorithm 1, consists of learning
a Meta-CV, a CV that performs “reasonably well for most
tasks”. The second step, highlighted in Algorithm 2, consists
of fine-tuning this Meta-CV to each specific task, using a
few additional steps of stochastic optimisation on a task-
specific objective function, to obtain a task-specific CV.

Before describing these algorithms, for each task Tt :=
{ft, πt}, we split the samples into two disjoint sets Dt =
St ∪Qt, so that

St := {xj ,∇ log πt(xj), ft(xj)}mt
j=1

Qt := {xj ,∇ log πt(xj), ft(xj)}Nt
j=mt+1.

The roles of these two datasets will differ depending on
whether the task is used for training the Meta-CV, or for
deriving a task-specific CV, and we will return to this point
below. For simplicity, all of our experiments will consider
mt = Nt/2. Note that these datasets correspond to the con-
cepts of the support set and the query set in the terminology
of gradient-based meta learning [Finn et al., 2017, 2019].

Constructing the Meta-CV The first step in our method
is to construct a Meta-CV; this will later be fine-tuned into
a task-specific CV. Here we will follow the approach in
Section 2 and use a flexibly-parametrised Neural-CV.

To decouple the choice of optimisation method from
the general construction of a Meta-CV, L steps of
an arbitrary gradient-based optimiser will be denoted
UPDATEL(γ,∇γJ (γ) ;α), where γ ∈ Rp+1 is the initial
parameter value, ∇γJ (γ) is the gradient of an objective
J : Rp+1 → R, and α represents parameters of the op-
timisation method. Popular optimisers include gradient des-
cent and Adam [Kingma and Ba, 2015], but more flexible
alternatives also exist [Andrychowicz et al., 2016, Grefen-
stette et al., 2019]. For example, the update correspond-
ing to L-step gradient descent starting at γ0 consists of
γj := γj−1 − α∇J (γj−1) for j = 1, . . . , L . Using this
notation, we can represent an idealised Meta-CV as a CV
whose parameters satisfy

γmeta ∈ argminγ∈Rp+1 Et [Jt (UPDATEL (γ,∇γJt (γ) ;α))] ,
(3)

where Et denotes expectation with respect to a uniformly
sampled task index t ∈ {1, . . . , T}. This objective is chal-
lenging to approximate since it requires solving nested op-
timisation problems. We therefore follow the approach in
Finn et al. [2017] and use a gradient-based bi-level optim-
isation scheme described in Algorithm 1. This requires es-
timating the gradient of the loss Jt in both the inner and
outer level. To prevent over-fitting, we do this using two
independent datasets: St and Qt. We will call the output
of Algorithm 1, denoted γ̂meta, our meta-parameter, and
g(·; γ̂meta) will be called the Meta-CV.

2050

Algorithm 1: Learning a Meta-CV
Input: Training tasks T1, . . . , TT , initial parameter γ0,

UPDATE rule, # update steps L, optimiser
parameters α and η1, . . . , ηItr , mini-batch size
B, # meta-iterations Itr.

1 for i = 1, . . . , Itr do
2 Sample t1, . . . , tB uniformly from {1, . . . , T}.
3 for t ∈ {t1, . . . , tB} do
4 Initialize γt0 ← γi−1.
5 for j = 1, . . . , L do
6 γtj ← UPDATE(γtj−1,∇γtj−1

JSt(γ
t
j−1);α).

7 γi ← UPDATE(γi−1,
1
B

∑B
b=1∇γi−1JQtb

(γ
tb
L); ηi).

Output: The meta-parameter γ̂meta := γItr .

Task-Specific CVs Once a meta-parameter γ̂meta has been
identified, for each task Tt we only need to adapt the meta-
parameter through a few optimisation steps to obtain a
task-specific parameter, γ̂t, and hence a corresponding task-
specific CV g(·; γ̂t). This can be done by using Algorithm
2, and can be applied either to one of the T tasks in the
training set, or indeed to an as yet unseen task. Once such
a task-specific CV is identified, we can simply use the CV
estimator in Equation (2) to estimate the corresponding in-
tegral Eπt

[ft]. Note that we once again use two datasets per
task, but their role differs from that in Algorithm 1: St will
be used for selecting the task-specific CV g(·; γ̂t) through
Algorithm 2, whilst Qt will be used to evaluate the CV
estimator in (2).

To understand how these task-specific CVs borrow strength,
we highlight that the task-specific CV are constructed using∑T

t=1Nt samples in total. Thus, when T is large and Nt is
small, our task-specific CV may be based on a much larger
number of samples compared to any CV constructed solely
using data on a single task. The closeness of the relationship
between tasks of course determines the value of including
these additional data into the training procedure for a CV;
this will be experimentally assessed in Section 5.

Algorithm 2: Task-specific CVs from the Meta-CV
Input: Integration task Tt, meta-parameter γ̂meta,

UPDATE rule, # update steps L, optimiser
parameters α.

1 Initialize γ0 ← γ̂meta.
2 for j = 1, . . . , L do
3 γj ← UPDATE(γj−1,∇JSt

(γj−1);α).
Output: Task-specific parameter γ̂t := γL.

Computational Complexity To discuss the complexity
of our method, suppose first that the parameter γ̂meta of the
Meta-CV has already been computed. The additional compu-
tational complexity of training all task-specific Neural-CVs

is thenO(TL), where L is the number of optimisation steps
used to fine-tune the CV to each specific task. Ordinarily
a large number of optimisation steps are required to learn
parameters of a neural network, but due to meta-learning
we expect the number L of steps required to fine-tune task-
specific CVs to be very small (indeed, we take L = 1 in
most of our experiments). This is because as L grows, the
task-specific CV is less and less dependent on the meta-CV;
see also Antoniou et al. [2019]. In addition, taking L to
be small means fine-tuning a Meta-CV can be orders of
magnitude faster compared to training Neural-CVs inde-
pendently for each task.

Of course, we also need to consider the complexity of train-
ing the Meta-CV. This can require a large number L of
optimisation steps in general - a point we assess experi-
mentally in Section 5 and theoretically in Section 6 - but
this number is broadly comparable to that required to train
a Neural CV to a single task. However, the scaling in p,
the number of neural network parameters, is at least O(p2)
[Fallah et al., 2020] for our approach (due to second-order
derivatives in Algorithm 1) against O(p) for Neural-CVs.
This will be a challenge for our method when p is large, and
we will return to this issue in the conclusion of the paper.

5 EXPERIMENTAL ASSESSMENT

The performance of the proposed Meta-CV method will
now be experimentally assessed, using a range of problems
of increasing complexity where Nt is small and T is large.
For simplicity, we will limit ourselves to the setting where
the Nt are equal and where the Adam optimiser is used. The
existing methods discussed in Section 3 cannot be applied
to the problems in this section due to the large value of T
and associated prohibitive computational cost, and we there-
fore only compare to methods which do not borrow strength
between tasks: MC, Neural-CVs and CFs. The code to repro-
duce our results is available at: https://github.com/
jz-fun/Meta_Control_Variates.

A Synthetic Example Trigonometric functions are com-
mon benchmarks for meta-learning [Finn et al., 2017, Grant
et al., 2018] and CVs [Oates et al., 2017, 2019]. Consider
integrands of the form

ft(x; at) = cos
(
2πat,1 +

∑d
i=1 at,i+1xi

)
,

with parameters at ∈ Rd+1, and let πt be the uniform dis-
tribution on X = [0, 1]d. The integrals Eπt

[ft] can then be
explicitly computed and serve as a ground truth for the pur-
pose of assessment. Note that at controls the difficulty of the
tth integration task. To generate related tasks, we sample the
at from a distribution ρ consisting of independent uniforms;
see Appendix B.1 for full detail.

Figure 1 considers the case d = 2, where we train the Meta-

2051

https://github.com/jz-fun/Meta_Control_Variates
https://github.com/jz-fun/Meta_Control_Variates

20 40 60 80 100
Sample Size: N (d=2)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
M

ea
n

A
bs

ol
ut

e
E

rr
or

CF
Meta-CVs
MC
Neural-CVs

2 4 6 8 10
L (N=10, d=2)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
A

bs
ol

ut
e

E
rr

or

Figure 1: Mean absolute error (with 95% confidence inter-
vals) for Ttest = 1, 000 oscillatory functions (with Nt = N
and mt = nt = N/2 for all t). Left: Increasing sample size
Nt when d = 2 (Meta-CVs with L = 1); Right: Increasing
number of inner gradient steps L of Meta-CVs.

CVs on T = 20, 000 tasks in total. To challenge Meta-CVs,
all methods were assessed in terms of their performance
evaluated on an additional Ttest = 1, 000 tasks, not avail-
able during training of the Meta-CV. On the left panel, we
consider the performance of CVs as we increase the sample
size Nt per task. Regardless of the sample size considered,
Meta-CVs outperform MC, CFs, and Neural-CVs in terms
of mean absolute error over new unseen tasks. This can be
explained by the fact that Meta-CVs is the only method
which can transfer information across tasks, able to exploit
the large training dataset. In this example, Neural-CVs and
CF perform even worse than MC when Nt is small, high-
lighting the challenge of using CVs in these settings. In
the right panel of Figure 1, we investigate the effect of the
number of gradient-based updates L, which shows the ro-
bustness of Meta-CVs to L. We investigate the performance
of these methods as d increases in Figure 2. Clearly, all CVs
suffer from a curse of dimensionality, but Meta-CVs do
improve on the other CVs for d < 6. Alleviating this curse
of dimensionality could be an important direction for future
research in CVs. We also investigate the effect of B and Itr
in Figure 3 by comparing the resulting performance of Meta-
CVs on 1000 2-dimensional unseen test tasks. It is found
empirically that a larger value of B helps to achieve the
optimal performance faster; and a large value of Itr results
in improvement in performance as expected.

We conclude with a brief discussion of computational cost.
The cost of computing independent Neural-CVs on all un-
seen test tasks is around 2 minutes. In contrast, the offline
time for training the Meta-CV is around 7 minutes (with
L = 1 when B = 5, Itr = 4000, Nt = 10 and d = 1), but
the online time taken for deriving task-specific CVs for all
the same 1000 unseen test tasks is approximately 6 seconds
in total. This demonstrates that our Meta-CV can be rapidly
adapted to new tasks.

1 2 3 4 5 6 7
Num. of Dim. d (N=40, L=1)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

CF
Meta-CVs
MC
Neural-CVs

1 2 3 4 5 6 7
Num. of Dim. d (N=10, L=1)

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
A

bs
ol

ut
e

E
rr

or

Figure 2: Mean absolute error (with 95% confidence inter-
vals) for Ttest = 1, 000 oscillatory functions for increasing
dimension d (with Nt = N and mt = nt = N/2 for all t).

500 1000 1500 2000 2500 3000 3500 4000
Itr

0.00

0.05

0.10

0.15

0.20

M
ea

n
A

bs
ol

ut
e

E
rr

or

B=5
B=10
B=20
B=40

Figure 3: Mean absolute error (with 95% confidence inter-
vals) of Meta-CVs for Ttest = 1, 000 2-dimensional oscillat-
ory functions for increasingB and Itr (with L = 1,Nt = N
and mt = nt = N/2 = 5 for all t).

Uncertainty Quantification for Boundary Value ODEs
Our second example considers the computation of expecta-
tions of functionals of physical models represented through
differential equations. The expectations are taken with re-
spect to expert-specified distributions over parameters of
these models, with the aim of performing uncertainty quanti-
fication. We consider a boundary-value ODE with unknown
forcing closely resembling that of Giles [2015]:

d
ds (c(s)

du
ds) = −50x

2, 0 < s < 1,

with boundary u(0) = u(1) = 0, c(s) = 1 + as. The in-
tegrand of interest is ft(x) =

∫ 1

0
u(s, x; at)ds where at are

draws from ρ = Unif(0, 1), and the integral of interest is
EX∼πt

[ft(X)] where each πt = N (0, 1). We use a finite
difference approximation of ft described in Giles [2015];
see Appendix B.2 for detail. This is a relatively simple
example, but it is representative of a broader class of chal-
lenging problems where improved numerical methods are
needed to approximate integrals due to a large cost per in-
tegrand evaluation and therefore limited Nt.

The results are presented in Figure 4. We compare the
performance of Meta-CVs with MC and Neural-CVs on
Ttest = 100 unseen tasks (grey crosses are mean absolute

2052

N=4 N=10 N=20 N=40
Sample Size

0

2

4

6

A
bs

ol
ut

e
E

rr
or

Meta-CVs
MC
Neural-CVs

Figure 4: Absolute error for Ttest = 100 (with Nt = N and
mt = nt = N/2 for all t.) unseen tasks from the boundary
value ODE problem.

errors; white horizontal lines are medians). For this example,
Meta-CVs outperform Neural-CVs and MC consistently in
all cases, highlighting once again the benefits of sharing in-
formation across a large number of tasks when Nt is small.

Bayesian Inference for the Lotka–Volterra System Our
next example also considers uncertainty quantification for
differential equation-based models, but this time in a fully
Bayesian framework. In particular, we consider a paramet-
ric ODE system, the Lotka–Volterra model [Lotka, 1927],
commonly used in ecology and epidemiology, given by

du1

ds = x1u1 − x2u1u2, du2

ds = x3u1u2 − x4u2,

where u1(s) and u2(s) are the numbers of preys and predat-
ors at time s, and u1(0) = x5 and u2(0) = x6. Suppose we
have access to observations of u = (u1, u2) at time points
{s1, . . . sq}, corrupted with independent log-normal noise
with variances x7 and x8 respectively. A ‘task’ here cor-
responds to computing the posterior expectation of model
parameters x for a given dataset; different datasets, which
could for example correspond to different animal species,
or to different geographical regions, determine the posterior
distribution πt of interest. Bayesian inference on this type
of ecological [Bolker, 2008] and epidemiological [Brauer,
2017] models is challenging due to the high cost of MCMC
sampling, significantly limiting the number of effectively
independent samples Nt. In our experiments, we use the
dataset from Hewitt [1921] on snowshoe hares (preys) and
Canadian lynxes (predators). We sub-sample the whole data-
set to mimic the process of sampling sub-populations and
our goal is to learn a Meta-CV which can be quickly ad-
apted to new sub-populations observed in the future; see
Appendix B.3 for full detail.

Results are presented in Figure 5. We compare Meta-CV
to MCMC (a No-U-Turn Sampler (NUTS) implemented in
Stan [Carpenter et al., 2017]). As previously discussed, CVs
perform poorly in high-dimensions when Nt is small. This
is exactly what we observe: Neural-CVs performs between
5− and 12−times worse than MCMC and is therefore not
included in the figure. In contrast, Meta-CVs is able to

20 30 40 50 60 70 80
0.000

0.005

0.010

0.015

0.020

M
ea

n
A

bs
ol

ut
e

E
rr

or

x1

20 30 40 50 60 70 80
0.000

0.005

0.010

0.015

0.020

0.025

0.030

x2

20 30 40 50 60 70 80
Sample Size: N

0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
ea

n
A

bs
ol

ut
e

E
rr

or

x3

20 30 40 50 60 70 80
Sample Size: N

0.000

0.005

0.010

0.015

0.020

0.025
x4

NUTS-MCMC
Meta-CVs

Figure 5: Mean absolute errors (with 95% confidence inter-
vals) over 40 sub-populations for varyingNt. Here,Nt = N
and mt = nt = N/2 for all t.

achieve a lower mean absolute error than MCMC for the
values of Nt considered, demonstrating the clear advantage
of sharing information across tasks for higher-dimensional
problems.

Marginalization in Hierarchical Gaussian Processes
Marginalisation of hyper-parameters is a common prob-
lem in Bayesian statistics. We consider a canonical example
for hierarchical Gaussian process regression [Rasmussen
and Williams, 2006], which was tackled with CVs by Oates
et al. [2017]. The problem consists of recovering an un-
known function ν describing a 7 degrees-of-freedom Sar-
cos anthropomorphic robot arm, from a 21-dimensional
input space, based on a subset of the dataset described
in Rasmussen and Williams [2006]. Data consist of ob-
servations yi = ν(zi) + εi at inputs zi for i = 1, . . . , q,
where εi are IID zero-mean Gaussian random variables
with known standard deviation σ > 0. A zero-mean Gaus-
sian process prior is placed on ν, with covariance function
kx(z, z

′) = x1 exp(−‖z − z′‖22/2x22), as well as priors
on the hyper-parameters x = (x1, x2). Given observations
y1:q = (y1, . . . , yq)

>, we consider the ‘task’ of predicting
the response ν(x∗) at an unseen state z∗, marginalising
out any posterior uncertainty associated with the hyper-
parameters x of the Gaussian process model. This can be
achieved through the Bayesian posterior predictive mean
E[Y ∗|y1:q] = EX∼π(·|y1:q)[E[Y ∗|y1:q, X]]. This is an integ-
ral of

f(x) = E[Y ∗|y1:q, x]
= Kz∗,q(x)(Kq,q(x) + σ2Iq)

−1y1:q

2053

against the posterior on hyperparameters π(x|y1:q), where
(Kq,q(x))i,j = kx(zi, zj) and (Kz∗,q(x))j = kx(z

∗, zj)
for i, j ∈ {1, . . . , q}. The integrand is therefore an expens-
ive function: O(q3) operations are needed per evaluation,
which will be significant when q is beyond a few hundred.
However, it is also common to want to compute this quantity
for several new inputs z∗1 , . . . , z

∗
T , leading to closely related

integrands f1, . . . , fT whose relationship could potentially
be leveraged.

MC CF NCV MCV-1 MCV-5 MCV-20 MCV-50 MCV-100

0.00

0.05

0.10

0.15

E
st

im
at

ed
 A

bs
ol

ut
e

E
rr

or

Figure 6: Effect of L: Estimated absolute errors over Ttest =
1, 000 unseen states of the Sarcos anthropomorphic robot
arm (CF: Control functionals; NCV: Neural-CVs; MCV-L:
Meta-CVs with L inner steps).

Our dataset is divided into two parts. The first part is used to
obtain the posterior on Gaussian process hyperparameters
(which is approximated through variational inference) and
consists of q = 1, 000 data points. The second part includes
4, 449 data points, half of which are used to construct the
Meta-CV and the other half is used to define a held-out
test set of tasks for assessment. See Appendix B.4 for full
experimental detail.

The results are presented in Figure 6. We compare the per-
formance of Meta-CVs with MC, CFs and Neural-CVs on
Ttest = 1, 000 unseen tasks, where Nt = 4 for each task.
Although we do not have access to the exact value of these
integrals, the value y∗t is an unbiased estimator, and this en-
ables integration error to be unbiasedly estimated. We find
that Meta-CVs are once again able to outperform competit-
ors, but interestingly the performance improves significantly
when the number of inner gradient steps L > 1. Meanwhile,
it is found empirically that there is a trade-off between re-
maining close to the Meta-CV, and specialising each CV
to a specific task; see [Antoniou et al., 2019] for a detailed
discussion. In general, we would recommend to split the
training set into a training set and a validation set, and
choose the optimal value of L (and other hyperparameters)
on the validation set. This is known as a “meta-validation”
process in the meta-learning literature.

6 THEORETICAL ANALYSIS

The empirical results of the previous section demonstrate
the advantage of leveraging the relationship between a large
number of integration tasks. This section will focus on ob-
taining theoretical insight to guide the implementation of
gradient-based optimisation within Meta-CVs.

Our analysis focuses on strategies for training of Meta-CVs.
Recall that the (global) objective for learning a Meta-CV is

argminγ∈Rp+1 Et [Jt(γ)] , (4)

Jt(γ) := JQt
(UPDATEL (γ,∇γJSt

(γ) ;α)) ,

where in what follows UPDATEL is gradient descent with
L steps and inner-step size α. To proceed, we make the
following assumptions:

Assumption 1. For each t and x ∈ Dt, γ 7→ g(x; γ) and
γ 7→ ∇γg(x; γ) are bounded and Lipschitz.

Assumption 2. For each t and x ∈ Dt, γ 7→
∇γg(x; γ)∇γg(x; γ)> − ∇2

γg(x; γ) is bounded and
Lipschitz.

Assumption 1 can in principle be satisfied by the Stein-
based CVs introduced in Section 2, since it concerns the
behaviour of g(x; γ) and ∇γg(x; γ) as γ, rather than x,
is varied (recall that, as a function of x, Stein-based CVs
are usually unbounded). For Assumption 2, we note that
∇γg(x; γ)∇γg(x; γ)> is a popular low-rank approxima-
tion to the Hessian∇2

γg(x; γ), so Assumption 2 explicitly
requires this low-rank approximation to be reasonably good.

The following theorem, which builds on the work of Ji et al.
[2022], establishes conditions under which Algorithm 1 can
find an ε-first order stationary point of the meta-learning
objective function (4), for any ε > 0.

Theorem 1. Let γ̂meta be the output of Algorithm 1 with
gradient descent steps, using the meta-step-sizes η1, . . . , ηItr ,
the inner-step size α and batch size B proposed in Theorem
9 and Corollary 10 of Ji et al. [2022]. Then, under Assump-
tions 1, 2:

E[‖Et[∇Jt(γ̂meta)]‖2] = O
(√

1
Itr

+ 1
B

)
,

where the outer expectation is with respect to sampling of
the mini-batches of tasks in Algorithm 1.

The proof is contained in Appendix A.2. If we take B ≥
CBε

−2 with CB a large constant, the theorem shows that,
with at most Itr = O(1/ε2) meta iterations, the output γ̂ε
of Algorithm 1 satisfies E[‖Et[∇Jt(γ̂ε)]‖] = O(ε). The
requirements on the step-sizes and batch size are inher-
ited from Ji et al. [2022], are spelled out in Appendix A.1,
and provide guiding insight into the practical side of train-
ing of Meta-CVs, e.g. theoretically optimal meta-step-sizes

2054

η1, . . . , ηItr and inner-step size α. For Neural CVs it is diffi-
cult to go beyond Theorem 1, since for one thing there will
not be a unique γmeta in general. However, for simpler CVs,
such as those based on polynomial regression [Assaraf and
Caffarel, 1999, Mira et al., 2013, Papamarkou et al., 2014,
Friel et al., 2014, South et al., 2022b], it is reasonable to
assume a unique γmeta and convexity of the Meta-CV ob-
jective around this point. In these scenarios, the following
corollary shows that γ̂ε is typically close to the minimiser
of the task-specific objective functional.

Corollary 1.1. Under the setting of Theorem 1, further
suppose that there exists µ > 0 such that for all t and all
γ, ∇2JQt(γ) � µIp+1 where Ip+1 is an identity matrix of
size p+ 1. Then there exist constants C1, C2 > 0 such that

E[Et[‖γ̂ε − γ∗t ‖2]] ≤ C1

µ ε+
C2

µ ,

where γ∗t is the (unique) minimiser of γ 7→ JQt
(γ), and

here again the outer expectation is with respect to sampling
of the mini-batches of tasks in Algorithm 1.

The proof is contained in Appendix A.3. These results jus-
tify the use of Algorithm 1 to train the Meta-CV and task-
specific CVs. In particular, they provide insight into step
size selection, and establish explicit conditions on the form
of CV g(x; γ) that can be successfully trained using the
methodology that we have proposed.

7 CONCLUSION

This paper introduced Meta-CVs, an extension of existing
CV methods that brings meta-learning to bear on MC and
MCMC. More precisely, our method can achieve significant
variance reduction when the number of samples per integ-
ration task is small, but a large number T of similar tasks
are available. In addition, most of the computational cost is
an offline cost for identifying a Meta-CV, and CVs for new
integration tasks can be identified with minimal additional
computational cost.

Although our algorithm is scalable in T and Nt, the compu-
tational cost for training the Meta-CV can still be significant
when dealing with flexible CVs, such as Neural CVs. For
example, computational complexity scales as O(p2) in the
number of parameters p in the CV. This prevents us from
using very large neural networks, which could limit perform-
ance on more challenging integration tasks. First-order or
Hessian-free meta-learning algorithms [Fallah et al., 2020]
are therefore a promising direction for future work.

Alternatively, online meta-learning algorithms [Finn et al.,
2019] could be adapted to CVs. These could be particularly
powerful for cases where integration tasks arrive sequen-
tially and the Meta-CV cannot be computed offline. Ex-
amples includes application areas where sequential import-
ance sampling and sequential MC-type algorithms [Doucet

et al., 2000, 2001] are currently being used, such as in the
context of state-space models.

Finally, it is also possible to further extend our theoretical
analysis of Meta-CVs. The current convergence rate in Itr
of Meta-CVs aligns with [Fallah et al., 2020, Ji et al., 2022].
Future work could extend the theoretical analysis of Meta-
CVs from a information-theoretic aspect [Chen et al., 2021]
or towards a faster rate [Riou et al., 2023] with additional
conditions.

Acknowledgements

The authors would like to thank Kaiyu Li for sharing some
of her code for the boundary value ODE example. ZS was
supported under the EPSRC grant [EP/R513143/1] and The
Alan Turing Institute’s Enrichment Scheme. CJO and FXB
were supported by the Lloyd’s Register Foundation Pro-
gramme on Data-Centric Engineering and The Alan Turing
Institute under the EPSRC grant [EP/N510129/1]. CJO was
supported by the EPSRC grant [EP/W019590/1].

References

A. Alexopoulos, P. Dellaportas, and M. K. Titsias. Vari-
ance reduction for Metropolis–Hastings samplers. Stat.
Comput., 33(6), 2023.

A. Anastasiou, A. Barp, F-X. Briol, R. E. Ebner,
B.and Gaunt, F. Ghaderinezhad, J. Gorham, A. Gretton,
C. Ley, Q. Liu, et al. Stein’s method meets computational
statistics: a review of some recent developments. Stat.
Sci., 38(1):120–139, 2023.

M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman,
D. Pfau, T. Schaul, B. Shillingford, and N. De Freitas.
Learning to learn by gradient descent by gradient descent.
NeurIPS, 2016.

A. Antoniou, H. Edwards, and A. Storkey. How to train
your maml. In ICLR, 2019.

R. Assaraf and M. Caffarel. Zero-variance principle for
Monte Carlo algorithms. Phys. Rev. Lett., 83(23):4682,
1999.

J. Baker, P. Fearnhead, E. B. Fox, and C. Nemeth. Control
variates for stochastic gradient MCMC. Stat. Comput.,
29:599–615, 2019.

A. Barp, C. J. Oates, E. Porcu, and M. Girolami. A Rieman-
nian–Stein kernel method. Bernoulli, 28(4):2181–2208,
2022.

D. Belomestny, L. Iosipoi, E. Moulines, A. Naumov, and
S. Samsonov. Variance reduction for Markov chains with
application to MCMC. Stat. Comput., 30:973–997, 2020.

2055

D. Belomestny, L. Iosipoi, E. Moulines, Al. Naumov, and
S. Samsonov. Variance reduction for dependent se-
quences with applications to stochastic gradient MCMC.
SIAM-ASA J. Uncertain., 9(1):507–535, 2021.

B. M. Bolker. Ecological models and data in R. In Ecolo-
gical Models and Data in R. Princeton University Press,
2008.

F. Brauer. Mathematical epidemiology: Past, present, and
future. Infect. Dis. Model., 2(2):113–127, 2017.

B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee,
B. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li,
and A. Riddell. Stan: A probabilistic programming lan-
guage. J. Stat. Softw., 76(1), 2017.

Q. Chen, C. Shui, and M. Marchand. Generalization
bounds for meta-learning: An information-theoretic ana-
lysis. NeurIPS, 34:25878–25890, 2021.

P. Dellaportas and I Kontoyiannis. Control variates for
estimation based on reversible Markov chain Monte Carlo
samplers. J. R. Stat. Soc. Series B, 74(1):133–161, 2012.

J. Demange-Chryst, F. Bachoc, and J. Morio. Efficient
estimation of multiple expectations with the same sample
by adaptive importance sampling and control variates.
arXiv:2212.00568, 2022.

A. Doucet, S. Godsill, and C. Andrieu. On sequential monte
carlo sampling methods for bayesian filtering. Stat. Com-
put., 10:197–208, 2000.

A. Doucet, N. De Freitas, and N. J. Gordon. Sequential
Monte Carlo methods in practice, volume 1. Springer,
2001.

A. Fallah, A. Mokhtari, and A. Ozdaglar. On the con-
vergence theory of gradient-based model-agnostic meta-
learning algorithms. In AISTATS. PMLR, 2020.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML,
2017.

C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic
meta-learning. In NeurIPS, 2018.

C. Finn, A. Rajeswaran, S. Kakade, and S. Levine. Online
meta-learning. In ICML, 2019.

N. Friel, A. Mira, and C. J. Oates. Exploiting multi-core
architectures for reduced-variance estimation with intract-
able likelihoods. Bayesian Anal., 11(1):215–245, 2014.

A. Gessner, J. Gonzalez, and M. Mahsereci. Active multi-
information source Bayesian quadrature. In UAI, 2019.

M. Giles. Multilevel Monte Carlo methods. Acta Numer.,
24:259–328, 2015.

P. Glynn and D. Igelhart. Importance sampling for stochastic
simulations. Management Science, 35(1367-1392), 1989.

E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths.
Recasting gradient-based meta-learning as hierarchical
Bayes. In ICML, 2018.

W. Grathwohl, D. Choi, Y. Wu, G. Roeder, and D. Duvenaud.
Backpropagation through the void: Optimizing control
variates for black-box gradient estimation. In ICLR, 2018.

P. Green, K. Latuszyski, M. Pereyra, and C. Robert.
Bayesian computation: a summary of the current state,
and samples backwards and forwards. Stat. Comput., 25:
835–862, 2015.

E. Grefenstette, B. Amos, D. Yarats, P. Htut, A. Molchanov,
F. Meier, D. Kiela, K. Cho, and S. Chintala. Generalized
inner loop meta-learning. arXiv:1910.01727, 2019.

C. Hewitt. The conservation of the wild life of Canada. New
York: C. Scribner, 1921.

F.J. Hickernell, C. Lemieux, and A. B. Owen. Control
variates for quasi-Monte Carlo. Stat. Sci., 20(1):1–31,
2005.

K. Ji, J. Yang, and Y. Liang. Theoretical convergence of
multi-step model-agnostic meta-learning. J. Mach. Learn.
Res., 23:29–1, 2022.

D. P. Kingma and J. L. Ba. Adam: A method for stochastic
optimization. In ICLR, 2015.

S. Krumscheid and F. Nobile. Multilevel monte carlo ap-
proximation of functions. SIAM-ASA J. Uncertain., 6(3):
1256–1293, 2018.

R. Leluc, F. Portier, and J. Segers. Control variate selection
for monte carlo integration. Stat. Comput., 31(4):1–27,
2021.

K. Li, D. Giles, T. Karvonen, S. Guillas, and F-X. Briol.
Multilevel Bayesian quadrature. In AISTATS, pages 1845–
1868, 2023.

H. Liu, Y. Feng, Y. Mao, D. Zhou, J. Peng, and Q. Liu.
Action-dependent control variates for policy optimization
via stein’s identity. In ICLR, 2018.

H. Liu, R. Socher, and C. Xiong. Taming maml: Efficient
unbiased meta-reinforcement learning. In ICML. PMLR,
2019.

F. A. Longstaff and E. S. Schwartz. Valuing american op-
tions by simulation: A simple least-squares approach. Rev.
Financ. Stud., 14(1):113–147, 2001.

A. Lotka. Fluctuations in the abundance of a species con-
sidered mathematically. Nature, 119(2983):12–12, 1927.

2056

N. Madras and M. Piccioni. Importance sampling for famil-
ies of distributions. Ann. Appl. Probab., 9(4):1202–1225,
1999.

A. Mira, R. Solgi, and D. Imparato. Zero variance Markov
chain Monte Carlo for Bayesian estimators. Stat. Comput.,
23(5):653–662, 2013.

T. Müller, F. Rousselle, J. Novák, and A. Keller. Neural
control variates. ACM Trans. Graph., 39(6):1–19, 2020.

C. J Oates and M. Girolami. Control functionals for quasi-
Monte Carlo integration. In AISTATS, 2016.

C. J. Oates, T. Papamarkou, and M. Girolami. The controlled
thermodynamic integral for Bayesian model comparison.
J. Am. Stat. Assoc., 111(514):634–645, 2016.

C. J. Oates, M. Girolami, and N. Chopin. Control function-
als for Monte Carlo integration. J. R. Stat. Soc. Series B,
79(3):695–718, 2017.

C. J. Oates, J. Cockayne, F-X. Briol, and M. Girolami. Con-
vergence rates for a class of estimators based on Stein’s
method. Bernoulli, 25(2):1141–1159, 2019.

K. Ott, M. Tiemann, P. Hennig, and F-X. Briol.
Bayesian numerical integration with neural networks.
arXiv:2305.13248, 2023.

J. Paisley, D. M. Blei, and M. I. Jordan. Variational bayesian
inference with stochastic search. In ICML, 2012.

T. Papamarkou, A. Mira, and M. Girolami. Zero vari-
ance differential geometric Markov chain Monte Carlo
algorithms. Bayesian Anal., 9(1):97–128, 2014.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
et al. Pytorch: An imperative style, high-performance
deep learning library. NeurIPS, 32, 2019.

B. Peherstorfer, K. Willcox, and M. Gunzburger. Survey
of multifidelity methods in uncertainty propagation, in-
ference, and optimization. SIAM Review, 60(3):550–591,
2018.

C. E. Rasmussen and C. K. I. Williams. Gaussian processes
for machine learning, volume 1. Springer, 2006.

C. Riou, P. Alquier, and B-E. Chérief-Abdellatif. Bayes
meets bernstein at the meta level: an analysis of fast
rates in meta-learning with pac-bayes. arXiv preprint
arXiv:2302.11709, 2023.

J. Shi, Y. Zhou, J. Hwang, M. K. Titsias, and L. Mackey.
Gradient estimation with discrete Stein operators. In
NeurIPS, 2022.

S. Si, C. J. Oates, A. B. Duncan, L. Carin, and F-X. Briol.
Scalable control variates for Monte Carlo methods via
stochastic optimization. Proceedings of the 14th Confer-
ence on Monte Carlo and Quasi-Monte Carlo Methods.
arXiv:2006.07487, 2021.

L. F. South, T. Karvonen, C. Nemeth, M. Girolami, and
C. J. Oates. Semi-exact control functionals from Sard’s
method. Biometrika, 2022a.

L. F. South, C. J. Oates, A. Mira, and C. Drovandi. Regular-
ized zero-variance control variates. Bayesian Anal., 1(1):
1–24, 2022b.

L. F. South, M. Riabiz, O. Teymur, and C. J. Oates. Post-
Processing of MCMC. Annu. Rev. Stat. Appl., 2022c.

Z. Sun, A. Barp, and F-X. Briol. Vector-Valued Control
Variates. arXiv:2109.08944, to appear at ICML 2023,
2021a.

Z. Sun, J. Wu, X. Li, W. Yang, and J-H. Xue. Amortized
Bayesian Prototype Meta-learning: A new probabilistic
meta-learning approach to few-shot image classification.
In AISTATS, pages 1414–1422. PMLR, 2021b.

R. Wan, M. Zhong, H. Xiong, and Z. Zhu. Neural con-
trol variates for variance reduction. ECML PKDD, page
533–547, 2019.

C. Wang, X. Chen, A. J. Smola, and E. P. Xing. Variance
reduction for stochastic gradient optimization. NeurIPS,
2013.

X. Xi, F-X. Briol, and M. Girolami. Bayesian quadrature
for multiple related integrals. In ICML, 2018.

J. Yoon, T. Kim, O. Dia, S. Kim, Y. Bengio, and S. Ahn.
Bayesian model-agnostic meta-learning. In NeurIPS,
2018.

2057

	Introduction
	Background
	Related Work
	Methodology
	Experimental Assessment
	Theoretical Analysis
	Conclusion

