Why Out-of-Distribution Detection Experiments Are Not Reliable - Subtle Experimental Details Muddle the OOD Detector Rankings (Supplementary Material)

Kamil Szyc¹ Tomasz Walkowiak¹ Henryk Maciejewski¹

¹Faculty of Information and Communication Technology, Wrocław University of Science and Technology, Wrocław, Poland

A ADDITIONAL SIMULATION RESULTS FOR ARCHITECTURE FEATURES

Additional simulation results (additional metrics: DTACC, TNR at TPR 95%, and AUPR) for Table 2 of the main paper showing the instability of OOD detection metrics for three different variations of CNN architectures (ResNet-101 and ResNet-110). The results are presented in Tables 1,2, and 3. The message from the results presented here is similar to that from Table 2 of the main paper, that changing the details of the architecture leads to different winning OOD methods and can cause large changes in the OOD detection quality metrics. This is especially visible for MaxLogits (ML) and FreeEnergy (FE). Moreover, the winning methods for AUC, DTACC, and AUPR are almost the same (these metrics select the same winning method for a given architecture and task), but the results for TNR are very different.

Table 1: DTACC results for the OOD detection instability caused by the architecture features. Additional results to those presented in Table 2 of the main paper.

Туре	ACC	KNN	Mah	ML	MSP	LOF_C	LOF_E	FE
SVHN								
type-0	94.50	86.05	83.40	82.64	83.69	79.69	79.80	82.64
type-1	93.64	87.14	82.07	74.44	79.73	85.31	85.11	74.41
type-2	92.91	82.84	83.30	66.53	72.27	81.97	81.16	66.43
CIFAR-100								
type-0	94.50	79.38	77.98	81.28	81.33	72.31	70.23	81.31
type-1	93.64	81.39	80.68	80.16	80.12	79.63	78.98	80.17
type-2	92.91	79.75	78.19	77.82	79.14	76.21	74.91	77.80

B ADDITIONAL SIMULATION RESULTS FOR INITIAL SEEDS

Additional simulation results (DTACC, TNR, and AUPR metrics) in the experiments reported in the main paper in Table 3 are shown here in Tables 4,5, and 6. We analyze the instability of OOD detection decisions due to the random seeds used during training. We find that the initial seed has a small effect on the close-set accuracy but causes a large variation in all OOD detection metrics used. Moreover, the ranking of the methods is significantly changed regardless of the OOD detection method used.

Table 2: TNR at TPR 95% results for the OOD detection instability caused by the architecture features. Additional results to those presented in Table 2 of the main paper.

Туре	ACC	KNN	Mah	ML	MSP	LOF_C	LOF_E	FE
SVHN								
type-0	94.50	52.15	53.67	40.08	34.27	42.04	43.21	39.73
type-1	93.64	57.57	49.91	18.72	27.59	43.70	50.43	17.85
type-2	92.91	36.00	38.87	18.96	17.17	53.12	49.01	19.27
CIFAR-100								
type-0	94.50	35.00	33.01	45.89	34.99	21.20	20.44	45.98
type-1	93.64	42.14	42.28	41.83	32.70	41.09	41.48	42.10
type-2	92.91	36.85	33.22	38.02	29.39	32.81	30.19	38.60

Table 3: AUPR results for the OOD detection instability caused by the architecture features. Additional results to those presented in Table 2 of the main paper.

Туре	ACC	KNN	Mah	ML	MSP	LOF_C	LOF_E	FE
SVHN								
type-0	94.50	92.05	91.12	87.98	88.29	87.13	87.18	87.95
type-1	93.64	93.43	89.97	77.71	83.40	90.85	91.49	77.49
type-2	92.91	88.42	88.96	67.26	73.70	89.92	88.85	67.23
CIFAR-100								
type-0	94.50	85.47	84.27	87.50	86.70	77.53	75.51	87.55
type-1	93.64	88.12	87.45	85.82	85.27	86.13	85.24	85.85
type-2	92.91	86.23	84.41	82.25	83.00	82.49	81.21	82.29

C ADDITIONAL SIMULATION RESULTS FOR OOD EXAMPLE SELECTION

Additional simulation results (ACC, DTACC, TNR, and AUPR metrics) for Table 4 of the main paper (we also show here the rank of the methods). We analyze the instability of the OOD detection metrics as a result of the random selection of OOD examples (necessary to keep the 1:1 ratio between ID and OOD data). The results are presented in Tables 7,8,9, and 10. It can be seen that the random selection of OOD examples has almost no influence on the method ranks, regardless of the reported metric.

D ADDITIONAL SIMULATION RESULTS FOR TRAIN-TEST SPLIT

Additional simulation results (DTACC, TNR, and AUPR metrics) for Table 5 of the main paper. We analyze the instability of the OOD detection metrics as a result of the train-test split for close-set task. The results are presented in Tables 11, 12, and 13. Similarly to the initial seeds of the nearest-neighbor training, the train-test split has a small effect on the nearest-neighbor accuracy, but causes a large variation in all OOD detection metrics used. Furthermore, the ranking of the methods changes significantly regardless of the OOD detection method used.

E ADDITIONAL SIMULATION RESULTS FOR AUGMENTATION STRATEGIES

Additional simulation results (DTACC, TNR, and AUPR metrics) for Table 6 of the main paper. We analyze the instability of the OOD detection metrics as a result of the augmentation strategy used. The results are presented in Tables 14, 15, and

		Mobile	Net with clos	ed set A	$CC = 74.75 \pm 0.31$			
	CIF	AR-100	vs SVHN		CIFA	AR-100 v	s CIFAR-10	
Mathad	AUPR		Rank	ĩ	AUPR		Rank	
Method	mean±std	delta	mean±std	range	mean±std	delta	mean±std	range
KNN	$64.98{\pm}6.95$	22.21	$5.50{\pm}0.92$	3-6	60.62±1.54	4.66	$4.90{\pm}0.54$	4-6
Mah	$69.67 {\pm} 7.07$	19.88	$4.50 {\pm} 1.28$	2-6	57.45±1.96	7.18	$5.80{\pm}0.60$	4-6
ML	$81.59{\pm}4.88$	18.64	$1.50{\pm}0.92$	1-4	76.53±0.57	2.03	$0.00{\pm}0.00$	0-0
MSP	$77.58 {\pm} 4.42$	16.10	$3.70 {\pm} 1.00$	2-6	75.69 ± 0.35	1.05	$2.00{\pm}0.00$	2-2
LOF_C	82.04 ± 3.73	11.27	$1.40{\pm}1.20$	0-3	64.94±1.77	6.02	$3.00{\pm}0.00$	3-3
LOF_E	$74.96{\pm}4.18$	12.79	$3.50{\pm}1.20$	1-6	62.37±1.30	5.06	$4.30{\pm}0.46$	4-5
FE	$82.02{\pm}5.08$	19.46	$0.90{\pm}1.51$	0-5	76.40±0.63	2.30	$1.00{\pm}0.00$	1-1
		ResN	let with closed	l set AC	$C = 92.73 \pm 0.27$	7		
	CI	FAR-10	vs SVHN		CIFA	R-10 vs	CIFAR-100	
Mathad	AUPR		Rank	ī.	AUPR		Rank	-
Method	mean±std	delta	mean±std	range	mean±std	delta	mean±std	range
KNN	74.46±13.32	44.52	3.90±1.70	1-6	62.31±7.34	21.98	$4.20{\pm}0.98$	3-6
Mah	$77.13{\pm}6.45$	23.18	$4.20{\pm}1.08$	2-6	62.08 ± 6.30	20.44	$3.60{\pm}0.49$	3-4
ML	$82.92{\pm}1.53$	4.90	$1.80{\pm}1.40$	0-4	87.07±0.49	1.47	$1.00{\pm}0.00$	1-1
MSP	$83.83{\pm}1.41$	4.00	$0.90{\pm}1.04$	0-3	83.78±0.63	1.86	$2.00{\pm}0.00$	2-2
LOF_C	$69.58{\pm}6.56$	23.29	$5.70{\pm}0.46$	5-6	57.04±3.34	8.96	$5.70{\pm}0.64$	4-6
LOF_E	$81.83 {\pm} 7.37$	29.18	$1.70{\pm}1.27$	0-3	58.86±3.43	11.91	$4.50{\pm}1.02$	3-6
FE	82.77±1.53	4.90	$2.80{\pm}1.40$	1-5	87.11±0.49	1.50	$0.00{\pm}0.00$	0-0

Table 4: DTACC results for the OOD detection instability caused by the different random seeds used during training. Additional results to those presented in Table 3 of the main paper.

16. It confirms the conclusions presented in the main paper, i.e., a large impact of augmentation techniques on OOD results, and with SVHN as OOD, almost any OOD method can be considered the best by choosing the appropriate augmentation method.

F ADDITIONAL SIMULATION RESULTS FOR TEXT BASED OOD

Additional simulation results (DTACC, TNR, and AUPR metrics) for Table 7 of the main paper. We analyze the instability of OOD detection decisions as an effect of different random seeds used during training for text classification based on BERT (transformer-based) representations. The results are presented in Table 17. They confirm the conclusions presented in the main paper that the rank of the OOD method could be selected in almost any order just by peeking at the seed used during training.

	MobileNet with closed set ACC = 74.75 ± 0.31							
	CIF	FAR-100	vs SVHN		CIFAR-100 vs CIFAR-10			
Mathod	TNR		Rank		TNR		Rank	
Method	mean±std	delta	mean±std	range	mean±std	delta	mean±std	range
KNN	$7.48{\pm}4.74$	13.48	$5.90 {\pm} 0.30$	5-6	7.13±0.75	2.82	$4.00 {\pm} 0.77$	3-5
Mah	14.20 ± 8.10	23.12	$4.30{\pm}1.42$	1-5	5.69 ± 1.32	4.91	$5.60{\pm}0.92$	3-6
ML	$27.34{\pm}7.64$	28.77	$1.90{\pm}0.83$	1-3	18.81 ± 0.72	2.25	$0.20 {\pm} 0.40$	0-1
MSP	$22.39 {\pm} 4.99$	18.86	$3.10 {\pm} 0.70$	2-4	18.07 ± 0.48	1.75	$1.50{\pm}0.67$	0-2
LOF_C	$30.52{\pm}6.39$	22.70	$0.90{\pm}1.22$	0-3	$6.83{\pm}1.08$	3.38	$4.30{\pm}1.10$	3-6
LOF_E	$16.95 {\pm} 7.06$	24.63	$3.70{\pm}1.27$	1-6	$6.87 {\pm} 0.88$	2.89	$4.10 {\pm} 0.83$	3-5
FE	$28.64 {\pm} 8.89$	33.78	$1.20{\pm}1.47$	0-5	18.35 ± 0.90	3.14	$1.30{\pm}0.64$	0-2
		ResN	let with closed	l set AC	$C = 92.73 \pm 0.27$	7		
	CI	ResN FAR-10	let with closed vs SVHN	l set ACO	$C = 92.73 \pm 0.27$	7 AR-10 vs	CIFAR-100	
Mathad	CI TNR	ResN FAR-10	let with closed vs SVHN Rank	l set ACC	$C = 92.73 \pm 0.27$ $CIFA$ TNR	7 AR-10 vs	CIFAR-100 Rank	
Method	CI TNR mean±std	ResN FAR-10 delta	let with closed vs SVHN Rank mean±std	l set ACC	$C = 92.73 \pm 0.27$ $CIFA$ TNR $mean \pm std$	7 AR-10 vs delta	CIFAR-100 Rank mean±std	range
Method KNN	CI TNR mean±std 19.29±19.23	ResN FAR-10 delta 46.65	let with closed vs SVHN Rank mean±std 4.00±2.45	l set ACC range	$C = 92.73 \pm 0.27$ $CIFA$ TNR $mean \pm std$ 10.74 ± 3.22	7 AR-10 vs delta 11.39	CIFAR-100 Rank mean±std 4.50±0.92	range 3-6
Method KNN Mah	CI TNR mean±std 19.29±19.23 26.30±10.85	ResN FAR-10 delta 46.65 39.80	Let with closed vs SVHN mean \pm std 4.00 ± 2.45 3.00 ± 1.34	l set ACC range 1-6 1-5	$C = 92.73 \pm 0.27$ $CIFA$ TNR $mean \pm std$ 10.74 ± 3.22 13.53 ± 3.53	7 AR-10 vs delta 11.39 12.28	CIFAR-100 Rank mean±std 4.50±0.92 3.10±0.30	range 3-6 3-4
Method KNN Mah ML	CII TNR mean±std 19.29±19.23 26.30±10.85 23.22±3.01	ResN FAR-10 delta 46.65 39.80 9.68	let with closed vs SVHN mean \pm std 4.00 ± 2.45 3.00 ± 1.34 2.90 ± 1.14	1 set ACC range 1-6 1-5 1-4	$C = 92.73 \pm 0.27$ $CIFA$ TNR $mean \pm std$ 10.74 ± 3.22 13.53 ± 3.53 40.19 ± 1.47	7 AR-10 vs delta 11.39 12.28 4.43	CIFAR-100 Rank mean±std 4.50±0.92 3.10±0.30 0.80±0.40	range 3-6 3-4 0-1
Method KNN Mah ML MSP	CII TNR mean±std 19.29±19.23 26.30±10.85 23.22±3.01 25.50±2.19	ResN FAR-10 delta 46.65 39.80 9.68 7.50	let with closed vs SVHN Rank mean \pm std 4.00 ± 2.45 3.00 ± 1.34 2.90 ± 1.14 2.30 ± 1.10	l set ACC range 1-6 1-5 1-4 0-4	$C = 92.73 \pm 0.27$ $CIFA$ TNR $mean \pm std$ 10.74 ± 3.22 13.53 ± 3.53 40.19 ± 1.47 28.58 ± 1.52	7 AR-10 vs delta 11.39 12.28 4.43 4.68	CIFAR-100 Rank mean±std 4.50±0.92 3.10±0.30 0.80±0.40 2.00±0.00	range 3-6 3-4 0-1 2-2
Method KNN Mah ML MSP LOF _C	CII TNR mean±std 19.29±19.23 26.30±10.85 23.22±3.01 25.50±2.19 17.87±9.01	ResN FAR-10 delta 46.65 39.80 9.68 7.50 28.28	let with closed vs SVHN mean±std 4.00±2.45 3.00±1.34 2.90±1.14 2.30±1.10 4.40±2.06	l set ACC range 1-6 1-5 1-4 0-4 0-6	$C = 92.73 \pm 0.27$ $CIFA$ TNR $mean \pm std$ 10.74 ± 3.22 13.53 ± 3.53 40.19 ± 1.47 28.58 ± 1.52 8.38 ± 1.50	7 AR-10 vs delta 11.39 12.28 4.43 4.68 3.97	CIFAR-100 Rank mean±std 4.50±0.92 3.10±0.30 0.80±0.40 2.00±0.00 5.80±0.40	range 3-6 3-4 0-1 2-2 5-6
Method KNN Mah ML MSP LOF_C LOF_E	CII TNR mean±std 19.29±19.23 26.30±10.85 23.22±3.01 25.50±2.19 17.87±9.01 37.73±12.18	ResN FAR-10 delta 46.65 39.80 9.68 7.50 28.28 50.00	let with closed vs SVHN Rank mean±std 4.00±2.45 3.00±1.34 2.90±1.14 2.30±1.10 4.40±2.06 0.40±0.92	l set ACC range 1-6 1-5 1-4 0-4 0-6 0-3	$C = 92.73 \pm 0.27$ $CIFA$ TNR $mean \pm std$ 10.74 ± 3.22 13.53 ± 3.53 40.19 ± 1.47 28.58 ± 1.52 8.38 ± 1.50 9.85 ± 1.47	7 AR-10 vs delta 11.39 12.28 4.43 4.68 3.97 4.97	CIFAR-100 Rank mean±std 4.50±0.92 3.10±0.30 0.80±0.40 2.00±0.00 5.80±0.40 4.60±0.49	range 3-6 3-4 0-1 2-2 5-6 4-5

Table 5: TNR at TPR 95% results for the OOD detection instability caused by the different random seeds used during training. Additional results to those presented in Table 3 of the main paper.

Table 6: AUPR results for the OOD detection instable	lity caused by the different random seeds used during training. Additional
results to those presented in Table 3 of the main pa	iper.

		Mobile	Net with clos	ed set A	$CC = 74.75 \pm 0.$	31		
	CIF	AR-100	vs SVHN		CIFA	R-100 v	s CIFAR-10	
Mathad	AUPR		Rank	ī.	AUPR	-	Rank	
Method	mean±std	delta	mean±std	range	mean±std	delta	mean±std	range
KNN	$64.98 {\pm} 6.95$	22.21	$5.50{\pm}0.92$	3-6	60.62±1.54	4.66	$4.90{\pm}0.54$	4-6
Mah	$69.67 {\pm} 7.07$	19.88	$4.50{\pm}1.28$	2-6	57.45±1.96	7.18	$5.80{\pm}0.60$	4-6
ML	$81.59{\pm}4.88$	18.64	$1.50{\pm}0.92$	1-4	76.53±0.57	2.03	$0.00{\pm}0.00$	0-0
MSP	$77.58{\pm}4.42$	16.10	$3.70{\pm}1.00$	2-6	75.69±0.35	1.05	$2.00{\pm}0.00$	2-2
LOF_C	82.04 ± 3.73	11.27	$1.40{\pm}1.20$	0-3	64.94±1.77	6.02	$3.00{\pm}0.00$	3-3
LOF_E	$74.96{\pm}4.18$	12.79	$3.50{\pm}1.20$	1-6	62.37±1.30	5.06	$4.30{\pm}0.46$	4-5
FE	$82.02{\pm}5.08$	19.46	$0.90{\pm}1.51$	0-5	76.40±0.63	2.30	$1.00{\pm}0.00$	1-1
		ResN	let with closed	l set AC	$C = 92.73 \pm 0.27$	7		
	CI	FAR-10	vs SVHN		CIFA	R-10 vs	CIFAR-100	
Mathad	AUPR		Rank	2	AUPR		Rank	
Method	mean±std	delta	mean±std	range	mean±std	delta	mean±std	range
KNN	74.46±13.32	44.52	3.90±1.70	1-6	62.31±7.34	21.98	$4.20{\pm}0.98$	3-6
Mah	$77.13{\pm}6.45$	23.18	$4.20{\pm}1.08$	2-6	62.08 ± 6.30	20.44	$3.60{\pm}0.49$	3-4
ML	$82.92{\pm}1.53$	4.90	$1.80{\pm}1.40$	0-4	87.07±0.49	1.47	$1.00{\pm}0.00$	1-1
MSP	$83.83{\pm}1.41$	4.00	$0.90{\pm}1.04$	0-3	83.78±0.63	1.86	$2.00{\pm}0.00$	2-2
LOF_C	$69.58{\pm}6.56$	23.29	$5.70{\pm}0.46$	5-6	57.04±3.34	8.96	$5.70{\pm}0.64$	4-6
LOF_E	$81.83 {\pm} 7.37$	29.18	$1.70{\pm}1.27$	0-3	58.86±3.43	11.91	$4.50{\pm}1.02$	3-6
FE	$82.77 {\pm} 1.53$	4.90	$2.80{\pm}1.40$	1-5	87.11±0.49	1.50	$0.00{\pm}0.00$	0-0

			М	lobileNet	;			
	CII	FAR-100) vs SVHN		CIFA	R-100 v	vs CIFAR-10	
Mathad	AUC		Rank	2	AUC		Rank	2
Method	mean±std	delta	mean±std	range	mean±std	delta	mean±std	range
KNN	$75.56 {\pm} 0.18$	0.90	$5.35{\pm}0.48$	5-6	60.67±0.22	1.14	$5.00{\pm}0.00$	5-5
Mah	$75.52{\pm}0.20$	0.87	$5.65{\pm}0.48$	5-6	57.55±0.24	1.18	$6.00{\pm}0.00$	6-6
ML	$81.72 {\pm} 0.15$	0.80	$2.00{\pm}0.00$	2-2	$76.88 {\pm} 0.18$	0.85	$0.00{\pm}0.00$	0-0
MSP	$78.25 {\pm} 0.18$	0.87	$4.00{\pm}0.00$	4-4	76.09 ± 0.16	0.96	$2.00{\pm}0.00$	2-2
LOF_C	$84.31 {\pm} 0.15$	0.74	$0.00{\pm}0.00$	0-0	68.41±0.20	0.94	$3.00{\pm}0.00$	3-3
LOF_E	$78.87 {\pm} 0.18$	0.97	$3.00{\pm}0.00$	3-3	64.31±0.22	1.12	$4.00{\pm}0.00$	4-4
FE	$81.84{\pm}0.14$	0.80	$1.00{\pm}0.00$	1-1	76.70±0.18	0.89	$1.00{\pm}0.00$	1-1
			_	ResNet				
	CI	FAR-10	vs SVHN	ResNet	CIFA	R-10 vs	s CIFAR-100	
Mathad	CI AUC	FAR-10	vs SVHN Rank	ResNet	CIFA AUC	R-10 vs	s CIFAR-100 Rank	2
Method	CI AUC mean±std	FAR-10 delta	vs SVHN Rank mean±std	ResNet	CIFA AUC mean±std	R-10 vs delta	s CIFAR-100 Rank mean±std	range
Method KNN	CI AUC mean±std 87.80±0.17	FAR-10 delta 0.88	vs SVHN Rank mean±std 1.00±0.00	ResNet range	CIFA AUC mean±std 59.80±0.27	R-10 vs delta 1.50	s CIFAR-100 Rank mean±std 4.00±0.00	range 4-4
Method KNN Mah	CI AUC mean±std 87.80±0.17 85.26±0.18	FAR-10 delta 0.88 1.02	vs SVHN Rank mean±std 1.00±0.00 3.00±0.00	ResNet range 1-1 3-3	CIFA AUC mean±std 59.80±0.27 58.67±0.27	R-10 vs delta 1.50 1.43	s CIFAR-100 Rank mean±std 4.00±0.00 5.00±0.00	range 4-4 5-5
Method KNN Mah ML	CI AUC mean±std 87.80±0.17 85.26±0.18 83.88±0.12	FAR-10 delta 0.88 1.02 0.63	vs SVHN Rank mean±std 1.00±0.00 3.00±0.00 4.00±0.00	ResNet range 1-1 3-3 4-4	CIFA AUC mean±std 59.80±0.27 58.67±0.27 87.73±0.13	R-10 vs delta 1.50 1.43 0.69	s CIFAR-100 Rank mean±std 4.00±0.00 5.00±0.00 1.00±0.00	range 4-4 5-5 1-1
Method KNN Mah ML MSP	CI AUC mean±std 87.80±0.17 85.26±0.18 83.88±0.12 86.69±0.11	FAR-10 delta 0.88 1.02 0.63 0.53	vs SVHN Rank mean±std 1.00±0.00 3.00±0.00 4.00±0.00 2.00±0.00	ResNet range 1-1 3-3 4-4 2-2	CIFA AUC mean±std 59.80±0.27 58.67±0.27 87.73±0.13 86.20±0.13	delta 1.50 1.43 0.69 0.66	s CIFAR-100 Rank mean±std 4.00±0.00 5.00±0.00 1.00±0.00 2.00±0.00	range 4-4 5-5 1-1 2-2
Method KNN Mah ML MSP LOF _C	CI AUC mean±std 87.80±0.17 85.26±0.18 83.88±0.12 86.69±0.11 72.08±0.21	FAR-10 delta 0.88 1.02 0.63 0.53 1.39	vs SVHN Rank mean±std 1.00±0.00 3.00±0.00 4.00±0.00 2.00±0.00 6.00±0.00	ResNet range 1-1 3-3 4-4 2-2 6-6	CIFA AUC mean±std 59.80±0.27 58.67±0.27 87.73±0.13 86.20±0.13 55.56±0.23	R-10 vs delta 1.50 1.43 0.69 0.66 1.28	s CIFAR-100 Rank mean±std 4.00±0.00 5.00±0.00 1.00±0.00 2.00±0.00 6.00±0.00	range 4-4 5-5 1-1 2-2 6-6
Method KNN Mah ML MSP LOF _C LOF _E	CI AUC mean±std 87.80±0.17 85.26±0.18 83.88±0.12 86.69±0.11 72.08±0.21 91.40±0.12	FAR-10 delta 0.88 1.02 0.63 0.53 1.39 0.63	vs SVHN Rank mean±std 1.00±0.00 3.00±0.00 4.00±0.00 2.00±0.00 6.00±0.00 0.00±0.00	ResNet range 1-1 3-3 4-4 2-2 6-6 0-0	CIFA AUC mean±std 59.80±0.27 58.67±0.27 87.73±0.13 86.20±0.13 55.56±0.23 62.73±0.22	R-10 vs delta 1.50 1.43 0.69 0.66 1.28 1.09	s CIFAR-100 Rank mean±std 4.00±0.00 5.00±0.00 1.00±0.00 2.00±0.00 6.00±0.00 3.00±0.00	range 4-4 5-5 1-1 2-2 6-6 3-3

Table 7: ACC results for the OOD detection instability caused by random selection of OOD images. Additional results (methods rank added) for experiments reported in Table 4 of the main paper.

			М	obileNet				
	CII	FAR-100) vs SVHN		CIFAR-100 vs CIFAR-10			
Mathad			Rank		DTACO	2	Rank	:
Method	mean±std	delta	mean±std	range	mean±std	delta	mean±std	range
KNN	$69.48 {\pm} 0.17$	0.82	$5.01 {\pm} 0.10$	5-6	58.62 ± 0.18	0.94	$5.00{\pm}0.00$	5-5
Mah	$69.12 {\pm} 0.17$	0.81	$5.99{\pm}0.10$	5-6	56.29 ± 0.20	1.03	$6.00{\pm}0.00$	6-6
ML	$74.77 {\pm} 0.17$	0.87	$2.00{\pm}0.00$	2-2	$70.98 {\pm} 0.17$	0.94	$0.11 {\pm} 0.31$	0-1
MSP	$70.86{\pm}0.18$	0.77	$4.00{\pm}0.00$	4-4	$70.10 {\pm} 0.16$	0.76	$2.00{\pm}0.00$	2-2
LOF_C	$76.69 {\pm} 0.17$	0.86	$0.00{\pm}0.00$	0-0	$64.54{\pm}0.16$	0.89	$3.00{\pm}0.00$	3-3
LOF_E	$72.44 {\pm} 0.18$	0.75	$3.00{\pm}0.00$	3-3	$61.30 {\pm} 0.19$	0.94	$4.00{\pm}0.00$	4-4
FE	$75.08{\pm}0.17$	0.78	$1.00{\pm}0.00$	1-1	$70.94{\pm}0.18$	1.03	$0.89{\pm}0.31$	0-1
]	ResNet				
	CI	FAR-10	vs SVHN		CIFA	R-10 vs	CIFAR-100	
Mathad			D 1					
vieniou			Rank		DTACO	2	Rank	:
	mean±std	delta	Rank mean±std	range	DTACC mean±std	c delta	Rank mean±std	range
KNN	mean±std 82.23±0.17	delta	$\frac{\text{Rank}}{\text{mean}\pm\text{std}}$	range	DTACC mean±std	delta	Rank mean±std 4.04±0.31	range 3-5
KNN Mah	mean±std 82.23±0.17 77.90±0.18	delta 0.88 1.14	$\begin{array}{r} \text{Rank}\\ \text{mean}\pm\text{std}\\ \hline 1.00\pm0.00\\ 3.97\pm0.97\end{array}$	range 1-1 3-5	DTACC mean±std 58.78±0.21 58.52±0.21	delta 1.02 1.10	Rank mean±std 4.04±0.31 4.93±0.26	range 3-5 4-5
KNN Mah ML	mean±std 82.23±0.17 77.90±0.18 77.89±0.16	delta 0.88 1.14 0.72	Rank mean \pm std 1.00 \pm 0.00 3.97 \pm 0.97 3.49 \pm 0.50	range 1-1 3-5 3-4	DTACC mean±std 58.78±0.21 58.52±0.21 80.44±0.16	delta 1.02 1.10 0.81	Rank mean±std 4.04±0.31 4.93±0.26 0.84±0.37	range 3-5 4-5 0-1
KNN Mah ML MSP	mean±std 82.23±0.17 77.90±0.18 77.89±0.16 80.78±0.18	delta 0.88 1.14 0.72 0.87	Rank mean \pm std 1.00 \pm 0.00 3.97 \pm 0.97 3.49 \pm 0.50 2.00 \pm 0.00	range 1-1 3-5 3-4 2-2	DTACC mean±std 58.78±0.21 58.52±0.21 80.44±0.16 80.05±0.15	delta 1.02 1.10 0.81 0.87	Rank mean \pm std 4.04 \pm 0.31 4.93 \pm 0.26 0.84 \pm 0.37 2.00 \pm 0.00	range 3-5 4-5 0-1 2-2
$\frac{\text{KNN}}{\text{Mah}}$ $\frac{\text{ML}}{\text{MSP}}$ LOF_{C}	mean±std 82.23±0.17 77.90±0.18 77.89±0.16 80.78±0.18 66.53±0.21	delta 0.88 1.14 0.72 0.87 1.31	Rank mean \pm std 1.00 \pm 0.00 3.97 \pm 0.97 3.49 \pm 0.50 2.00 \pm 0.00 6.00 \pm 0.00	range 1-1 3-5 3-4 2-2 6-6	DTACC mean±std 58.78±0.21 58.52±0.21 80.44±0.16 80.05±0.15 54.06±0.20	delta 1.02 1.10 0.81 0.87 1.12	Rank mean \pm std 4.04 \pm 0.31 4.93 \pm 0.26 0.84 \pm 0.37 2.00 \pm 0.00 6.00 \pm 0.00	range 3-5 4-5 0-1 2-2 6-6
$\frac{\text{KNN}}{\text{Mah}}$ $\frac{\text{ML}}{\text{MSP}}$ LOF_{C} LOF_{E}	mean±std 82.23±0.17 77.90±0.18 77.89±0.16 80.78±0.18 66.53±0.21 83.99±0.16	delta 0.88 1.14 0.72 0.87 1.31 0.72	Rank mean \pm std 1.00 \pm 0.00 3.97 \pm 0.97 3.49 \pm 0.50 2.00 \pm 0.00 6.00 \pm 0.00 0.00 \pm 0.00	range 1-1 3-5 3-4 2-2 6-6 0-0	$\begin{array}{c} \text{DTACC} \\ \hline \text{mean} \pm \text{std} \\ \hline 58.78 \pm 0.21 \\ 58.52 \pm 0.21 \\ 80.44 \pm 0.16 \\ 80.05 \pm 0.15 \\ 54.06 \pm 0.20 \\ 59.23 \pm 0.21 \end{array}$	delta 1.02 1.10 0.81 0.87 1.12 0.93	Rank mean \pm std 4.04 \pm 0.31 4.93 \pm 0.26 0.84 \pm 0.37 2.00 \pm 0.00 6.00 \pm 0.00 3.03 \pm 0.17	range 3-5 4-5 0-1 2-2 6-6 3-4

Table 8: DTACC results for the OOD detection instability caused by random selection of OOD images. Additional results for experiments reported in Table 4 of the main paper.

	MobileNet							
	CII	FAR-100) vs SVHN		CIFA	R-100 v	vs CIFAR-10	
Mathad	TNR		Rank	I.	TNR		Rank	2
Method	mean±std	delta	mean±std	range	mean±std	delta	mean±std	range
KNN	15.61 ± 0.30	1.71	$6.00{\pm}0.00$	6-6	6.76±0.22	1.03	$5.00 {\pm} 0.00$	5-5
Mah	$18.76 {\pm} 0.37$	1.86	$5.00{\pm}0.00$	5-5	$5.53 {\pm} 0.20$	1.02	$6.00{\pm}0.00$	6-6
ML	$23.86{\pm}0.37$	1.92	$1.00{\pm}0.00$	1-1	17.44 ± 0.36	1.93	$0.34{\pm}0.47$	0-1
MSP	$22.64 {\pm} 0.32$	1.54	$2.98{\pm}0.14$	2-3	17.36 ± 0.40	1.84	$0.71 {\pm} 0.53$	0-2
LOF_C	$35.44{\pm}0.46$	2.66	$0.00{\pm}0.00$	0-0	$9.20{\pm}0.27$	1.23	$3.00{\pm}0.00$	3-3
LOF_E	$21.12{\pm}0.36$	1.76	$4.00{\pm}0.00$	4-4	$7.98 {\pm} 0.24$	1.17	$4.00{\pm}0.00$	4-4
FE	$23.29{\pm}0.39$	1.96	$2.02{\pm}0.14$	2-3	16.87 ± 0.34	2.07	$1.95{\pm}0.26$	0-2
]	ResNet				
	CI	FAR-10	vs SVHN		CIFA	R-10 vs	SCIFAR-100	
Mathad	TNR		Rank	ī.	TNR		Rank	2
Method	mean±std	delta	mean±std	range	mean±std	delta	mean±std	range
KNN	46.91±0.45	2.46	$1.00{\pm}0.00$	1-1	10.59±0.26	1.49	4.84±0.37	4-5
Mah	$39.91 {\pm} 0.47$	2.28	$2.00{\pm}0.00$	2-2	13.63 ± 0.33	1.66	$3.00{\pm}0.00$	3-3
ML	$22.44{\pm}0.38$	1.82	$4.00{\pm}0.00$	4-4	41.05 ± 0.40	2.18	$0.95{\pm}0.22$	0-1
MSP	$27.27 {\pm} 0.42$	2.43	$3.00{\pm}0.00$	3-3	29.45 ± 0.41	2.07	$2.00{\pm}0.00$	2-2
LOF_C	$14.08{\pm}0.31$	1.52	$6.00{\pm}0.00$	6-6	7.69 ± 0.21	1.13	$6.00{\pm}0.00$	6-6
LOF_E	$59.76 {\pm} 0.46$	2.28	$0.00{\pm}0.00$	0-0	$10.95 {\pm} 0.25$	1.57	$4.16 {\pm} 0.37$	4-5
FF	21.87 ± 0.36	1.70	5.00 ± 0.00	5-5	41.27 ± 0.41	2.31	0.05 ± 0.22	0-1

Table 9: TNR at TPR 95% results for the OOD detection instability caused by random selection of OOD images. Additional results for experiments reported in Table 4 of the main paper.

			М	obileNet	,			
	CII	FAR-100) vs SVHN		CIFAR-100 vs CIFAR-10			
Mathad	AUPR		Rank	ĩ	AUPR		Rank	ĩ
Method	mean±std	delta	mean±std	range	mean±std	delta	mean±std	range
KNN	$74.61 {\pm} 0.18$	0.88	$5.00{\pm}0.00$	5-5	59.54±0.20	1.03	$5.00{\pm}0.00$	5-5
Mah	$74.29 {\pm} 0.20$	0.95	$6.00{\pm}0.00$	6-6	$56.80 {\pm} 0.21$	1.00	$6.00{\pm}0.00$	6-6
ML	$81.01 {\pm} 0.15$	0.78	$1.32{\pm}0.47$	1-2	75.60±0.19	0.94	$0.00{\pm}0.00$	0-0
MSP	$77.90 {\pm} 0.17$	0.92	$3.61 {\pm} 0.49$	3-4	75.16±0.17	0.90	$1.99 {\pm} 0.10$	1-2
LOF_C	$83.69 {\pm} 0.16$	0.84	$0.00{\pm}0.00$	0-0	67.14 ± 0.20	1.00	$3.00{\pm}0.00$	3-3
LOF_E	$77.99 {\pm} 0.20$	1.03	$3.39{\pm}0.49$	3-4	63.04 ± 0.22	1.25	$4.00{\pm}0.00$	4-4
FE	$81.00{\pm}0.15$	0.80	$1.68{\pm}0.47$	1-2	75.34±0.19	0.93	$1.01{\pm}0.10$	1-2
]	ResNet				
	CI	FAR-10	vs SVHN	ResNet	CIFA	R-10 vs	S CIFAR-100	
Mathad	CI AUPR	FAR-10	vs SVHN Rank	ResNet	CIFA AUPR	R-10 vs	s CIFAR-100 Rank	
Method	CI AUPR mean±std	FAR-10 delta	vs SVHN Rank mean±std	ResNet	CIFA AUPR mean±std	R-10 vs delta	s CIFAR-100 Rank mean±std	range
Method KNN	CI AUPR mean±std 83.84±0.24	FAR-10 delta 1.18	vs SVHN Rank mean±std 3.00±0.00	ResNet range 3-3	CIFA AUPR mean±std 56.83±0.22	R-10 vs delta 1.25	s CIFAR-100 Rank mean±std 4.99±0.10	range 4-5
Method KNN Mah	CI AUPR mean±std 83.84±0.24 84.61±0.21	FAR-10 delta 1.18 1.10	vs SVHN Rank mean±std 3.00±0.00 1.99±0.10	ResNet range 3-3 1-2	CIFA AUPR mean±std 56.83±0.22 57.25±0.23	R-10 vs delta 1.25 1.12	s CIFAR-100 Rank mean±std 4.99±0.10 4.01±0.10	range 4-5 4-5
Method KNN Mah ML	CI AUPR mean±std 83.84±0.24 84.61±0.21 82.38±0.13	FAR-10 delta 1.18 1.10 0.72	vs SVHN Rank mean±std 3.00±0.00 1.99±0.10 4.00±0.00	ResNet range 3-3 1-2 4-4	CIFA AUPR mean±std 56.83±0.22 57.25±0.23 86.98±0.15	R-10 vs delta 1.25 1.12 0.71	s CIFAR-100 Rank mean±std 4.99±0.10 4.01±0.10 1.00±0.00	range 4-5 4-5 1-1
Method KNN Mah ML MSP	CI AUPR mean±std 83.84±0.24 84.61±0.21 82.38±0.13 85.16±0.15	FAR-10 delta 1.18 1.10 0.72 0.77	vs SVHN Rank mean±std 3.00±0.00 1.99±0.10 4.00±0.00 1.01±0.10	ResNet range 3-3 1-2 4-4 1-2	CIFA AUPR mean±std 56.83±0.22 57.25±0.23 86.98±0.15 84.45±0.18	R-10 vs delta 1.25 1.12 0.71 0.89	s CIFAR-100 Rank mean±std 4.99±0.10 4.01±0.10 1.00±0.00 2.00±0.00	range 4-5 4-5 1-1 2-2
Method KNN Mah ML MSP LOF _C	CI AUPR mean±std 83.84±0.24 84.61±0.21 82.38±0.13 85.16±0.15 70.68±0.21	FAR-10 delta 1.18 1.10 0.72 0.77 1.34	vs SVHN Rank mean±std 3.00±0.00 1.99±0.10 4.00±0.00 1.01±0.10 6.00±0.00	ResNet range 3-3 1-2 4-4 1-2 6-6	CIFA AUPR mean±std 56.83±0.22 57.25±0.23 86.98±0.15 84.45±0.18 54.82±0.21	delta 1.25 1.12 0.71 0.89 1.10	s CIFAR-100 Rank mean±std 4.99±0.10 4.01±0.10 1.00±0.00 2.00±0.00 6.00±0.00	range 4-5 4-5 1-1 2-2 6-6
Method KNN Mah ML MSP LOF_C LOF_E	CI AUPR mean±std 83.84±0.24 84.61±0.21 82.38±0.13 85.16±0.15 70.68±0.21 90.94±0.13	FAR-10 delta 1.18 1.10 0.72 0.77 1.34 0.71	vs SVHN Rank mean±std 3.00±0.00 1.99±0.10 4.00±0.00 1.01±0.10 6.00±0.00 0.00±0.00	ResNet range 3-3 1-2 4-4 1-2 6-6 0-0	CIFA AUPR mean±std 56.83±0.22 57.25±0.23 86.98±0.15 84.45±0.18 54.82±0.21 60.86±0.22	R-10 vs delta 1.25 1.12 0.71 0.89 1.10 1.06	s CIFAR-100 Rank mean±std 4.99±0.10 4.01±0.10 1.00±0.00 2.00±0.00 6.00±0.00 3.00±0.00	range 4-5 4-5 1-1 2-2 6-6 3-3

Table 10: AUPR results for the OOD detection instability caused by random selection of OOD images. Additional results for experiments reported in Table 4 of the main paper.

	MobileNet with closed set ACC = 74.98 ± 0.50							
	CI	FAR-100	vs SVHN		CIFAR-100 vs CIFAR-10			
Mathad			Rank	ī.	DTACO	2	Rank	
Method	mean±std	delta	mean±std	range	mean±std	delta	mean±std	range
KNN	67.32±2.49	7.25	5.40±1.02	3-6	59.99±1.18	3.99	4.40±0.49	4-5
Mah	$70.69{\pm}4.78$	16.17	$4.20{\pm}1.47$	2-6	$55.32{\pm}1.61$	5.77	$6.00{\pm}0.00$	6-6
ML	$78.77 {\pm} 7.22$	23.14	$1.80{\pm}1.47$	0-4	$76.02{\pm}6.91$	16.36	$0.50{\pm}0.50$	0-1
MSP	76.31 ± 8.34	23.58	$3.10{\pm}2.07$	0-6	75.65 ± 8.32	19.07	$1.40{\pm}0.92$	0-2
LOF_C	$76.61{\pm}2.72$	8.41	$2.10{\pm}1.30$	0-4	62.56 ± 2.77	8.18	$3.00{\pm}0.00$	3-3
LOF_E	$73.28 {\pm} 4.43$	14.76	$2.80{\pm}1.60$	0-5	60.18 ± 2.42	6.80	$4.60{\pm}0.49$	4-5
FE	$78.96{\pm}7.14$	23.09	$1.60{\pm}1.62$	0-5	$75.92{\pm}6.79$	16.15	$1.10{\pm}0.70$	0-2
		Resl	Net with close	d set AC	$C = 94.41 \pm 0.2$	4		
	CI	FAR-10	vs SVHN		CIFA	R-10 vs	CIFAR-100	
Mathad			Rank	ī.	DTACO	2	Rank	
Method	mean±std	delta	mean±std	range	mean±std	delta	mean±std	range
KNN	$80.03 {\pm} 2.88$	10.99	$2.10{\pm}1.51$	0-5	75.50±3.59	11.70	$3.80{\pm}0.40$	3-4
Mah	$79.33{\pm}1.95$	5.31	$3.20{\pm}1.66$	0-5	$76.32{\pm}2.52$	7.80	$3.20{\pm}0.40$	3-4
ML	$79.69 {\pm} 2.77$	9.31	$2.20{\pm}0.75$	1-3	81.61±0.36	1.00	$1.10{\pm}0.54$	0-2
MSP	$80.80{\pm}2.13$	8.06	$1.00{\pm}1.10$	0-3	$81.66 {\pm} 0.28$	0.96	$1.00{\pm}1.00$	0-2
LOF	75 22 4 02	1474	160 1 1 20	16	70.70 ± 4.34	13 53	5.00 ± 0.00	55
LOIU	75.32 ± 4.03	14./4	4.00 ± 1.28	1-0	10.1914.34	15.55	5.00 ± 0.00	5-5
LOF_E	75.32 ± 4.03 69.69 ± 3.24	14.74 12.47	4.00 ± 1.28 5.90 ± 0.30	1-0 5-6	62.76 ± 4.39	13.35	5.00 ± 0.00 6.00 ± 0.00	6-6

Table 11: DTACC results for the OOD detection instability caused by close-set train-test splits. Additional results for experiments reported in Table 5 of the main paper.

Table 12: TNR at TPR 95% results for the OOD detection instability caused by close-set train-test splits. Additional results for experiments reported in Table 5 of the main paper.

		Mobil	eNet with clos	sed set A	$CC = 74.98 \pm 0.5$	50		
	CIF	AR-100	vs SVHN		CIFA	R-100 vs	s CIFAR-10	
Mathad	TNR		Rank	:	TNR		Rank	
Method	mean±std	delta	mean±std	range	mean±std	delta	$mean \pm std$	range
KNN	11.23 ± 5.80	20.39	$5.60{\pm}0.92$	3-6	$6.88{\pm}0.68$	2.70	$3.70 {\pm} 0.90$	3-5
Mah	$22.90{\pm}12.50$	41.89	$3.70{\pm}1.68$	0-5	$4.72 {\pm} 0.80$	2.67	$5.90{\pm}0.30$	5-6
ML	40.71 ± 22.76	61.53	$1.80{\pm}1.54$	0-4	34.28 ± 23.12	53.71	$0.00{\pm}0.00$	0-0
MSP	$35.93{\pm}21.27$	54.64	$3.50{\pm}1.50$	2-6	32.91±22.71	53.42	$1.80 {\pm} 0.40$	1-2
LOF_C	$35.74 {\pm} 9.92$	29.41	$2.00{\pm}1.41$	0-4	$7.04{\pm}1.79$	5.24	$4.10 {\pm} 0.94$	3-6
LOF_E	$25.73{\pm}11.94$	36.14	$2.90{\pm}1.45$	1-5	$6.39{\pm}1.14$	3.96	$4.30 {\pm} 0.64$	3-5
FE	$41.30{\pm}22.76$	61.75	$1.50{\pm}1.86$	0-6	33.68±22.95	53.34	$1.20{\pm}0.40$	1-2
		Resl	Net with close	d set AC	$C = 94.41 \pm 0.24$			
	CI	FAR-10	vs SVHN		CIFA	R-10 vs	CIFAR-100	
Mathad	TNR		Rank	:	TNR		Rank	
Method	mean±std	delta	mean±std	range	mean±std	delta	mean±std	range
KNN	31.91±7.03	24.53	$2.60{\pm}1.80$	0-5	28.32±6.16	20.02	$3.60{\pm}0.66$	2-4
Mah	$36.49 {\pm} 5.37$	18.39	$1.80{\pm}1.47$	0-4	$29.78 {\pm} 4.56$	14.73	$3.20 {\pm} 0.40$	3-4
ML	$34.03 {\pm} 5.03$	15.67	$1.60{\pm}0.80$	0-3	$45.84{\pm}0.98$	3.17	$0.90 {\pm} 0.30$	0-1
MSP	$30.91 {\pm} 2.51$	8.81	$3.80{\pm}1.17$	2-6	35.62 ± 1.17	3.83	$2.20 {\pm} 0.60$	2-4
LOF_C	$28.52{\pm}10.85$	30.70	$3.60{\pm}2.20$	0-6	22.45 ± 6.38	18.43	$5.00{\pm}0.00$	5-5
LOF_E	$19.78 {\pm} 7.09$	20.81	$5.80{\pm}0.40$	5-6	14.77 ± 3.85	11.76	$6.00{\pm}0.00$	6-6
FE	34.01 ± 5.30	16.92	$1.80{\pm}1.33$	0-4	46.42 ± 0.82	2.51	$0.10{\pm}0.30$	0-1

		Mobil	eNet with close	sed set A	$CC = 74.98 \pm 0$.50		
	CI	FAR-100	vs SVHN		CIFA	R-100 v	s CIFAR-10	
Mathad	AUPR		Rank	ī.	AUPR		Rank	
Method	mean±std	delta	mean±std	range	mean±std	delta	mean±std	range
KNN	70.41±4.32	13.14	5.30±1.19	3-6	60.64±1.21	4.22	4.40±0.49	4-5
Mah	$76.12{\pm}6.71$	23.14	$4.00{\pm}1.84$	0-6	55.18 ± 2.15	7.25	$6.00{\pm}0.00$	6-6
ML	$84.32 {\pm} 7.30$	23.05	$1.90{\pm}1.45$	0-4	$81.07 {\pm} 6.98$	16.55	$0.40 {\pm} 0.49$	0-1
MSP	$82.00 {\pm} 7.70$	22.49	$3.40{\pm}1.62$	2-6	80.61±7.79	18.30	$1.40{\pm}0.92$	0-2
LOF_C	84.01 ± 3.74	10.84	$2.00{\pm}1.41$	0-4	64.33±3.37	9.98	$3.00{\pm}0.00$	3-3
LOF_E	$79.07 {\pm} 6.06$	19.76	$2.90{\pm}1.30$	1-4	$61.37 {\pm} 2.88$	7.97	$4.60{\pm}0.49$	4-5
FE	$84.52{\pm}7.35$	23.10	$1.50{\pm}1.96$	0-5	80.94±6.96	16.40	$1.20{\pm}0.60$	0-2
		Resl	Net with close	d set AC	$C = 94.41 \pm 0.2$	4		
	CI	FAR-10	vs SVHN		CIFA	R-10 vs	CIFAR-100	
Mathad	AUPR		Rank	ī.	AUPR		Rank	
Method	mean±std	delta	mean±std	range	mean±std	delta	mean±std	range
KNN	85.64±3.30	12.28	$1.60{\pm}1.85$	0-5	80.76±4.47	13.86	$3.80 {\pm} 0.40$	3-4
Mah	$86.26{\pm}2.14$	6.20	$1.70{\pm}1.49$	0-4	81.74±3.54	11.27	$3.20{\pm}0.40$	3-4
ML	$85.15{\pm}2.80$	8.44	$2.40{\pm}0.80$	1-4	87.73±0.61	1.78	$1.00{\pm}0.00$	1-1
MSP	$85.74{\pm}2.44$	9.23	$2.20{\pm}1.66$	0-5	$86.80 {\pm} 0.47$	1.84	$2.00{\pm}0.00$	2-2
LOF_C	$81.40{\pm}4.77$	16.08	$4.20{\pm}1.89$	0-6	76.07 ± 5.16	15.95	$5.00{\pm}0.00$	5-5
LOF_E	74.88 ± 4.04	14.09	5.90 ± 0.30	5-6	66.05 ± 5.96	18.92	$6.00 {\pm} 0.00$	6-6
	1 1100 - 110 1							

Table 13: AUPR results for the OOD detection instability caused by close-set train-test splits. Additional results for experiments reported in Table 5 of the main paper.

Augmentation	ACC	KNN	Mah	ML	MSP	LOF_C	LOF_E	FE
		Mobile	Net CIFA	AR-100 v	s SVHN			
None	53.73	66.25	72.72	69.83	65.33	74.52	72.76	70.27
Affine	74.41	71.52	75.14	70.45	70.27	75.70	78.31	70.39
CoarseDropout	67.18	60.19	63.25	77.18	71.20	74.05	67.96	77.75
ColorJitter	65.98	60.59	62.54	75.07	68.76	77.47	73.00	75.77
CropAndPad	72.59	63.02	70.89	77.12	74.16	78.31	74.45	77.29
MixUp	68.65	63.30	78.87	71.24	70.38	78.70	78.15	69.80
	N	MobileNe	et CIFAR	R-100 vs	CIFAR-1	0		
None	53.73	56.07	53.81	62.74	62.19	56.76	51.29	62.56
Affine	74.41	60.15	56.33	72.52	70.91	64.25	60.15	72.51
CoarseDropout	67.18	59.42	56.02	67.16	66.87	59.96	55.65	67.15
ColorJitter	65.98	58.22	56.76	67.40	66.50	62.33	57.38	67.31
CropAndPad	72.59	60.57	56.23	70.25	69.37	62.40	58.84	70.06
MixUp	68.65	59.47	56.20	68.70	68.16	55.34	57.07	67.23
		ResN	et CIFA	R-10 vs \$	SVHN			
None	83.64	71.41	67.70	74.43	73.87	74.15	69.59	74.41
Affine	94.76	86.45	83.97	85.24	84.40	84.83	81.62	85.23
CoarseDropout	89.27	62.52	59.39	81.27	80.31	64.89	72.69	81.28
ColorJitter	87.98	80.35	70.02	77.99	78.00	82.09	80.31	77.93
CropAndPad	94.01	84.79	80.48	87.02	85.14	83.11	79.55	87.06
MixUp	89.41	77.28	81.31	57.10	83.12	72.72	78.72	50.43
		ResNet	CIFAR-	10 vs CII	FAR-100			
None	83.64	63.20	62.25	74.41	72.67	57.95	54.94	74.44
Affine	94.76	81.31	80.25	83.07	82.62	79.84	77.84	83.05
CoarseDropout	89.27	58.27	55.08	78.65	77.41	54.14	54.10	78.69
ColorJitter	87.98	74.48	71.70	77.50	76.17	74.64	71.78	77.50
CropAndPad	94.01	79.84	77.35	81.99	81.72	76.09	72.06	82.01
MixUp	89.41	62.93	66.61	72.72	76.77	60.33	57.22	67.73

Table 14: DTACC results for the OOD detection instability caused by different augmentation methods used for close model training. Additional results for experiments reported in Table 6 of the main paper.

Augmentation	ACC	KNN	Mah	ML	MSP	LOF_C	LOF_E	FE
		Mobile	Net CIFA	AR-100 v	s SVHN			
None	53.73	12.47	31.45	13.11	11.28	24.10	28.72	12.87
Affine	74.41	28.78	33.28	11.84	13.83	30.81	41.14	9.93
CoarseDropout	67.18	5.10	10.09	26.34	20.82	25.26	12.80	28.50
ColorJitter	65.98	4.16	10.52	22.22	18.21	39.95	25.39	23.19
CropAndPad	72.59	8.77	21.19	23.35	20.32	35.89	29.84	23.09
MixUp	68.65	8.72	40.35	10.10	13.73	35.25	38.45	7.78
	N	MobileNe	et CIFAR	R-100 vs	CIFAR-1	0		
None	53.73	4.22	4.77	11.15	10.32	4.26	3.29	10.73
Affine	74.41	6.06	4.59	19.65	19.35	7.59	5.09	18.96
CoarseDropout	67.18	5.19	5.12	14.84	14.45	6.48	5.15	14.36
ColorJitter	65.98	5.66	6.17	13.73	13.14	9.91	5.82	13.50
CropAndPad	72.59	6.58	4.58	17.92	16.32	6.98	5.90	17.43
MixUp	68.65	6.68	5.26	14.62	15.83	4.94	5.65	13.19
		ResN	et CIFA	R-10 vs \$	SVHN			
None	83.64	25.14	26.36	16.21	15.69	39.94	26.22	15.74
Affine	94.76	51.16	47.07	54.64	38.62	51.35	34.75	55.50
CoarseDropout	89.27	0.10	5.92	32.08	23.34	10.31	26.32	31.95
ColorJitter	87.98	41.32	15.55	23.76	22.63	54.33	46.30	23.03
CropAndPad	94.01	47.77	43.02	61.05	41.01	53.79	35.88	62.23
MixUp	89.41	32.63	55.88	7.73	35.98	19.50	43.04	3.70
		ResNet	CIFAR-	10 vs CII	FAR-100			
None	83.64	10.77	11.80	22.91	17.63	11.39	7.54	23.23
Affine	94.76	39.08	39.33	47.28	35.74	39.87	36.48	48.26
CoarseDropout	89.27	6.09	9.00	33.23	23.39	7.53	6.90	33.50
ColorJitter	87.98	22.85	19.93	29.16	21.77	27.42	22.02	30.12
CropAndPad	94.01	38.73	35.15	46.50	34.21	33.88	26.85	46.87
MixUp	89.41	8.67	13.36	31.88	29.22	9.73	7.68	31.14

Table 15: TNR at TPR 95% results for the OOD detection instability caused by different augmentation methods used for close model training. Additional results for experiments reported in Table 6 of the main paper.

Augmentation	ACC	KNN	Mah	ML	MSP	LOF_C	LOF_E	FE
		Mobile	Net CIFA	R-100 v	s SVHN			
None	53.73	70.10	79.54	73.90	69.96	79.46	78.17	74.31
Affine	74.41	78.77	82.64	74.01	74.72	83.09	86.26	73.33
CoarseDropout	67.18	61.15	66.26	83.01	77.49	80.46	71.51	83.81
ColorJitter	65.98	60.91	65.98	80.69	75.03	84.37	78.94	81.41
CropAndPad	72.59	65.89	76.56	82.31	79.87	85.33	81.15	82.36
MixUp	68.65	66.55	86.10	74.14	74.85	85.40	85.45	71.32
	Ν	MobileNe	et CIFAR	R-100 vs	CIFAR-1	0		
None	53.73	56.72	54.17	65.31	65.77	56.58	49.59	65.07
Affine	74.41	60.38	56.31	77.79	76.70	66.11	60.79	77.63
CoarseDropout	67.18	60.59	56.35	71.03	71.29	61.06	55.98	70.83
ColorJitter	65.98	58.05	57.53	71.15	70.87	65.25	58.27	70.99
CropAndPad	72.59	61.61	56.33	75.11	74.58	64.20	59.46	74.98
MixUp	68.65	61.07	56.90	72.59	72.81	55.52	57.94	70.77
		ResN	et CIFA	R-10 vs \$	SVHN			
None	83.64	78.25	73.42	78.52	78.04	81.72	74.36	78.39
Affine	94.76	92.07	90.60	91.47	89.71	91.23	86.77	91.59
CoarseDropout	89.27	58.34	59.88	86.43	84.49	66.94	76.27	86.40
ColorJitter	87.98	88.18	75.01	82.39	82.52	90.64	88.00	82.15
CropAndPad	94.01	91.22	88.14	92.88	90.21	90.77	86.24	93.04
MixUp	89.41	81.64	87.96	51.87	87.24	76.64	85.32	38.94
		ResNet	CIFAR-	10 vs CII	FAR-100			
None	83.64	66.50	65.28	79.92	77.49	61.49	56.09	80.03
Affine	94.76	87.56	87.04	89.06	88.06	85.98	83.93	89.12
CoarseDropout	89.27	57.26	53.67	84.87	82.39	55.65	53.88	84.92
ColorJitter	87.98	80.17	77.21	83.50	81.39	80.44	76.04	83.61
CropAndPad	94.01	86.64	84.53	87.90	86.90	83.12	78.72	87.98
MixUp	89.41	65.40	69.89	73.66	79.85	62.45	59.04	68.80

Table 16: AUPR results for the OOD detection instability caused by different augmentation methods used for close model training. Additional results for experiments reported in Table 6 of the main paper.

BERT with closed set ACC = 97.49 ± 0.11								
M. (1 1	DTAC	2	Rank					
Method	mean±std	delta	mean±std	range				
KNN	72.10±4.16	11.34	2.25±1.85	0-5				
Mah	$70.75 {\pm} 2.21$	7.46	$2.75 {\pm} 2.17$	0-6				
ML	$69.08 {\pm} 4.90$	16.39	$3.38{\pm}2.12$	0-6				
MSP	$67.60{\pm}7.66$	21.69	$3.62{\pm}2.34$	0-6				
LOF_C	$70.98 {\pm} 3.14$	10.93	$2.12{\pm}1.45$	0-5				
LOF_E	$70.74 {\pm} 3.08$	10.75	$3.00{\pm}1.22$	1-5				
FE	$69.06{\pm}4.90$	16.39	$3.88{\pm}1.90$	1-6				
	TNR at TPR	R 95%	Rank					
	mean±std	delta	mean±std	range				
KNN	28.26±4.28	13.16	1.50±1.22	0-3				
Mah	$28.07 {\pm} 2.87$	8.84	$2.00{\pm}0.87$	1-3				
ML	17.97 ± 3.23	9.68	$4.62 {\pm} 0.48$	4-5				
MSP	$16.85 {\pm} 2.05$	5.26	$5.25 {\pm} 0.97$	4-6				
LOF_C	$29.68 {\pm} 3.27$	9.26	$1.00{\pm}0.87$	0-2				
LOF_E	28.61 ± 3.60	9.95	$1.50{\pm}1.22$	0-3				
FE	$17.88 {\pm} 3.43$	9.68	$5.12{\pm}0.78$	4-6				
	AUPR		Rank	:				
	mean±std	delta	mean±std	range				
KNN	73.85±4.15	11.79	1.00±1.32	0-3				
Mah	$73.21{\pm}2.13$	6.48	$2.00{\pm}1.50$	0-5				
ML	$67.03 {\pm} 5.07$	16.64	$4.88{\pm}0.60$	4-6				
MSP	$65.62 {\pm} 7.33$	22.60	$5.25 {\pm} 1.39$	2-6				
LOF_C	$73.36{\pm}2.86$	9.04	$1.25{\pm}0.97$	0-3				
LOF_E	$72.82{\pm}2.79$	8.72	$2.25{\pm}0.97$	1-4				
FE	$67.07 {\pm} 5.08$	16.80	$4.38{\pm}0.86$	3-6				

Table 17: DTACC, TNR, and AUPR results for the OOD detection instability caused by the different random seeds used during training for text classification by BERT model. Additional results to those presented in Table 7 of the main paper.