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A DERIVATIONS

A.1 VARIATIONAL LOWER BOUND WITH STRUCTURED INFERENCE NETWORK

For the conjugate case in Sec. 3, we show the ELBO in Eq. 1 (for a single task and dropping task indices for clarity)
simplifies after substitution of the structured inference network (Eq. 7). We denote the factor by q(z | fϕNN(D

(i)
c )) :=

exp
(〈
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〉)
(and analogous expression for each target point):
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where the 2nd term resembles the entropy on the individual factors (shown in blue).

A.2 EQUIVALENCE TO BAYESIAN AGGREGATION MEAN UPDATE EQUATION

We show the posterior mean in Eq. 8 can be expressed in the incremental form stated in Volpp et al. [2020] (Eq. 4):
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A.3 MIXTURE OF GAUSSIAN PRIOR NORMALIZATION CONSTANT
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B EXPERIMENTAL DETAILS

The implementation for robust and mixture Bayesian aggregation is adapted from the implementation of BA1 and the other
baselines are taken from the codebase of Bootstrapped Neural Process2 (with modifications elaborated in the appendix) [Lee
et al., 2020].

For our proposed mixture Bayesian Aggregation, we use the MixtureOfDiagNormals implementation from the Pyro
package. However due to numerical issues with using 32-bit floating-point precision with this implementation, we disable
gradient flow through the categorical distribution.

B.1 1-D REGRESSION

We consider the following kernels:

RBF: baseline used in Lee et al. [2020]

k(x, x′) = s2 exp

(
− (x− x′)2

2ℓ2

)
with s ∼ U [0.1, 1.0) and ℓ ∼ U [0.1, 0.6);

Matérn– 5
2 : baseline used in Gordon et al. [2020]
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with d = 4|x− x′|.

Following Lee et al. [2020], the inputs of the context and target sets are sampled according to x ∼ U(−2, 2). The sizes of
the context and target sets are sampled according to Nc ∼ U(3, 47) and Nt ∼ U(3, 50−Nc). In the evaluation phase, 5000
tasks are drawn identically to the data generating process for training.

B.2 IMAGE COMPLETION

Image completion is formulated as a regression problem where pixel coordinates are transformed to [−1, 1] and pixel
intensities are rescaled to [−0.5, 0.5] following Lee et al. [2020]. A single image constitutes a task. During training, images
are restricted to the first 10 classes, with the size of the context and target sets are sampled according to Nc ∼ U(3, 197) and
Nt ∼ U(3, 200−Nc). For the in-distribution setting, we evaluate on a different set of images but restricted also to the first
10 classes. For Fig. 5a we sample the target sets according to Nt ∼ U(3, 500−Nc) (evaluation only). For evaluation on the
out-of-distribution setting, images are taken from the unseen classes 10-46.

B.3 MODEL ARCHITECTURES

Decoder architecture Across all models, we keep the decoder architecture the same, with separate networks outputting
the mean and standard deviation of the predictive distribution (following Volpp et al. [2020]). The networks have 128 hidden
units and ReLU activation functions. For the 1-D regression experiment, we use a 3-layer MLP and for the image completion
experiment, a 4-layer MLP. Following Le et al. [2018], the standard deviation of the predictive distribution is processed
using a lower-bounded softplus with a lower bound of 0.1.

1https://github.com/boschresearch/bayesian-context-aggregation
2https://github.com/juho-lee/bnp
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Encoder architecture For models with latent path, the latent dimensionality is set to 128. ReLU activation function for
the hidden layers are used throughout. Unless otherwise stated, the hidden size is 128. Here we state the architectures of the
baselines with mean-pooling aggregation in the 1-D regression experiment:

NP: This is adapted from Garnelo et al. [2018] where the deterministic path is removed (as done in Volpp
et al. [2020]).

NP+SA: This incorporates (multi-head) self-attention into the encoder architecture of NP.

Following Le et al. [2018], we process the standard deviation of the latent variable using a lower-bounded sigmoid with a
lower bound of 10−4.

The architecture of the baselines with Bayesian Aggregation (BA) follow Volpp et al. [2020] with separate MLPs predicting
each neural sufficient statistic (or latent observation and observation variance as elaborated in Volpp et al. [2020]). The
2nd neural sufficient statistic (i.e. observation noise) is processed using a lower-bounded sigmoid, identical to how the
latent variance is processed in the baselines with mean-pooling. Following Volpp et al. [2020], a Gaussian prior with fixed
parameters is used: µ0 = 0,Σ0 = I. We use MLPs with 64 hidden units and 4 layers.

For our proposed robust Bayesian Aggregation, we extend the aforementioned BA implementation. The gamma prior
parameters are set as follows: a0 = b0 = 10−6 ·D and c0 = 10−2 ·D. This is similar to Tipping and Lawrence [2005] but
appropriately scaled by the latent dimensionality. For the image completion experiment, the depth of all MLPs is increased
by 1.

The models evaluated in Sec. 5.1 are trained using 10 latent samples and those evaluated in Sec. 5.2 are trained using 5 latent
samples. We use more latent samples for the mixture experiments as suggested in Wang and Van Hoof [2022]. Following
Lee et al. [2020], all models are optimized using ADAM with initial learning rate 5 · 10−4 and cosine annealing scheme for
the learning rate schedule. For the 1-D regression experiment, models are trained for 100,000 steps where each step consists
of 16 tasks. For the image completion experiment, models are trained for 200 epochs with batches of 100 images.

To evaluate the models, we compute the posterior predictive log-likelihood and RMSE using a Monte-Carlo approximation.
Following Kim et al. [2019] we also evaluate the criterion by using the context points as targets as well. This gives an
indication of how well the model is fitting the context points (reconstruction error).

C EXTENDED TABLE 1 WITH ROBUST BA COMPARISON

Predictive Log-Likelihood ↑ RMSE ↓
Seen classes (0-9) Unseen classes (10-46) Seen classes (0-9) Unseen classes (10-46)

context target context target context target context target

NP 0.701±0.065 0.589±0.061 0.567±0.059 0.405±0.039 0.201±0.018 0.218±0.014 0.244±0.014 0.265±0.009

NP+SA 0.977±0.006 0.840±0.005 0.823±0.007 0.609±0.008 0.127±0.002 0.165±0.001 0.177±0.002 0.224±0.002

NP-BA 0.866±0.097 0.708±0.076 0.749±0.118 0.537±0.093 0.154±0.027 0.193±0.014 0.193±0.033 0.238±0.018

NP-mBA (K=2) 0.952±0.121 0.778±0.083 0.855±0.143 0.623±0.097 0.128±0.033 0.181±0.017 0.162±0.038 0.221±0.020

NP-mBA (K=3) 0.953±0.108 0.777±0.079 0.857±0.132 0.623±0.103 0.128±0.031 0.180±0.015 0.162±0.038 0.221±0.020

NP-mBA (K=5) 0.975±0.083 0.792±0.064 0.883±0.105 0.642±0.084 0.122±0.025 0.177±0.011 0.155±0.031 0.217±0.016

NP-rBA 0.981±0.136 0.801±0.091 0.897±0.161 0.668±0.101 0.119±0.038 0.178±0.019 0.148±0.042 0.214±0.021
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