
Two-stage Kernel Bayesian Optimization in High Dimensions

Jian Tan *,1 Niv Nayman *,2

*Equal contribution
1Alibaba Group , Sunnyvale, California, USA

2Technion - Israel Institute of Technology , Haifa, Israel

Abstract

Bayesian optimization is a popular method for op-
timizing expensive black-box functions. Yet it of-
tentimes struggles in high dimensions, where the
computation could be prohibitively heavy. While a
complex kernel with many length scales is prone to
overfitting and expensive to train, a simple coarse
kernel with too few length scales cannot effectively
capture the variations of the high dimensional func-
tion in different directions. To alleviate this prob-
lem, we introduce CobBO: a Bayesian optimiza-
tion algorithm with two-stage kernels and a coor-
dinate backoff stopping rule. It adaptively selects a
promising low dimensional subspace and projects
past measurements into it using a computational
efficient coarse kernel. Within the subspace, the
computational cost of conducting Bayesian opti-
mization with a more flexible and accurate kernel
becomes affordable and thus a sequence of con-
secutive observations in the same subspace are
collected until a stopping rule is met. Extensive
evaluations ashow that CobBO finds solutions com-
parable to or better than other state-of-the-art meth-
ods for dimensions ranging from tens to hundreds,
while reducing both the trial complexity and com-
putational costs.

aThe full code: https://github.com/
Alibaba-MIIL/CobBO

1 INTRODUCTION

Bayesian optimization (BO) is an effective zero-order
paradigm for optimizing expensive black-box functions.
It has been widely used in various real applications, e.g.,
parameter tuning for recommendation systems, automatic
database configuration tuning, and simulation-based opti-
mization.

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

10 20 30 40 50

Be
st

 V
al

ue

(C
ur

ve
s

-L
ow

er
 is

 b
et

te
r)

Ru
nt

im
e

[S
ec

on
ds

]
 (B

ar
s)

Dimensions

CobBO vs Vanilla for 500 iterations: Runtime and Best Value

CobBO

Vanilla

CobBO

Vanilla

Failed
after ~412 iterations

Failed
after ~345 iterationsx2.4

x2.8

x7.2

Figure 1: The measured runtime and best value (with their
standard deviations averaged over 5 trials) of the Rastrigin
function on [−5, 10]D observed by CobBO and vanilla BO
with a budget of 500 iterations for D = 10, 20, 30, 40, 50.
CobBO is much faster while obtaining better function values.
In higher dimensions, vanilla BO cannot even complete the
iteration budget (transparent bars for illustration only) while
CobBO scales properly.

Though highly competitive in low dimensions (e.g., the di-
mension D ≤ 20 Frazier [2018]), Bayesian optimization
based on Gaussian Process (GP) regression has obstacles in
high dimensions.
Curse of dimensionality: As a sample efficient method,
Bayesian optimization often suffers from high dimension-
ality. Fitting the GP model (estimating the parameters, e.g.,
length scales Eriksson et al. [2019]) and optimizing the
acquisition function all incur large computational costs in
high dimensions. It also results in statistical insufficiency
of exploration Djolonga et al. [2013], Wang et al. [2017].
As the GP regression’s error grows with dimensions Bull
[2011], more samples are required to balance that in high
dimensions, which could cubically increase the computa-
tional costs in the worst case Mutny and Krause [2018].
Multiple length scales: The smoothness of the regression
is determined by the specified kernel and the corresponding
length scales, where the latter can be viewed as the mea-
suring units along different axes in space. The landscapes

Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:2099–2110.

mailto:<j.tan@alibaba-inc.com>?Subject=Two-stage Kernel Bayesian Optimization in High Dimensions
mailto:<niv.nayman@gmail.com>?Subject=Two-stage Kernel Bayesian Optimization in High Dimensions
https://github.com/Alibaba-MIIL/CobBO
https://github.com/Alibaba-MIIL/CobBO

of the objective function over the global full space and on
different local coordinate subspaces can vary significantly,
while BO tries to approximate all of them in each iteration
using a family of Gaussian functions. Thus, a single kernel
with a fixed set of length scales cannot effectively fit all.

Algorithm 1 High level description of CobBO

1: for each round r do
2: Stage 1:
3: GP regression using a computation-efficient coarse

kernel K1 on all of the observed data points from the
full space Ω.

4: Select a subspace Ωr, project those data points into it
and estimate their function values using K1 to form
“virtual points”.

5: Stage 2:
6: repeat
7: BO on the same subspace Ωr with a more flexible

and possibly computationally demanding kernel
K2, using both the “virtual points” and truly ob-
served ones on Ωr.

8: until Backoff stopping rule is met
9: end for

10: return the best observed data point

To alleviate this problem, we introduce CobBO: a Bayesian
optimization algorithm with two-stage kernels and a coor-
dinate backoff stopping rule, as illustrated in Algorithm 1.
This method can be viewed as a variant of block coordi-
nate ascent tailored to Bayesian optimization. During each
round, a promising low dimensional subspace is restricted,
following a theoretically motivated (Section 3.1) and em-
pirically supported (Section 4.1) coordinate selection policy.
To leverage information observed in all other subspaces,
past data points in the full space are projected into the cur-
rent subspace to form virtual points. In the first stage, their
values are approximated using a simple coarse kernel that
sacrifices the approximation accuracy for computational
efficiency, e.g., RBF Buhmann [2003], for which efficient
algorithms in O(N logN) for N observations have been
studied Gumerov and Duraiswami [2007]. It captures the
global landscape by smoothing away local fluctuations.

Then, in the second stage of the same round, a more flexi-
ble and possibly computation heavier kernel is used within
the selected low dimensional subspace, as the computa-
tional cost of conducting Bayesian optimization therein
becomes affordable. A possible choice is the Automatic
Relevance Determination (ARD) Matérn Rasmussen and
Williams [2005], which learns varying length scales to prop-
erly capture the local fluctuations in smaller selected sub-
spaces. Then, a sequence of consecutive observations in the
same subspace are collected. This refinement lasts until a
stopping rule is met, determining when to back off from a
certain subspace and switch to another.

This decoupling significantly reduces the computational
burden in high dimensions, while fully leveraging the ob-
servations in the whole space rather than only relying on
the few observations in each subspace. It can dramatically
reduce both the model fitting time in the full space and
the acquisition function optimization time in the subspace
compared to performing ‘vanilla’ BO over the full space, as
shown in Fig. 1.

Through comprehensive evaluations, CobBO demonstrates
appealing performance for dimensions ranging from tens
to hundreds. It obtains comparable or better solutions with
fewer queries, in comparison with the state-of-the-art meth-
ods, for most of the problems tested in Section 4.2.

2 RELATED WORK

Certain assumptions are often imposed on the latent struc-
ture in high dimensions. Typical assumptions include low
dimensional embedding and additive structures. Their ad-
vantages manifest on problems with a low effective dimen-
sion. However, these assumptions do not necessarily always
hold in practice, e.g., for non-separable functions without
redundant dimensions.

Low dimensional embedding: The function f is assumed
to have a low effective dimension Kushner [1964], Tyagi
and Cevher [2014], e.g., f(x) = g(Φx) for a function g(·)
and a matrix Φ of d ×D, d << D. It essentially assumes
that f(x) does not change along certain directions. More
generally, a non-linear auto-encoder can also be utilized
to find the embedding. A variety of methods have been
developed, including random embedding Djolonga et al.
[2013], Wang et al. [2016], Munteanu et al. [2019], Bi-
nois et al. [2020], Letham et al. [2020], Hashing-enhanced
Subspace BO (HeSBO) Munteanu et al. [2019], and Maha-
lanobis kernel ALEBO Letham et al. [2020]. Since not all
the real-world problems fit the low dimensional embedding
structure, CobBO is designed to optimize functions without
redundant dimensions. It exploits the subspace structure, in-
dependent of the dimensions. Though the embedding-based
algorithms and CobBO are based on different assumptions,
REMBO Wang et al. [2016] and ALEBO Letham et al.
[2020] are compared with CobBO in Appendix 1.

Additive structure: A decomposition assumption is often
made by f(x) =

∑k
i=1 f

(i) (xi), with xi defined over low-
dimensional components. In this case, the effective dimen-
sionality of the model is the largest dimension among all
additive groups Mutny and Krause [2018], which is usually
small. The Gaussian process is structured as an additive
model Gilboa et al. [2013], Kandasamy et al. [2015]. How-
ever, learning the unknown structure incurs a considerable
computational cost Munteanu et al. [2019], and is not always
applicable for non-separable functions, for which CobBO
can still be applied.

2100

Figure 2: An illustration of the two-stage kernels. Stage 1:
subspace projection and function value estimation for virtual
points using kernel K1. Stage 2: BO in Ωt using kernel K2.

Trust regions and subspaces: Trust region BO has been
proven effective for high-dimensional problems. Within the
local trust regions, many efficient methods have been ap-
plied, e.g., local Gaussian models (TurBO Eriksson et al.
[2019]), adaptive search on a mesh grid (BADS Acerbi and
Ma [2017]) or quasi-Newton local optimization (BLOS-
SOM McLeod et al. [2018]). TurBO Eriksson et al. [2019]
uses Thompson sampling to allocate samples across multi-
ple regions. A related method is to use space partitions, e.g.,
LA-MCTS Wang et al. [2020] on a Monte Carlo tree search
algorithm to learn efficient partitions. CobBO differs by se-
lecting low dimensional subspaces and using two-stage ker-
nels. Apart from the afore-mentioned works on axis-aligned
subspaces Li et al. [2017], Oliveira et al. [2018], Mori-
coni et al. [2020], Eriksson and Jankowiak [2021], another
closely related work is LineBO Kirschner et al. [2019]. It sig-
nificantly reduces the acquisition function optimization time
by restricting on one-dimensional subspaces. However, as it
uses a single kernel, it does not address the computational
issues of the GP regression in the full space. Furthermore,
CobBO selects the block size as well as the coordinates
therein by a multiplicative weights update method Arora
et al. [2012] applied to the preference probability associ-
ated with each coordinate. Thus, it samples more promising
subspaces with higher probabilities. See Appendix 2 for the
comparison.

3 METHOD

Formally, suppose that the goal is to solve x∗ =
argmaxx∈Ωf(x) for a black-box function f : Ω → R.
The domain is normalized Ω = [0, 1]D with the coor-
dinates indexed by I = {1, 2, · · · , D}. For a sequence
of t points Xt = {x1, x2, · · · , xt}, we observe Wt =
{(xi, yi = f(xi))}ti=1. A subset Ct ⊆ I of the coordinates
is selected, forming a subspace Ωt ⊆ Ω.

GP regression assumes a class of random functions in a
probability space as surrogates that iteratively yield pos-
terior distributions by conditioning on the queried points.
For iteration t, instead of computing the Gaussian pro-
cess posterior distribution {f̂(x)|Wt = {(xi, yi)}ti=1 , x ∈

Ω} by conditioning on the observations yi = f(xi)
at queried points {xi}ti=1 in the full space Ω ⊂
RD, we change the conditional events, and consider
{f̂(x)|R (PΩt

(x1, . . . , xt),Wt) , x ∈ Ωt,Ωt ⊂ Ω} for a
projection function PΩt

(·) to a random subspace Ωt and
an estimation function R(·, ·). The projection PΩt

(·) maps
the queried points to virtual points on a subspace Ωt of
a lower dimension. The function R(·, ·) estimates means
and variances of the objective values at the virtual points
based onWt. The second stage uses a more flexible kernel
within the subspace Ωt, whose parameters would otherwise
be expensive to learn in high dimensions.

As a variant of coordinate ascent, CobBO restricts the sub-
space Ωt to contain a pivot point Vt, which is presumably
the maximum point xMt = argmaxx∈Xt

f(x) (or some per-
turbation over it to escape local optima) , whose function
value is Mt = f

(
xMt
)
.

Then, BO is conducted within Ωt, fixing all the other coor-
dinates C̄t = I \ Ct, i.e., the complement of Ct.

For BO in Ωt, we use Gaussian processes as the random
surrogates f̂ = f̂Ωt(x) to describe the Bayesian statistics of
f(x) for x ∈ Ωt. At each iteration, the next query point is

xt+1 = argmaxx∈Ωt,Vt∈Ωt
Qf̂Ωt (x)∼p(f̂ |Wt)

(x|Wt),

where the acquisition function Q(x|Wt) incorporates the
posterior distribution of the Gaussian processes p(f̂ |Wt).
Typical acquisition functions include the expected improve-
ment (EI) Močkus [1975], Jones et al. [1998], the upper
confidence bound (UCB) Auer [2003], Srinivas et al. [2010],
Srinivas et al. [2012], the entropy search Hennig and Schuler
[2012], Henrández-Lobato et al. [2014], Wang and Jegelka
[2017], and the knowledge gradient Frazier et al. [2008],
Scott et al. [2011], Wu and Frazier [2016].

Instead of directly computing the posterior distribution
p(f̂ |Wt), we replace the conditional eventsWt by Ŵt =
R (PΩt (Xt) ,Wt) = {(x̂i, ŷi)}ti=1 with a projection func-
tion PΩt

(·),

[PΩt
(xi)]j =

{
xi,j if j ∈ Ct
Vt,j if j /∈ Ct

; i ∈ {1, . . . t} (1)

at coordinate j. It simply keeps the values of xt whose
corresponding coordinates are in Ct and replaces the rest by
the corresponding values of Vt, as illustrated in Fig. 2.

Applying PΩt(·) on Xt and discarding duplicates generate a
new set of distinct virtual points X̂t = {x̂1, x̂2, x̂3, · · · , x̂t̂},
x̂i ∈ Ωt ∀ 1 ≤ i ≤ t̂ ≤ t. In our implementation, the func-
tion values at x̂i ∈ X̂t are interpolated as ŷi = R(x̂i,Wt)
using the standard radial basis function (RBF) kernel Buh-
mann [2003] k1(u, v) = exp(−||u− v||2/l2), with a single
length scale l, which is isotropic but easy to train. Multiple
length scales in high dimensions can significantly increase
the fitting time even though the time complexity is of the

2101

Algorithm 2 Detailed description of CobBO(f, τ , T)

1: Wτ ← Sample t = τ initial points and evaluate their
values

2: Vτ ,Mτ ← The maximal point inWτ

3: qτ ← 0 // Number of consecutive failed queries
4: πτ ← Uniform preference for coordinates
5: while t < T do
6: Stage 1: Use a computation-efficient coarse kernel

K1 for the estimation function R(·, ·)
7: Ωt ← Induce a new subspace over the coordinate

block Ct, such that Vt ∈ Ωt
8: X̂t ← PΩt

(Xt) // Form virtual points
9: Ŵt ← R

(
X̂t,Wt

)
// Compute the means (and op-

tional variances) of the virtual points by K1

10: Stage 2: Use a flexible kernel K2 for BO within Ωt
for consistent queries

11: repeat
12: p

[
f̂Ωt

(x)|Ŵt

]
← Compute the posterior distribu-

tion of the Gaussian process in Ωt conditional on
Ŵt by K2; Note that the points in Ŵt could have
non-zero variances

13: xt+1 ← argmaxx∈Ωt
Qf̂∼p(f̂ |Ŵt)

(x|Ŵt) // Keep
using K2

14: yt+1 = f(xt+1)
15: if yt+1 > Mt then
16: Vt+1 ← xt+1, Mt+1 ← yt+1, qt+1 ← 0
17: else
18: Vt+1 ← Vt, Mt+1 ←Mt, qt+1 ← qt + 1
19: end if
20: Update πt according to Eq. (2)
21: Ωt+1 ← Ωt // Remain in the same subspace for

the next query
22: Wt+1 ←Wt

⋃
{(xt+1, yt+1)},

Wt+1 ← Xt
⋃
{xt+1}, t← t+ 1

23: until The backoff stopping rule is met (Section 3.2)
→ Switch to a different subspace

24: end while

same order. Specifically, using a ‘multiquadric’ kernel with
length scales approximating the average distance between
points, CobBO can efficiently fit the model in the full space.
Note that efficient algorithms for RBF inO(N logN) forN
observations have been proposed Gumerov and Duraiswami
[2007]. A possible choice for the second stage’s kernel
in subspace Ωt is the Automatic Relevance Determination
(ARD) Matérn kernel Rasmussen and Williams [2005]

k2(u, v) =
21−ν

Γ(ν)

(
√

2ν||d(u, v)||

)ν
Kν

(
√

2ν||d(u, v)||

)

where Γ(·) is the gamma function, Kν(·) is a modi-
fied Bessel function (ν = 2.5 twice differentiable), and
d(u, v) = ((u1−v1)/l1, (u2−v2)/l2, · · · , (uD−vD)/lD)
with anisotropic length scales l1, · · · , lD, that are more ex-

0 100 200 300 400 500
Number of evaluations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
lu

e

Coordinate Selection Probability

Total probability of active coordinates
Total probabilty of innactive coordinates

Figure 3: The preference probability concentrates on the 25
active coordinates of the Rastrigin function on [−5, 10]25

(its summation in green), compared to the total probability
assigned to 25 artificially added inactive coordinates (in
red), that are ignored by the function. Mean values (solid
lines) and 95% confidence intervals (shaded areas) over 10
independent experiments are presented.

pensive to learn in high dimensions.

3.1 STAGE 1: BLOCK COORDINATE ASCENT
FOR SUBSPACE SELECTION

We induce a preference distribution πt over the coordinate
set I , and sample a variable-size coordinate block Ct ac-
cordingly. This distribution is updated at iteration t through
a multiplicative weights update method Arora et al. [2012].
Specifically, the values of πt at coordinates in Ct starts off
uniform and increase in face of an improvement or decrease
otherwise according to different multiplicative ratios α > 1
and β > 1, respectively,

wt,j = wt−1,j ·


α if j ∈ Ct and yt > Mt−1

1/β if j ∈ Ct and yt ≤Mt−1

1 if j /∈ Ct
(2)

with w0,j = 1/D and πt,j = wt,j/
∑D

j=1 wt,j . This update
characterizes how likely a coordinate block can generate
a promising search subspace. The multiplicative ratio α is
chosen to be relatively large, e.g., α = 2.0, and β relatively
small, e.g., β = 1.1, since the queries that improve the
best observations yt > Mt−1 happen more rarely than the
opposite yt ≤Mt−1.

While Fig. 3 and Section 4.1 provide an empirical support
for the proposed block coordinate selection scheme, in Sec-
tion 3.1.1, we provide a theoretical motivation for it.

While most existing methods partition the coordinates
into fixed blocks and select one according to, e.g., cyclic

2102

Figure 4: Ablation study over 5 trials using Rastrigin on [−5, 10]50 with 20 initial random samples (lower is better)

order Wright [June 2015], random sampling or Gauss-
Southwell Nutini et al. [July 2015], or selecting the size
|Ct|, we specify an upper bound, e.g. |Ct| ≤ 30, where |Ct|
can be any random number in a finite set C. A sensitivity
study for this upper bound appears in Appendix 6.

3.1.1 Theoretical motivation for the subspace selection

The selection of a block of coordinates can be viewed as a
combinatorial mixture of experts problem, where each coor-
dinate is a single expert and the forecaster aims at choosing
the best combination of experts in each step Cesa-Bianchi
and Lugosi [2006]. Under this view, we bound the regret of
our selection method on an intuitive surrogate loss function
with respect to the policy of selecting the best block of co-
ordinates at each step. This is complementary to the regret
analysis of the optimization performed at each subspace.
Here we focus on justifying the coordinate selection alone.

Following the standard framework, we compare with a fixed
optimal choice I∗ for the block of coordinates to pick at
all steps. This block is characterized by improving the ob-
jective function for the largest number of times among all
the possible coordinate blocks when performing Bayesian
optimization. For any coordinate subset A, we define the
following loss function at time t, for coordinate i,

`t,i(A) =


− log(α̃) if i ∈ A and yt > Mt−1

log(β̃) if i ∈ A and yt ≤ λt
0 if i /∈ A

(3)

with α̃, β̃ > 1, where both yt and Mt−1 are fully de-
termined by the previously selected coordinate subset
C1, C2, · · · , Ct−1, Ct. All the coordinates participating in
the selected block incur the same loss that effectively re-
wards these coordinates for improving the objective and
penalizes these for failing to improve the objective. All
other coordinates that are not selected receive a zero loss.

Note that α̃ and β̃ express the extent of reward and penalty,
e.g. for α̃ = β̃ = e we have losses of `t,i ∈ {−1, 1, 0}.

Yet, α̃ is chosen to be larger than β̃, since the frequency of
improving the objective is expected to be smaller.

The loss received by the forecaster is to reflect the same
motivation. This is done by averaging the losses of the
individual coordinates in the selected block, so that the
size of the block does not matter explicitly, i.e. a bigger
block should not incur more loss just due to its size but
only due to its performance. Such that for each coordinate
block It ⊂ I = {1, · · · , D} selected at time step t, the
loss incurred by the forecaster is Lt,It = 1

|It|
∑
i∈It `t,i.

This is also the common loss incurred by all the coordinates
participating in that block.

In each step we have the following multiplicative update
rule of the weights associated with each coordinate

wt,i = wt−1,i · e−η`t,i(Ct;yt,Mt−1) (4)

= wt−1,i ·


α̃η if i ∈ Ct and yt > Mt−1

1/β̃η if i ∈ Ct and yt ≤Mt−1

1 if i /∈ Ct,
(5)

which, by setting α = α̃η and β = β̃η, yields the update
rule in Eq. (2).

The probability π̃t,It of selecting a certain coordinate block
It is induced by πt as specified next. Thus the expected
cumulative loss of the forecaster is:

LT =

T∑
t=1

∑
c∈C

∑
It∈Sc

π̃t,It ·
1

|It|
∑
i∈It

`t,i

Assume that the best coordinate block is I∗, then the corre-
sponding cumulative loss is:

L∗T =

T∑
t=1

Lt,I∗ =

T∑
t=1

1

|I∗|
∑
i∈I∗

`t,i

We hence aim at bounding the regretRT = LT − L∗T .

2103

Theorem 1 Sample from the combinatorial space of all
possible coordinate blocks It ∈

⋃
c∈C Sc with probabil-

ity π̃ct,It =
∏

i∈It
w̃t,It/

∑
c∈C

∑
Î∈Sc

∏
j∈Î w̃t,Î. Then the

update rule in Eq. (2) with α = α̃η, β = β̃η and η =
log(α̃β̃)−1

√
T−1|C|D log(D) yields

RT ≤ O
(

log(α̃β̃) ·
√
T |C|D log(D)

)
, (6)

where w̃t,It =
∏
i∈It w

1/|It|
t,i is the geometric mean of the

weights for block It.

The upper bound in Eq. (6) is tight, as the lower bound can
be shown to be of Ω(

√
T log(N)) Haussler et al. [1995]

where the number of experts is N =
∑
c∈C Sc ≤ D|C|D in

our combinatorial setup, as typically |C| � D.

In practice, the direct sampling policy introduced in Theo-
rem 1 involves high computational costs due to the exponen-
tial growth of combinations in D. Thus CobBO suggests an
alternative computationally efficient sampling policy with a
linear growth in D.

Theorem 2 Sample a block size c ∈ C with probability
pc and c coordinates without replacement according to πt.
Assume C ⊃ {1}, then the update rule in Eq. (2), with

α = α̃η , β = β̃η and η =
√

log(D)

T (log(α̃β̃)2−log(p1))
≥ 1 yields

RT ≤ O
(√

(log(α̃β̃)2 − log(p1)) ·
√
T log(D))

)
,

(7)
where pc > 0 for all c ∈ C and

∑
c∈C pc = 1.

The proof and detailed sampling policy are in appendix 4.
The regret upper bound in Eq. 7 is tight, as the lower bound
for an easier setup can be shown to be of Ω(

√
T log(D))

Haussler et al. [1995]. The implication on η is valid only
for settings of a high dimension and low query budget. In
particular, CobBO is designed for this kind of problems.
Similar analysis and results follow when incorporating con-
sistent queries from section 3.2 and sampling a new co-
ordinate block once every several steps. This is done by
effectively performing less steps of aggregated temporal
losses, as shown in appendix 4.3.

3.2 STAGE 2: BACKOFF STOPPING RULE FOR
CONSISTENT QUERIES

Note that only a fraction of the points in X̂t ∩ Xt directly
observe the true function values. The function values on the
rest ones in X̂t\Xt are estimated. For the trade-off between
the inaccurate estimations and the exact observations in Ωt,
we design a stopping rule that determines the number of
consistent queries in Ωt. The more queries conducted in a

given subspace, the more accurate the model therein, albeit
at the expense of a smaller budget for exploring others.

For each iteration t, denote the relative improvement at
iteration t by ∆t = (yt −Mt−1)/|Mt−1|. When looking
backward in time from iteration t, we denote by Pt the
number of consecutive improvements (∆s > 0, s ≤ t) and
by Nt the total number of consecutive queries in the same
subspace Ωt. We set

Ct+1 =


Sample a new block

Nt ≥ τ and ∆t ≤ 0.1

and Pt ≤ ξ

Ct
Nt < τ or ∆t > 0.1

or Pt > ξ

(8)

where the values of the hyperparameters ξ and τ depend
on the query budget T and the problem dimension D, as
specified in Appendix 5. This heuristic stopping rule is
robust to all the problems presented in this work and to
many other that we have tested.

4 NUMERICAL EXPERIMENTS

This section presents detailed ablation studies of the key
components and comparisons with other algorithms. The
specifications of the testbed are as follows: Intel(R) Xeon(R)
CPU E5-2682 v4 2.50GHz, Memory 32GB, GPU NVIDIA
Tesla P100 PCIe 16GB.

4.1 ABLATION STUDY AND EMPIRICAL
ANALYSIS

Ablation studies are designed to study the contributions
of the key components in Algorithm 2 by experimenting
with the Rastrigin function on [−5, 10]50 with 20 initial
points. Confidence intervals (95%) over 10 independent
experiments for each configuration are presented in Fig. 4.

Coordinate blocks of a varying size: CobBO selects a
block of coordinates Ct of a varying size, as described in
Section 3.1. While CobBO is robust to the upper bound of
the block size |Ct|, as shown in Appendix 6, Fig. 4 (left)
shows that a varying size is better than a fixed one. Fur-
thermore, although the average block size of CobBO is 15
in this setting, it enjoys both the fast exploration of larger
block sizes (e.g. 22) and efficient exploitation of smaller
block sizes (e.g. 6).

RBF interpolation in the first stage: RBF calculation is
time efficient, which is beneficial in high dimensions. Fig. 1
(left) shows the computation time of plain Bayesian opti-
mization compared to CobBO’s. While the former applies
the Matérn kernel in the high dimensional space directly,
the later applies RBF interpolation in the high dimensional

2104

0 2000 4000 6000 8000 10000
Number of evaluations

0

100

200

300

400

500

600

Va
lu

e

100D Levy Function

0 2000 4000 6000 8000 10000
Number of evaluations

0
500

1000
1500
2000
2500
3000
3500

Va
lu

e

100D Rastrigin Function

CobBO TuRBO TPE CMAES ATPE Diff-Evo

Figure 5: Performance (lower is better) over high dimensional synthetic problems: Levy (left) and Rastrigin (right)

Figure 6: Performance over medium-size dimensional problems: 36D (left) and 56D (middle) additive functions (lower is
better) and the 60D rover trajectory planning (right - higher is better)

space and the Matérn kernel in the low dimensional sub-
space. This two-stage kernel method leads to a significant
speed-up. Other efficient alternatives are, e.g., the inverse
distance weighting Shepard [1968] and the simple approach
of assigning the value of the observed nearest neighbour.
Fig. 4 (middle) shows that RBF is more favorable.

Backoff stopping rule: CobBO applies a stopping rule
to query a variable number of points in subspace Ωt (Sec-
tion 3.2). To validate its effectiveness, we compare it with
schemes that use a fixed budget of queries for Ωt. Fig. 4
(right) shows that the stopping rule yields superior results.
Specifically, it enjoys both fast exploration of small query
budget in each subspace (e.g. 1,2) and efficient exploitation
of large ones (e.g. 16). Note that for different problems the
best fixed number of consistent queries vary but the backoff
stopping rule can adaptively achieve a good performance.

Preference probability over coordinates: For demonstrat-
ing the effectiveness of coordinate selection (Section 3.1),
we artificially let the function value only depend on the
first 25 coordinates of its input and ignore the rest. It forms
two separate sets of active and inactive coordinates, respec-
tively. We expect CobBO to refrain from selecting inactive
coordinates. Fig. 3 shows the overall preference probability
πt for picking active (

∑25
i=1 πt,i) and inactive coordinates

(
∑50
i=26 πt,i) at each iteration t. We see that the preference

distribution concentrates on the active coordinates.

4.2 COMPARISONS WITH OTHER METHODS

A default configuration for CobBO is used for all of the
experiments. CobBO performs on par or outperforms a col-
lection of state-of-the-art methods. Most of the experiments
are conducted using the same settings as in TurBO Eriks-
son et al. [2019], where it is compared with a compre-
hensive list of baselines, including BFGS, BOCK Oh
et al. [2018], BOHAMIANN, CMA-ES Hansen and Oster-
meier [2001], BOBYQA, EBO Wang et al. [2018], GP-TS,
HeSBO Munteanu et al. [2019], Nelder-Mead and random
search. To avoid repetitions, we only show TuRBO and
CMA-ES that achieve the best performance among this list,
and additionally compare with BADS Acerbi and Ma [2017],
Tree Parzen Estimator (TPE) Bergstra et al. [2011] and
Adaptive TPE (ATPE) ElectricBrain [2018]. As mentioned
in Section 2, the embedding algorithms (e.g., REMBO Wang
et al. [2016] and ALEBO Letham et al. [2020]) and CobBO
are based on different assumptions, which are compared
in Appendix 1. Appendix 2 presents the comparison with
LineBO Kirschner et al. [2019].

4.2.1 High dimensional tests

Since the duration of each experiment in this section is long,
confidence intervals (95%) over repeated 10 independent
experiments for each problem are shown.

2105

Figure 7: Performance (higher is better) over the lunar landing (left) and robot pushing (right) problems

Figure 8: Performance on 10D (top) and 30D (bottom) synthetic functions: Ackley (left), Levy (middle) and Rastrigin (right)

The 100 dimensional synthetic black-box functions (mini-
mization): We minimize the Levy and Rastrigin functions
on [−5, 10]100 with 300 initial points. These two problems
are challenging since they have no redundant dimensions.
TuRBO is configured with 1 trust regions and a batch size of
100. Fig. 5 (left) shows that CobBO can greatly reduce the
trial complexity. For Levy and Rastrigin, CobBO surpasses
the final solutions of all the other methods within 2, 000 and
5, 000 trials for a total budget of 10, 000 trials, respectively.
REMBO is especially compared in Appendix 1.

In order to highlight the difference of the running time, we
test Ackley 200D with 10, 000 trials. For a fair comparison,
we change the configure so that both TurBO and CobBO
have the same batch size of 1. CobBO runs for 12.8 CPU
hours and TuRBO-1 runs for more than 80 CPU hours or
9.6 GPU hours. Other methods either take too long to make
progress or find far worse solutions.

Additive latent structure (minimization): As mentioned
in Section 2, additive latent structures have been ex-
plored for tackling challenges in high dimensions. We
construct two additive functions. The first one has 36 di-

mensions, defined as f36(x) = Ackley(x1) + Levy(x2) +
Rastrigin(x3) + Hartmann(x4), where the first three
terms express the exact functions and domains described
in Section 4.2.2, with the Hartmann function defiend
over [0, 1]6. The second has 56 dimensions, defined as
f56(x) = Ackley(x1) + Levy(x2) + Rastrigin(x3) +
Hartmann(x4) + Rosenbrock(x5) + Schwefel(x6), where
the first four terms are the same as those of f36, with the
Rosenbrock and Schwefel functions defined over [−5, 10]10

and [−500, 500]10, respectively.

We compare CobBO with TPE, ATPE, BADS, CMA-ES and
TuRBO, each with 100 initial points. Specifically, TuRBO
is configured with 15 trust regions and a batch size 50 for
f36 and 100 for f56. ATPE is excluded for f56 as it takes
more than 24 hours per run to finish. The results are shown
in Fig. 6, where CobBO quickly finds the best solutions for
both f36 and f56.

As shown in Fig. 6, CobBO finds the best solutions for
both f36 and f56. BADS performs closely to CobBO. ATPE
outperforms TPE, TuRBO and CMA-ES on f36. TuRBO
surpasses TPE and CMA-ES on f36 eventually, while TPE

2106

and CMA-ES converge faster than TuRBO on f56.

Rover trajectory planning (maximization): This problem
(60 dimensions) is introduced in Wang et al. [2018]. The
objective is to find a collision-avoiding trajectory of a se-
quence consisting of 30 positions in a 2-D plane. We com-
pare CobBO with TuRBO, TPE and CMA-ES with a budget
of 20, 000 evaluations and 200 initial points. TuRBO is con-
figured with 15 trust regions and a batch size of 100, as
in Eriksson et al. [2019]. ATPE, BADS and REMBO are
excluded for this problem, as they all last for more than 24
hours per run. The result is shown in Fig. 6. CobBO reaches
the best solution with fewer evaluations than TuRBO, while
TPE and CMA-ES reach inferior solutions.

4.2.2 Low dimensional tests

To evaluate the performance of CobBO on low dimensional
problems, we use two challenging problems of lunar land-
ing Eriksson et al. [2019] and robot pushing Wang et al.
[2018], as well as classic synthetic black-box functions Sur-
janovic and Bingham [2013], by following the setup in Eriks-
son et al. [2019] for most of the experiments. Confidence
intervals (95%) over repeated 30 independent experiments
for each problem are shown.

Lunar landing (maximization): This controller learning prob-
lem (12 dimensions) is provided by the OpenAI gym and
evaluated in Eriksson et al. [2019]. Each algorithm has 50
initial points and a budget of 1, 500 trials. TuRBO is config-
ured with 5 trust regions and a batch size of 50 as in Eriksson
et al. [2019]. Fig. 7 shows that, among the 30 independent
tests, CobBO quickly exceeds 300 along some good sample
paths, outperforming other algorithms.

Robot pushing (maximization): This control problem (14
dimensions) is introduced in Wang et al. [2018] and exten-
sively tested in Eriksson et al. [2019]. We follow the setting
in Eriksson et al. [2019], where TuRBO is configured with
a batch size of 50 and 15 trust regions with 30 initial points
each. We exclude REMBO that takes too long per run (more
than 24 hours). Each experiment has a budget of 10, 000
evaluations. On average CobBO exceeds 10.0 within 5,500
trials, while TuRBO requires about 7,000, as shown in Fig.
7. TPE and ATPE converge to around 9.0, outperforming
BADS and CEM-ES with large margins. The latter two
exhibit large variations and get stuck at local optima.

Classic synthetic black-box functions (minimization): Three
popular synthetic functions (10 and 30 dimensions) are cho-
sen, including Ackley over [−5, 10]10 and [−5, 10]30, Levy
over both [−5, 10]10 and [−5, 10]30, and Rastrigin over both
[−3, 4]10 and [−3, 4]30. TuRBO is configured identically the
same as in Eriksson et al. [2019], with a batch size of 10 and
5 concurrent trust regions where each has 10 initial points.
The other algorithms use 20 initial points. The results are
shown in Fig. 8. CobBO shows competitive or better perfor-

mance for all of these problems. It finds the global optima
on Ackley and Levy, and clearly outperforms the other algo-
rithms for the difficult Rastrigin function. Notably, BADS is
more suitable for low dimensions, as commented in Acerbi
and Ma [2017], which performs close to CobBO except
on Rastrigin. TuRBO performs better than TPE and worse
than BADS. ATPE outperforms TPE. CMA-ES eventually
catches up with TPE, ATPE and REMBO on Ackley. For 10
dimensions, REMBO appears unstable with large variations
and is trapped at local optima. For 30 dimensions, REMBO
is excluded as it takes too long to finish; see Appendix 1.

5 LIMITATIONS AND FUTURE
RESEARCH DIRECTIONS

While the crafted backoff stopping rule, introduced in Sec-
tion 3.2, works well in practice and is robust to the many
problems experimented with, it is build on pure heuristics.
Deriving a more theoretically motivated role for switching
subspaces might be a beneficial research direction. In addi-
tion, while the regret is analysed for the subspace selection
scheme alone in Section 3.1.1, a unified regret analysis, that
also includes the Bayesian optimization performed at each
subspace, might provide a more complete picture of the
method. Finally, considering that sparse Gaussian processes
have been successfully used for Bayesian Optimization, e.g.
in McIntire et al. [2016], in principle those can be used
when performing Bayesian optimization in every subspace
selected by CobBO, while filtering the projected virtual
points properly. While this is out of the scope of this work,
this is an interesting direction for future research.

6 CONCLUSION

CobBO is a variant of coordinate ascent tailored for
Bayesian optimization with a stopping rule to switch co-
ordinate subspaces. The sampling policy of subspaces is
proven to have tight regret bounds with respect to the best
subspace in hindsight. Combining the projection on random
subspaces with a two-stage kernels for function value inter-
polation and GP regression, we provide a practical Bayesian
optimization method of affordable computational costs in
high dimensions. Empirically, CobBO consistently finds
comparable or better solutions with reduced trial complexity
in comparison with the state-of-the-art methods across a
variety of benchmarks.

Acknowledgements

The authors would like to thank Mengchang Wang for con-
ducting the experiments, and Rong Jin for helpful discus-
sions. Niv Nayman would especially like to thank Lihi
Zelnik-Manor for her tremendous support and guidance.

2107

References

Luigi Acerbi and Wei Ji Ma. Practical bayesian optimiza-
tion for model fitting with bayesian adaptive direct search.
In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, page
1834–1844, Red Hook, NY, USA, 2017. Curran Asso-
ciates Inc. ISBN 9781510860964.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multi-
plicative weights update method: a meta-algorithm and
applications. Theory of Computing, 8(6):121–164, 2012.

Peter Auer. Using confidence bounds for exploitation-
exploration trade-offs. J. Mach. Learn. Res., 3(null):
397–422, March 2003. ISSN 1532-4435.

James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. Algorithms for hyper-parameter optimiza-
tion. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 24, pages 2546–
2554. Curran Associates, Inc., 2011.

Mickaël Binois, David Ginsbourger, and Olivier Roustant.
On the choice of the low-dimensional domain for global
optimization via random embeddings. Journal of Global
Optimization, 76(1):69–90, January 2020.

Martin D Buhmann. Radial basis functions: theory and
implementations, volume 12. Cambridge university press,
2003.

Adam D. Bull. Convergence rates of efficient global opti-
mization algorithms. Journal of Machine Learning Re-
search, 12(88):2879–2904, 2011.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learn-
ing, and games. Cambridge university press, 2006.

Josip Djolonga, Andreas Krause, and Volkan Cevher. High-
dimensional gaussian process bandits. In C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Wein-
berger, editors, Advances in Neural Information Process-
ing Systems 26, pages 1025–1033. Curran Associates,
Inc., 2013.

ElectricBrain. Blog: Learning to optimize, 2018.
URL https://www.electricbrain.io/post/
learning-to-optimize.

David Eriksson and Martin Jankowiak. High-dimensional
bayesian optimization with sparse axis-aligned subspaces.
In the 37th Conference on Uncertainty in Artificial Intel-
ligence (UAI), 2021.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D
Turner, and Matthias Poloczek. Scalable global optimiza-
tion via local bayesian optimization. In Advances in Neu-
ral Information Processing Systems 32, pages 5496–5507.
Curran Associates, Inc., 2019.

Peter I. Frazier. A tutorial on bayesian optimization, 2018.

Peter I. Frazier, Warren B. Powell, and Savas Dayanik. A
knowledge-gradient policy for sequential information
collection. SIAM J. Control Optim., 47(5):2410–2439,
September 2008. ISSN 0363-0129.

Elad Gilboa, Yunus Saatçi, and John P. Cunningham. Scal-
ing multidimensional Gaussian processes using projected
additive approximations. In Proceedings of the 30th Inter-
national Conference on International Conference on Ma-
chine Learning - Volume 28, ICML’13, page I–454–I–461.
JMLR.org, 2013.

Nail A. Gumerov and Ramani Duraiswami. Fast radial basis
function interpolation via preconditioned krylov iteration.
SIAM Journal on Scientific Computing, 29(5):1876–1899,
2007.

Nikolaus Hansen and Andreas Ostermeier. Completely de-
randomized self-adaptation in evolution strategies. Evo-
lutionary Computation, 9(2):159–195, June 2001. ISSN
1063-6560.

David Haussler, Jyrki Kivinen, and Manfred K Warmuth.
Tight worst-case loss bounds for predicting with expert
advice. In European Conference on Computational Learn-
ing Theory, pages 69–83. Springer, 1995.

Philipp Hennig and Christian J. Schuler. Entropy search for
information-efficient global optimization. J. Mach. Learn.
Res., 13(1):1809–1837, June 2012. ISSN 1532-4435.

José Miguel Henrández-Lobato, Matthew W. Hoffman, and
Zoubin Ghahramani. Predictive entropy search for ef-
ficient global optimization of black-box functions. In
Proceedings of the 27th International Conference on Neu-
ral Information Processing Systems - Volume 1, NIPS’14,
page 918–926, Cambridge, MA, USA, 2014. MIT Press.

Donald R. Jones, Matthias Schonlau, and William J. Welch.
Efficient global optimization of expensive black-box func-
tions. Journal of Global optimization, 13(4):455–492,
1998.

Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póc-
zos. High dimensional bayesian optimization and bandits
via additive models. In Proceedings of the 32nd Interna-
tional Conference on International Conference on Ma-
chine Learning - Volume 37, ICML’15, page 295–304.
JMLR.org, 2015.

Johannes Kirschner, Mojmir Mutny, Nicole Hiller, Ras-
mus Ischebeck, and Andreas Krause. Adaptive and
safe Bayesian optimization in high dimensions via one-
dimensional subspaces. In Kamalika Chaudhuri and Rus-
lan Salakhutdinov, editors, Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages

2108

https://www.electricbrain.io/post/learning-to-optimize
https://www.electricbrain.io/post/learning-to-optimize

3429–3438, Long Beach, California, USA, 09–15 Jun
2019. PMLR.

H. J. Kushner. A new method of locating the maximum
point of an arbitrary multipeak curve in the presence of
noise. Journal of Basic Engineering, 86(1):97–106, mar
1964.

Ben Letham, Roberto Calandra, Akshara Rai, and Eytan
Bakshy. Re-examining linear embeddings for high-
dimensional bayesian optimization. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, edi-
tors, Advances in Neural Information Processing Systems,
volume 33, pages 1546–1558. Curran Associates, Inc.,
2020.

Cheng Li, Sunil Gupta, Santu Rana, Vu Nguyen, Svetha
Venkatesh, and Alistair Shilton. High dimensional
bayesian optimization using dropout. In Proceedings
of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI-17, pages 2096–2102, 2017.

Mitchell McIntire, Daniel Ratner, and Stefano Ermon.
Sparse gaussian processes for bayesian optimization. In
UAI, 2016.

Mark McLeod, Michael A. Osborne, and Stephen J. Roberts.
Optimization, fast and slow: Optimally switching be-
tween local and bayesian optimization. In ICML, 2018.

J. Močkus. On bayesian methods for seeking the extremum.
In G. I. Marchuk, editor, Optimization Techniques IFIP
Technical Conference Novosibirsk, July 1–7, 1974, pages
400–404, Berlin, Heidelberg, 1975. Springer Berlin Hei-
delberg. ISBN 978-3-540-37497-8.

Riccardo Moriconi, K. S. Sesh Kumar, and Marc Peter
Deisenroth. High-dimensional bayesian optimization
with projections using quantile gaussian processes. Opti-
mization Letters, 14:51–64, 2020.

Alexander Munteanu, Amin Nayebi, and Matthias Poloczek.
A framework for Bayesian optimization in embedded
subspaces. In Kamalika Chaudhuri and Ruslan Salakhut-
dinov, editors, Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 4752–4761, Long
Beach, California, USA, 09–15 Jun 2019. PMLR.

Mojmir Mutny and Andreas Krause. Efficient high di-
mensional bayesian optimization with additivity and
quadrature fourier features. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing
Systems 31, pages 9005–9016. Curran Associates, Inc.,
2018.

Julie Nutini, Mark Schmidt, Issam H. Laradji, Michael
Friedlander, and Hoyt Koepke. Coordinate descent con-
verges faster with the gauss-southwell rule than random

selection. ICML’15: Proceedings of the 32nd Interna-
tional Conference on International Conference on Ma-
chine Learning, 37, July 2015.

ChangYong Oh, Efstratios Gavves, and Max Welling.
BOCK : Bayesian optimization with cylindrical kernels.
In Jennifer Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning Re-
search, pages 3868–3877, Stockholm, Sweden, 10–15 Jul
2018. PMLR.

Rafael Oliveira, Fernando Rocha, Lionel Ott, Vitor Guizilini,
Fabio Ramos, and Valdir Jr. Learning to race through
coordinate descent bayesian optimisation. In IEEE Inter-
national Conference on Robotics and Automation (ICRA),
February 2018.

Carl Edward Rasmussen and Christopher K. I. Williams.
Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press,
2005. ISBN 026218253X.

Warren Scott, Peter Frazier, and Warren Powell. The corre-
lated knowledge gradient for simulation optimization of
continuous parameters using gaussian process regression.
SIAM Journal on Optimization, 21(3):996–1026, 2011.

Donald Shepard. A two-dimensional interpolation function
for irregularly-spaced data. In Proceedings of the 1968
23rd ACM National Conference, ACM ’68, page 517–524,
New York, NY, USA, 1968. Association for Computing
Machinery. ISBN 9781450374866.

N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger.
Information-theoretic regret bounds for gaussian process
optimization in the bandit setting. IEEE Transactions on
Information Theory, 58(5):3250–3265, 2012.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and
Matthias Seeger. Gaussian process optimization in the
bandit setting: No regret and experimental design. In
Proceedings of the 27th International Conference on In-
ternational Conference on Machine Learning, ICML’10,
page 1015–1022, Madison, WI, USA, 2010.

Sonja Surjanovic and Derek Bingham. Optimization
test problems, 2013. URL http://www.sfu.ca/
~ssurjano/optimization.html.

Hemant Tyagi and Volkan Cevher. Learning non-parametric
basis independent models from point queries via low-rank
methods. Applied and Computational Harmonic Analysis,
37(3):389 – 412, 2014. ISSN 1063-5203.

Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learn-
ing search space partition for black-box optimization us-
ing monte carlo tree search. ArXiv, abs/2007.00708, 2020.

2109

http://www.sfu.ca/~ssurjano/optimization.html
http://www.sfu.ca/~ssurjano/optimization.html

Zi Wang and Stefanie Jegelka. Max-value entropy search
for efficient Bayesian optimization. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 3627–
3635, International Convention Centre, Sydney, Australia,
06–11 Aug 2017. PMLR.

Zi Wang, Chengtao Li, Stefanie Jegelka, and Pushmeet
Kohli. Batched high-dimensional bayesian optimization
via structural kernel learning. In Proceedings of the 34th
International Conference on Machine Learning - Volume
70, ICML’17, page 3656–3664. JMLR.org, 2017.

Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie
Jegelka. Batched large-scale bayesian optimization in
high-dimensional spaces. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2018.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson,
and Nando De Freitas. Bayesian optimization in a billion
dimensions via random embeddings. J. Artif. Int. Res.,
55(1):361–387, January 2016. ISSN 1076-9757.

Stephen J. Wright. Coordinate descent algorithms. Mathe-
matical Programming: Series A and B, June 2015.

Jian Wu and Peter I. Frazier. The parallel knowledge gradi-
ent method for batch bayesian optimization. In Proceed-
ings of the 30th International Conference on Neural Infor-
mation Processing Systems, NIPS’16, page 3134–3142,
Red Hook, NY, USA, 2016. Curran Associates Inc. ISBN
9781510838819.

2110

	Introduction
	Related work
	Method
	Stage 1: Block coordinate ascent for subspace selection
	Theoretical motivation for the subspace selection

	Stage 2: Backoff stopping rule for consistent queries

	Numerical Experiments
	Ablation study and empirical analysis
	Comparisons with other methods
	High dimensional tests
	Low dimensional tests

	Limitations and Future Research Directions
	Conclusion

