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A PROOF FOR THE THEORETICAL RESULTS

Proof of Proposition 2.2. We denote that a1, .., arA as the linear bases of the column space of A. We can extend them to the
bases of the column space of M as a1, .., arA , b1, ..., br−rA . In this way, there must exists a matrix Q ∈ Rr×mB such that

B = [a1, .., arA , b1, ..., br−rA ]Q.

Hence, we have
PB = [Pa1, .., ParA , P b1, ..., P br−rA ]Q.

Similarly, there must exists a matrix T ∈ RrA×mA such that

A = [a1, .., arA ]T.

Hence, we obtain that

[A,PB] = [a1, .., arA , Pa1, .., ParA , P b1, ..., P br−rA ]

[
T 0
0 Q

]
.

Now, we have

rank([A,PB]) ≤ rank([a1, .., arA , Pa1, .., ParA , P b1, ..., P br−rA ])

≤ rank([a1, .., arA , Pa1, .., ParA ]) + r − rA

= rank([a1, .., arA , Pa1, .., ParA ]

[
IrA −IrA
0 IrA

]
) + r − rA

≤ rA + r − rA + rank([Pa1 − a1, .., ParA − arA ]). (1)

Now we denote the cycles in πP with length greater than 1 as C1, ..., CC(πP ), and ζ1, ..., ζn−H(πp) as the indexes that are
not in any one of C1, ..., CC(πP ). We construct a matrix Y ∈ R(n+C(πP )−H(πp))×n as:

Y (i, j) = 1 if j = ζi else Y (i, j) = 0, for i = 1, ..., (n−H(πp));

Y (i, j) = 1 ∀j ∈ Ci, and Y (i, j) = 0 ∀j /∈ Ci,

for i = (n−H(πp) + 1), ..., (n+ C(πP )−H(πp)).

It can be verified that

Y (Pai − ai) = 0, i = 1, ..., rA.

We denote the null space of Y as Null(Y ) = {x ∈ Rn|Y x = 0}. From the construction of Y we can see that dim(Null(Y )) =
H(πP )− C(πP ). Hence we have

rank([Pa1 − a1, .., ParA − arA ]) ≤ H(πP )− C(πP ). (2)
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On the other hand, we have

rank([A,PB]) ≤ rank(A) + rank(PB) = rank(A) + rank(B) = rA + rB . (3)

Combining (1), (2) and (3) , we can obtain (3).

Following the proof of Proposition 2.2, it is easy to show the similar result for the case with multiple permutation, which is
summarized as the Corollary A.1

Corollary A.1. For the matrix M = [A,B1, .., Bd] ∈ Rn×m with rank(M) = r, rank(A) = rA, and rank(Bi) = rBi
,

i = 1, ...d, we have ∀P1, ..., Pd ∈ Pn,

rank([A,P1B1, ..., PdBd]) ≤ min{n,m, rA +

d∑
i=1

rBi , r +

d∑
i=1

H(πPi)− C(πPi)}. (4)

Proof of Proposition 2.4. To prove Proposition 2.4, we need an important lemma on measure theory from [Halmos, 2013].

Lemma A.2. Let p(x) be a polynomial on Rn. If there exists a x0 ∈ Rn such that p(x0) ̸= 0, then the Lebesgue measure of
the set {x|p(x) = 0} is 0.

∀P ∈ Pn, we define the polynomial on Rn×r ⊗ Rr×m as

prP (R,E) =
∑

S∈Sr([A,PB])

det(S)2,

where det(·) is the determinant of matrix, and Sr(X) is the set of all r × r sub-matrices in X . We denote that rP =
min{2r, r + H(πP ) − C(πP ). We can see that rank([A,PB]) ≥ rP if and if only prPP (R,E) > 0. Therefore, from
Lemma A.2 and Proposition 2.2 we can conclude that if there exists two matrices R0 ∈ Rn×r and E0 ∈ Rr×m such that
prPP ([R0, E0]) > 0, then rank([A,PB]) = rP holds with probability 1. In this way, we only need to construct such R0 and
E0 for every P ∈ Pn. For simplicity, we denote that k = H(πp)− C(πP ). We will discuss how to construct such R0 and
E0 for the two cases 0 < k ≤ n− r and k ≥ n− r, respectively.

(1) If 0 < k ≤ n− r:

We construct the matrix Y ∈ R(n+C(πP )−H(πp))×n the same way with that in the proof of Proposition 2.2. Firstly, we show
that Null(Y ) =col(P − I).

col(P − I) ⊆Null(Y ): We can verify that Y (P − I) = 0.

Null(Y ) ⊆col(P − I): This is equivalent to prove that Null(P − I) ⊆col(Y ). Now we have Px = x, ∀x ∈Null(P − I). It
can be verified that if Px = x, then we must have x(s) = x(q) if s and q belong to the same cycle Ci, where Ci is one of
the cycles in C1, ..., CC(πP ). By the definition of Y , we can see that x ∈ col(Y ).

Now we know that rank(P − I) =dim(Null(Y )) = k. We denote the eigen vectors of P − I with non-zero eigen values as
ϕ1, ..., ϕk, and the eigen vectors with zero eigen values as ϕk+1, ..., ϕn. Now we have (P − I)ϕi = λiϕi for i = 1, ..., k
and (P − I)ϕi = λiϕi for i = k + 1, ..., n.

We construct the matrices R0 and E0 as

R0 = [ϕ1 + ϕk+1, ϕmin{2,k} + ϕk+2, ..., ϕmin{r,k} + ϕk+r],

E0 = [Ir,0r×(mA−r), Ir,0r×(mB−r)].

Now we have

A = [ϕ1 + ϕk+1, ϕmin{2,k} + ϕk+2, ..., ϕmin{r,k} + ϕk+r,0n×(mA−r)],

B = [ϕ1 + ϕk+1, ϕmin{2,k} + ϕk+2, ..., ϕmin{r,k} + ϕk+r,0n×(mB−r)],

since [A,B] = R0E0. Therefore, we have

rank([A,PB]) = rank([ϕ1 + ϕk+1, ..., ϕmin{r,k} + ϕk+r, λ1ϕ1, ..., λmin{r,k}ϕmin{r,k}])

= rank([ϕk+1, ..., ϕk+r, ϕ1, .., ϕmin{r,k}])

= r +min{k, r} = min{2r, r + k}.



Now rank([A,PB]) = rP by this construction of R0 and E0. Hence prPP ([R0, E0]) > 0.

(2) If k > n− r:

We denote that the length of a cycle C as len(C), and denote the cycle with maximum length among the C1, ..., CC(πP ) as
C∗. Now we have

len(C∗) ≥ H(πP )

C(πP )
≥ n

n− k
>

n

r
≥ 2r.

To simplify the notations, we assume that the cycle C∗ permute the first j numbers, i.e.,

C∗ = (123...(j − 2)(j − 1)j),

where j > 2r. We define the vector u as u = [1, 2, 3, ..., j − 2, j − 1, j, 0, ..., 0]⊤ ∈ Rn, and denote the corresponding
permutation matrix to C∗ as P∗ ∈ Pn. We construct the matrices R0 and E0 as

R0 =
[
u P 2

∗ u . . . P 2r−2
∗ u

]
,

E0 = [Ir,0r×(mA−r), Ir,0r×(mB−r)].

Now we have

A = [u, P 2
∗ u, . . . , P

2r−2
∗ u,0n×(mA−r)],

B = [u, P 2
∗ u, . . . , P

2r−2
∗ u,0n×(mB−r)].

Therefore, we have

rank([A,PB]) = rank([u, P∗u, . . . , P
2r−1
∗ u]) = 2r,

because now [u, P∗u, . . . , P
2r−1
∗ u] is a circulant matrix. Now rank([A,PB]) = rP = 2r by this construction of R0 and

E0. Hence prPP ([R0, E0]) > 0.

Proof of Proposition 2.6.. To prove Proposition 2.6, we need to derive a series results. We first start with a very important
inequality w.r.t nuclear norm.

Proposition A.3. Let P be a permutation matrix, then,

∥A∥∗ + ∥B∥∗ ≥ ∥[A,PB]∥∗ ≥
∥A∥∗ + ∥B∥∗

∥[UAV ⊤
A , PUBV ⊤

B ]∥
≥ ∥A∥∗ + ∥B∥∗√

2
. (5)

Based on (5), the general idea is that under the Assumptions 2.5, we will have ∥M∥∗ ≈ ∥A∥∗+∥B∥∗√
2

and
∥[UAV

⊤
A , PUBV

⊤
B ]∥ → 1 as H(πP ) increases.

Firstly, we show that under the Assumptions 2.5, the nuclear norm of the original matrix M will reach the lower bound in
(5) approximately, which is summarized as Lemma A.4.

Lemma A.4. Under the Assumptions 2.5, we have

∥M∥∗ ≤ (∥A∥∗ + ∥B∥∗)/
√
2 + (

√
2 + 1)ϵ1r + ϵ2 max{∥A∥∗, ∥B∥∗}. (6)

Then, we show that under the Assumptions 2.5, ∥[UAV
⊤
A , PUBV

⊤
B ]∥ → 1 as H(πP ) increases, which is summarized as

Lemma A.5.

Lemma A.5. Under the Assumptions 2.5, we have

∥[UAV
⊤
A , PUBV

⊤
B ]∥ ≤

√
2−H(πP )ϵ23/2 +

√
Tϵ2. (7)

Finally, we need a classical result on the tail bound for the operator norm of Gaussian matrix, whose proof can be found in
[Wainwright, 2019].



Lemma A.6. Consider the random matrix W ∈ Rn×m whose elements follow N (0, σ2) i.i.d. For any δ > 0, we have

∥W∥ ≤
√
L(2 + δ)σ (8)

holds with probability greater than 1− 2 exp{−Lδ2

2 }, where L = max{n,m}.

Based on Lemma A.6, we have

∥W∥∗ ≤ L∥W∥ ≤
√
DLσ

holds with probability greater than 1− 2 exp{− D
8Lσ}.

From Proposition A.3, Lemma A.4 and Lemma A.5 we can know that, for any P ∈ Pn with H(πP ) satisfies that

D√
2− H(πp)ϵ3

2 +
√
Tϵ2

− ∥W∥∗ >
D√
2
+ (
√
2 + 1)ϵ1r + ϵ2N + ∥W∥∗,

we must have

∥Ao, PBo∥∗ ≥ ∥A,PB∥∗ − ∥W∥∗

≥ D√
2− H(πp)ϵ23

2 +
√
Tϵ2

− ∥W∥∗

>
D√
2
+ (
√
2 + 1)ϵ1r + ϵ2N + ∥W∥∗

≥ ∥A,B∥∗ + ∥W∥∗ ≥ ∥Ao, Bo∥∗.

Therefore, with probability greater than 1− 2 exp{− D
8Lσ}, if H(πP ) satisfies that

D√
2− H(πp)ϵ23

2 +
√
Tϵ2

>
D√
2
+ (
√
2 + 1)ϵ1r + ϵ2N + 2

√
DLσ, (@)

we have ∥Ao, PBo∥ > ∥Ao, Bo∥∗. Now we simplify (@) as

D√
2− H(πp)ϵ23

2 +
√
Tϵ2

>
D√
2
+ (
√
2 + 1)ϵ1r + ϵ2N + 2

√
DLσ

⇔
√
2− H(πp)ϵ23

2
<

√
2D

D + (
√
2 + 2)ϵ1r +

√
2ϵ2N + 2

√
2DLσ

−
√
Tϵ2.

It can be verified that √
2D

D + (
√
2 + 2)ϵ1r +

√
2ϵ2N + 2

√
2DLσ

−
√
Tϵ2 > 0

from the condition on ϵ1, ϵ2 and σ.

Therefore, we have √
2− H(πp)ϵ23

2
<

√
2D

D + (
√
2 + 2)ϵ1r +

√
2ϵ2N + 2

√
2DLσ

−
√
Tϵ2

⇔ H(πP ) >
2

ϵ23

(
2− (

√
2D

D + (
√
2 + 2)ϵ1r +

√
2ϵ2N + 2

√
2DLσ

−
√
Tϵ2)

2

)
.

Since P ∗ is the optimal solution to (5), we must have

∥[Ao, P
∗P̃Bo]∥∗ ≤ ∥[Ao, Bo]∥∗.



Besides, P ∗P̃ is also a permutation matrix, we denote its corresponding permutation as π̂. Now we have

dH(π∗, π̃) = H(π̂) ≤ 2

ϵ23

(
2− (

√
2D

D + (
√
2 + 2)ϵ1r +

√
2ϵ2N + 2

√
2DLσ

−
√
Tϵ2)

2

)
.

The proof to the auxiliary results used in the proof of Proposition 2.6 are provided below.

Proof of Proposition A.3. Since ∥ · ∥∗ is a norm, we have

∥[A,PB]∥∗ = ∥[A,0] + [0, PB]∥∗ ≤ ∥A∥∗ + ∥PB∥∗ = ∥A∥∗ + ∥B∥∗.

Then since ∥ · ∥∗ is the dual norm of ∥ · ∥, we have

∥[A,PB]∥∗ = sup
∥Q∥≤1

⟨[A,PB], Q⟩

≥ ⟨[A,PB],
[UAV

⊤
A , PUBV

⊤
B ]

∥[UAV ⊤
A , PUBV ⊤

B ]∥
⟩

=
∥A∥∗ + ∥B∥∗

∥[UAV ⊤
A , PUBV ⊤

B ]∥
.

Finally, we have

∥[UAV
⊤
A , PUBV

⊤
B ]∥ = sup

x∈Rm

∥x∥≤1

∥[UAV
⊤
A , PUBV

⊤
B ]x∥

= sup
x1∈RmA ,x2∈RmB

∥[x⊤
1 ,x⊤

2 ]∥≤1

∥[UAV
⊤
A x1, PUBV

⊤
B x2]∥

≤ sup
x1∈RmA ,x2∈RmB

∥[x⊤
1 ,x⊤

2 ]∥≤1

∥UAV
⊤
A x1∥+ ∥PUBV

⊤
B x2∥

≤ sup
x1∈RmA ,x2∈RmB

∥[x⊤
1 ,x⊤

2 ]∥≤1

∥x1∥+ ∥x2∥ =
√
2.

Proof of Lemma A.4. If rA ≥ rB , we have

∥M∥∗ = ∥[UAΣAV
⊤
A , UBΣBV

⊤
B ]∥∗

= ∥[UAΣAV
⊤
A , [u1

A, ..., u
T
A,0, ...,0]ΣBV

⊤
B ]+

[0, [u1
A − u1

B , ..., u
T
A − uT

B , u
T+1
B , ..., ur

B ]ΣBV
⊤
B ]∥∗

≤ ∥[UAΣAV
⊤
A , [u1

A, ..., u
T
A,0, ...,0]ΣBV

⊤
B ]∥∗+

∥[u1
A − u1

B , ..., u
T
A − uT

B , u
T+1
B , ..., ur

B ]ΣBV
⊤
B ∥∗

≤ ∥[UAΣAV
⊤
A , [u1

A, ..., u
T
A,0, ...,0]ΣBV

⊤
B ]∥∗ + ϵ2∥B∥∗

= ∥[UAΣAV
⊤
A , UAΣBV

⊤
B ]∥∗ + ϵ2∥B∥∗. (*)

We denote that trace(·) as the trace of matrix. One property of nuclear norm is

∥A∥∗ = trace(
√
AA⊤).



Then we have

∥[UAΣAV
⊤
A , UAΣBV

⊤
B ]∥∗ = trace(

√
UA(Σ2

A +Σ2
B)U

⊤
A )

=

r∑
i=1

√
(σi

A)
2 + (σi

B)
2

≤
r∑

i=1

σi
A + σi

B√
2

+ (
√

(σi
A)

2 + (σi
B)

2 − σi
A + σi

B√
2

)

≤
r∑

i=1

σi
A + σi

B√
2

+ (
√

(σi
A)

2 + (σi
A + ϵ1)2 −

2σi
A − ϵ1√
2

)

≤
√
2ϵ1r

2
+
∥A∥∗ + ∥B∥∗√

2
+

r∑
i=1

2σi
Aϵ1 + ϵ21√

2(σi
A)

2 + 2σi
Aϵ1 + ϵ21 +

√
2(σi

A)
2

≤
√
2ϵ1r

2
+
∥A∥∗ + ∥B∥∗√

2
+

r∑
i=1

√
2ϵ1
2

+ ϵ1

=
∥A∥∗ + ∥B∥∗√

2
+ (
√
2 + 1)ϵ1r. (**)

Combining (*) and (**), we have

∥[A,B]∥∗ ≤
∥A∥∗ + ∥B∥∗√

2
+ (
√
2 + 1)ϵ1r + ϵ2∥B∥∗.

Similarly, if rB ≥ rA, we have

∥[A,B]∥∗ ≤
∥A∥∗ + ∥B∥∗√

2
+ (
√
2 + 1)ϵ1r + ϵ2∥A∥∗.

Combining them together, we have

∥[A,B]∥∗ ≤
∥A∥∗ + ∥B∥∗√

2
+ (
√
2 + 1)ϵ1r + ϵ2 max{∥A∥∗, ∥B∥∗}.

Proof pf Lemma A.5. Firstly, if rA ≥ rB we have

∥[UAV
⊤
A , PUBV

⊤
B ]∥ = ∥[UAV

⊤
A , P [u1

A, ..., u
T
A,0, ...,0]V

⊤
B ]∥+

∥[0, P [u1
B − u1

A, ..., u
T
B − uT

A,0, ...,0]V
⊤
B ]∥

≤ ∥[UAV
⊤
A , P [u1

A, ..., u
T
A,0, ...,0]V

⊤
B ]∥+

√
Tϵ2. (***)

To simplify the notations, we denote that k = H(πP ) and assume that πP permutes the indexes (1, ..., k) into (ζ1, ..., ζk).
Now we have

⟨ui
A, Pui

A⟩ =
k∑

i=1

ui
A(i)u

i
A(ζi) +

n∑
i=k+1

(ui
A(i))

2,



and

|
k∑

i=1

ui
A(i)u

i
A(ζi)| ≤

k∑
i=1

|ui
A(i)u

i
A(ζi)|

=

k∑
i=1

(ui
A(i))

2 + (ui
A(ζi))

2

2
− (

(ui
A(i))

2 + (ui
A(ζi))

2

2
− |ui

A(i)u
i
A(ζi)|)

≤
k∑

i=1

(ui
A(i))

2 − (
(ui

A(i))
2 + (|ui

A(i)| − ϵ3)
2

2
− |ui

A(i)|(|ui
A(i)|+ ϵ3))

=

k∑
i=1

(ui
A(i))

2 − (
ϵ23
2

+ 2|ui
A(i)|ϵ3) ≤

k∑
i=1

(ui
A(i))

2 − ϵ23
2
.

Hence we must have

|⟨ui
A, Pui

A⟩| ≤ 1− kϵ23
2

.

Therefore, we have

δ(UA, P )
def.
= max

x,y∈RT ,
∥x∥=1,∥y∥=1

⟨[u1
A, ..., u

T
A]x, [Pu1

A, ..., PuT
A]y⟩

= max
x,y∈RT ,

∥x∥=1,∥y∥=1

T∑
i=1

x(i)y(i)⟨ui
A, Pui

A⟩

≤ max
x,y∈RT ,

∥x∥=1,∥y∥=1

(1− kϵ23
2

)

T∑
i=1

x(i)y(i)

= 1− kϵ23
2

.

Now we have,

∥[UAV
⊤
A , P [u1

A, ..., u
T
A,0, ...,0]V

⊤
B ]∥ = sup

x∈Rn,
∥x∥=1

∥[UAV
⊤
A , P [u1

A, ..., u
T
A,0, ...,0]V

⊤
B ]x∥

≤ sup
x1∈RmA ,x2∈RmB

∥[x⊤
1 ,x⊤

2 ]∥≤1

√
1 + ⟨UAV ⊤

A x1, P [u1
A, ..., u

T
A,0, ...,0]V

⊤
B x2⟩

≤ sup
x1∈RmA ,x2∈RmB

∥[x⊤
1 ,x⊤

2 ]∥≤1

√
1 + δ(UA, P )∥x1∥∥x2∥ ≤

√
2− kϵ23

2
.. (****)

Combining (***) and (****), we have

∥[UAV
⊤
A , PUBV

⊤
B ]∥ ≤

√
2− kϵ23

2
+
√
Tϵ2.

The proof is similar for the case rB ≥ rA.

B DISCUSSION ON ASSUMPTION 2.5

When ϵ1 in Assumption 2.5 is sufficiently large: Consider A = σ1
Au,B = σ1

Bu, u ∈ Rn. If ϵ1 > kD (k < 1), according
to inequality (6), for any permutation matrix P , we have | ∥[A,PB]∥∗−∥[A,B]∥∗ | ≤

1−k
1+k ∥[A,B]∥∗ . Therefore, the larger



the ϵ1 is, the harder to distinguish [A,PB] and [A,B] through nuclear norm, especially with the perturbation of additive
noise.

When ϵ2 in Assumption 2.6 is sufficiently large: Consider A = uA ∈ Rn, B = uB ∈ Rn and σ = 0, where

∥uA∥ = ∥uB∥ = 1. Let ϵ2 = ∥uA − uB∥, we can obtain ∥[A,B]∥∗ =

√
2 + 2

√
1− (1− ϵ22

2 )
2. In this case, we can

see that ∥[A,B]∥∗ is in fact an increasing function of ϵ2. Therefore, for any permutation matrix P ∈ Pϵ2
n = {S ∈ Pn |

∥uA − SuB∥ ≤ ϵ2}, we have ∥[A,PB]∥∗ ≤ ∥[A,B]∥∗, i.e., it is impossible to recover the original matrix through nuclear
norm minimization. Especially, in this case, when ϵ2 =

√
2, the set Pϵ2

n = Pn.

When ϵ3 = 0 in Assumption 2.7: Consider A = B = u ∈ Rn and σ = 0. We first define n set S(i) = {j | u(i) = u(j)}
for i = 1, ..., n. We let S∗ = argmaxS(i) #|S(i)|. For any permutation P that only permutes the indexes in S∗ and
H(πP ) = #|S∗| > 0, we have ∥[A,B]∥∗ = ∥[A,PB]∥∗, i.e., it is impossible to distinguish the permuted matrix and the
original matrix through nuclear norm.

C ASYMPTOTIC BEHAVIOR OF PROPOSITION 2.8.

In this section, we will discuss about the asymptotic behavior (n→∞) of the error bound in Proposition 2.8.

We start with a simple observation: Without ϵ1 → 0, ϵ2 → 0, σ → 0, the original matrix will be impossible to recover by
minimizing nuclear norm for sufficient large n. This is also reflected in the error bound of Proposition 2.8, where the right
hand side of (10) could become trivial, i.e., larger than n, when n is sufficiently large.

We provide a simple example to validate this observation. Suppose that the original matrix is M = [u, u] +W , where the
elements of W follow N (0, σ2) and u ∈ Rn is a random vector whose elements are i.i.d. following the uniform distribution
on [0, 1]. From the result in [David and Nagaraja, 2004], p. 135, we know that

E[max
i̸=j
|u(i)− u(j)|] ≈ O(n−1 log(n)).

Therefore, we can construct a permutation matrix P ∈ Pn with H(πP ) = n, such that the following inequality holds with
high probability,

|∥[u, Pu]∥∗ − ∥[u, u]∥∗| ≤ ∥Pu− u∥2 = O(n− 1
2 log(n)).

On the other hand, from Lemma A.6 we can know that ∥W∥∗ ≈ O(σn) with high probability. Now if we need that
∥[u, Pu] + W∥∗ > ∥[u, u] + W∥∗, we at least require that σ = o(n− 3

2 log(n)). Otherwise, it will be impossible to
distinguish the matrices [u, Pu] +W and [u, u] +W through the value of nuclear norm.

Finally, for this simple example, we have ϵ1 = ϵ2 = 0. Besides, from [David and Nagaraja, 2004], we can also know that ϵ3
is at most O(n− 3

2 ) with high probability. With a simple calculattion, we can find that the error bound in Proposition 2.8 is at
least O(n

5
2σ

1
2 ). Therefore, in this example, we at least require that σ = o(n−5) to guarantee a constant error bound for

arbitrary n.

D DUAL PROBLEM OF (15)

To simplify the notation, we denote the primal problem as

minimize
P∈Π(1n,1n)

⟨C,P ⟩+ ϵH(P ).

We define two dual variables α, β ∈ Rn. The Lagrangian function is

L(P, α, β) = ⟨C,P ⟩+ ϵ⟨logP − 1n×n, P ⟩+ ⟨1n − P1n, α⟩+
〈
1n − PT1n, β

〉
. (9)

Now we minimize the Lagrangian function w.r.t P (We note that H(P ) implicitly imposes that P ∈ Rn×n
+ ). From the

first-order necessary condition of unconstrainted optimization, we have

C−α⊕ β + ϵ log(P ) = 0,

⇓

P =exp
{
α⊕ β − C

ϵ

}
. (10)



Substituting it into the Lagrangian function (9) we have the dual objective

q(α, β) = min
P

L(P, α, β) = ⟨1n, α⟩+ ⟨1n, β⟩ − ϵ

〈
1n×n, exp

{
α⊕ β − C

ϵ

}〉
.

Therefore the dual problem is

max
α,β∈Rn

⟨1n, α⟩+ ⟨1n, β⟩ − ϵ

〈
1n×n, exp

{
α⊕ β − C

ϵ

}〉
. (11)

We can recover the primal solution P from the dual solution α, β via (10).

E A STABLE IMPLEMENTATION FOR SINKHORN ALGORITHM

The Sinkhorn algorithm [Peyré et al., 2019] are often used to solve the dual problem (11), and the standard form of it reads

p(t+1) ← 1n

Kq(t)
and q(t+1) ← 1n

K⊤p(t+1)
,

where K = exp
{

α⊕β−C
ϵ

}
, and p = exp(αϵ ), q = exp(βϵ ). If we adopt a small ϵ, the elements of K can overflow to infinity

or zero, which causes a numerical issue. We can remedy this by using a different implementation from [Peyré et al., 2019].

α(t+1) ← Minrow
ϵ (C − α(t) ⊕ β(t)) + α(t),

β(t+1) ← Mincol
ϵ (C − α(t+1) ⊕ β(t)) + β(t),

where for any A ∈ Rn×m, we define the operator Minrow
ϵ and Mincol

ϵ as

Minrow
ε (A)

def.
= (minεA(i, ·))i ∈ Rn,

Mincol
ε (A)

def.
= (minεA(·, j))j ∈ Rm,

and for any vector z = [z1, ..., zn]
⊤ ∈ Rn, we denote

minϵz
def.
= min

i
zi − ϵ log

∑
j

e−(zj−mini zi)/ϵ

as the ϵ-soft minimum for the elements of z.

F RELATIONSHIP BETWEEN M3O AND THE SOFT-IMPUTE ALGORITHM

Soft-Impute algorithm [Mazumder et al., 2010] is a classical algorithm for matrix completion. Specifically, it tries to solve
the nuclear norm regularized problem

minimize
M̂

1

2

∥∥∥PΩ(X)− PΩ(M̂)
∥∥∥2
F
+ λ

∥∥∥M̂∥∥∥
∗
. (12)

Soft-Impute is a simple iterative algorithm with the following two steps:

X̂ ← PΩ(X) + P⊥
Ω (M̂), (13)

M̂ ← proxλ∥·∥∗
(X̂) = USλ(D)V ⊤, (14)

where X̂ = UDV ⊤ denotes the singular value decomposition of X̂ , and P⊥
Ω is the operator that selects entries whose

indexes are not belonging to Ω. Here Sλ is the soft-thresholding operator that operates element-wise on the diagonal matrix
D, i.e., replacing Dii with (Dii − λ)+.



Algorithm 1 M3O-AS-DE

Input: stepsize parameter ω, number of correspondence d, number of iterations N , number of tolerance steps K, initial
entropy coefficient ϵ, tolerance ε, observation matrix Mo = [Ao, B

1
o , ..., B

d
o ], initial matrix M̂ = [M̂A, M̂B1 , ..., M̂Bd

],
nuclear norm coefficient λ, the set of observable indexes Ω.
Initialize P̂ l

new = 0n×n for l = 1, ..., d.
for k = 1 : N do

for l = 1 : d in parallel do
P̂ l

old = P̂ l
new.

α̂l = β̂l = 1n.
Compute the partial pairwise cost matrix C(M̂Bl

).
repeat
α̂l ← Minrow

ϵ (C(M̂Bl
)− α̂l ⊕ β̂l) + α̂l.

β̂l ← Mincol
ϵ (C(M̂Bl

)− α̂l ⊕ β̂l) + β̂l.

P̂ l
new ← exp

{
α̂l⊕β̂l−C(M̂Bl

)

ϵ

}
.

until 1√
n

∥∥∥1⊤
n P̂ − 1⊤

n

∥∥∥
2
≤ ε

Compute the stepsize ρl as discussed in Section 3.
M̂Bl

← M̂Bl
− ρl∇M̂

F l
ϵ(M̂Bl

, αl, βl), where

F l
ϵ(M̂Bl

, α, β)
def.
= ⟨1n, α⟩+ ⟨1n, β⟩ − ϵ

〈
1n×n, exp

{
α⊕ β − CΩ(M̂Bl

)

ϵ

}〉
.

end for
M̂A ← PΩ(A) + P⊥

Ω (M̂A).
M̂ ← proxλ∥·∥∗

([M̂A, M̂B1
, ..., M̂Bd

])).
if the objective value is not improved over K steps then
ϵ← ϵ/2.

end if
end for

Consider the partial observation extension. For the M3O algorithm, if an exact permutation matrix is obtained, i.e.,

P̂ = exp
{

α∗⊕β∗−C(M̂B)
ϵ

}
∈ Pn, it is easy to verify that the the gradient in Algorithm 1 has the following form,

∇
M̂
Fϵ(M̂, α∗, β∗) = 2(PΩ(M̂)− PΩ([A, P̂ B̃])).

In this way, if we adopts ρk = 0.5, the proximal gradient update becomes

M̂ k+1 ← proxλ∥·∥∗
(PΩ([A, P̂ B̃]) + P⊥

Ω (M̂k)).

In practice, P̂ often becomes very close to an exact permutation matrix and the stepsize often reaches the upper bound 0.5,
when the algorithm is close to convergence. In this scenario, our algorithm becomes equivalent to the Soft-Impute algorithm.
Therefore, we adopt the Soft-Impute algorithm as a baseline method for matrix completion without correspondence issue.

G M3O-AS-DE FOR THE D-CORRESPONDENCE PROBLEM

In this section, we summarize our proposed algorithm M3O-AS-DE for the general d-correspondence problem (18) in
Algorithm 1. To determinate the stop of the Max-Oracle, we find that the criterion

1√
n

∥∥∥1⊤
n P̂ − 1⊤

n

∥∥∥
2
≤ ε

works well in practice, which serves as a good indicator for the ε-good optimality.



Algorithm 2 Baseline

Input: number of iterations N , number of Proximal Gradient iterations Np, tolerance ε, observation matrix Mo =

[Ao, B
1
o , ..., B

d
o ], initial matrix M̂ = [M̂A, M̂B1

, ..., M̂Bd
], nuclear norm coefficient λ, partial observation operator PΩ.

for k = 1 : N do
for l = 1 : d in parallel do

Solving the inner problem of (15) for P̂ l up to tolerance ε via Hungarian algorithm.
end for
X ← [Ao, P̂

1B1
o , ..., P̂

dBd
o ].

for i = 1 : Np do
X̂ ← PΩ(X) + P⊥

Ω (M̂).
M̂ ← proxλ∥·∥∗

(X̂).
end for

end for

H THE BASELINE ALGORITHM

We also extend the Baseline algorithm to a similar d-correspondence problem as (18). Specifically, the extended Baseline
algorithm tries to solve the unsmoothed problem

min
M̂

min
P1,...,Pd

∥∥∥PΩ(Ao)− PΩ(M̂A)
∥∥∥2
F
+

d∑
l=1

⟨C(M̂Bl
), Pl⟩+ λ

∥∥∥M̂∥∥∥
∗
, (15)

s.t. Pl ∈ Pn, for l = 1, ..., d.

We summarize the algorithm in Algorithm 2.

I THE MUS ALGORITHM

In this section, we provide details for the MUS algorithm discussed in the Section 4. Firstly, inspired by [Yao et al., 2021],
we first transform the MRUC problem, i.e, to recover [A,B] from [A, P̃B], into a MUS problem as follows,

min
P∈Pn,W∈RmB×mA

∥A− PP̃BW∥2F . (16)

Then, for the scenario without multiple correspondence and missing values, we adopt the algorithm in [Zhang and Li, 2020]
to solve (16).

To extend it into the d-correspondence problem considered by (18), we adopt tow simple procedures. Specifically, to deal
with the missing value, we first fill in the missing entries of each submatrices using the Soft-Impute algorithm. As for the
multiple correspondence issue, we simply run the MUS algorithm in multiple times. For example, if we want solve the
d-correspondence problem, we typically apply the MUS algorithm to the following series of problems in turn,

min
P∈Pn,W∈RmB×mA

∥Ao − PBl
oW∥2F , l = 1, ..., d.

J DISCUSSION ON US, MUS AND MRUC

In this section, we wil discuss about the difference and similarity among the US problem, MUS problem and our MRUC
problem. Specifically, we wish to answer the following question:

• Why MUS algorithms, like the one in [Zhang and Li, 2020], are more suitable to be adapted for our MRUC problem
than those US algorithms like AIEM [Tsakiris et al., 2020] and CCV-Min [Peng and Tsakiris, 2020] that adopted by
[Yao et al., 2021]?

For this question, we note that the MUS problem (2) can be solved by US algorithms, because we can treat it as m1

independent US problems just as what [Yao et al., 2021] did. In this way, we can view the key difference between our



adapted MUS algorithm and the method proposed by [Yao et al., 2021] as whether to leverage the prior knowledge that
multiple response vectors are shuffled by the same permutation, i.e., to recover the permutation for m1 responses jointly or
independently. Theoretically, it has been well studied in the works [Zhang and Li, 2020, Pananjady et al., 2017a, Slawski
et al., 2020b,a] that one can resist stronger noise and estimate the ground-truth permutation better if we know that more
columns are shuffled by the same permutation. We remark that this phenomenon is not a contradiction to the experiment
results in [Yao et al., 2021], as they only reported the residual error for vector recovery instead of permutation recovery.

We also conduct our own experiment to corroborate our previous discussion. We generate the synthetic matrix Mo = [A, P̃B]
in the same way with the experiment in Figure 2. Here we use the full matrix Mo, i.e., no missing values, and hence the
MRUC problem is now barely distinguishable to the MUS problem. We use the following three kinds of algorithm for
comparison:

1. MRUC: Our proposed algorithm M3O.

2. US: CCV-min algorithm1 used in [Yao et al., 2021], which is shown to be the state-of-the-art US algorithm.

3. MUS: The algorithm in [Han, 2020].

In this experiment, we also propose improved versions of US algorithm and MUS algorithm, by replacing their inputs A and
P̃B with their top five left singular vectors UA and UP̃B . This process can be viewed as a simple version of the first step
subspace learning in [Yao et al., 2021]. For the US algorithm, we run it for each column of P̃B independently. We provide
the result by varying the sparsity of P̃ , i.e., H(πP̃ ), and report the permutation recovery statistics dH(π̂, π∗), where π̂ is the
recovered permutation and π∗ is the ground-truth permutation, in Figure 1(a). Besides, we also report the residual error for
the US algorithm, i.e.,

residual error =
∥P̂B −B∥2F
∥B∥2F

where P̂ denotes the recovered permutation matrix, in Figure 1(b). Notably, these results verify our discussions that, although
US algorithm can perform well in vector recovery (Achieving roughly 0.001 residual error on average.), it is extremely
inferior when it comes to the permutation recovery.

(a) Permutation error (b) Residual error

Figure 1: Performance of MRUC, MUS and US algorithms on a simulated 1-correspondence problem without missing
values.

K DETAILS FOR THE EXPERIMENTS

We use Matlab 2020b for the numerical experiments. The computer environment consists of Intel i9-10920x for CPU and
32GB RAM.

1https://github.com/liangzu/CCVMIN.



K.1 HYPERPARAMETERS SETTING

Simulated data. We adopt fixed nuclear norm coefficient λ in the experiments on simulated data. Specifically, for each
setting, we choose the best λ out of three candidate values that are 0.4, 0.5 and 0.6. Since adopting large ω will preserve
the final performance and only degrade the convergence speed, we take ω = 3 for all the experiments. For the tolerance of
Sinkhorn algorithm, we take ε = 0.01 for all the experiments.

MovieLens 100K. For all the algorithms, we adopt a sequence of values for λ. Specifically, we start the algorithm with
λ = 300, and once the algorithm stops improving the objective function for 10 steps, we shrink the value as λ← λ− 10
until λ becomes lower than 10. We take ω = 0.5 for all the experiments and also set the tolerance of Sinkhorn algorithm as
ε = 0.01.

K.2 PHASE TRANSITION WITH DIFFERENT INITIALIZATIONS.

In this section, we conduct a simple experiment to explore the sensitivity of M3O w.r.t initialization by varying the distance
between initialization and the ground-truth matrix. We could expect that the variance of the performance of M3O should
decrease as the distance decreases.

We generate different initializations in the following way: We first generate two matrices M and W independently following
the way described in Section 4.1, and we employ M as the ground-truth matrix. Then, we generate the initialization for
M3O as

M̂ = ΛM + (1− Λ)W,

where Λ ∈ (0, 1) is a coefficient designed for controlling the distance between initialization and the ground-truth matrix.

Figure 2 shows a phase transition phenomenon for M3O algorithm w.r.t to the coefficient Λ, which is well aligned with our
expectation.

Figure 2: A phase transition phenomenon for M3O algorithm w.r.t to the distance between initialization and the ground-
truth matrix. The experiment is conducted on a 1-correspondence problem, with |Ω| · 100%/(n ·m) = 80%, η = 0.1,
n = m = 100, r = 5, mA = 60, and m1 = 40. The mean with minimum and maximum are calculated from 10 different
random initializations.

K.3 NUMBERS OF SINKHORN ITERATION

Typically, the numbers of Sinkhorn iteration required to retrieve an ε-good solution mainly depends on the entropy coefficient
ϵ. This also implies that the decaying entropy regularization strategy can also accelerate the convergence process. Figure 3
shows the relationship between the numbers of Sinkhorn iteration and entropy coefficient ϵ under the same simulated data
setting with Figure 2. The dash lines and intervals reflect mean, min, maximum aggregated from 20 independent trials. For a
practical implementation, we restrict the maximum numbers of Sinkhorn iteration to 10000 on the numerical experiments.

K.4 PROBLEM FORMULATION FOR THE FACE RECOVERY PROBLEM

We show that M3O is flexible and can also be used to recover matrix that is not in the form [A,PB]. We can see this from
the problem formulation in (12), where the cost matrix C(·) can be constructed in other ways as long as it is a function of



Figure 3: The required numbers of Sinkhorn iteration v.s. entropy coefficient ϵ

a permutation. Typically, M3O can be used to solve a challenging face image recovery problem. The original face image
with size 180× 180 in Figure 4(a) comes from the Extend Yale B database [Georghiades et al., 2001]. The corrupted image
is visualized in Figure 4(b), where the pixel blocks with size 30× 30 in the upper left are shuffled randomly, and 30% of
the total pixels are removed. This experiment setting is similar to that in [Yao et al., 2021] but the algorithm in [Yao et al.,
2021] can not be applied since it can not work with the missing values. The MUS algorithm is also not applicable since
this problem can not be written in the form of linear regression problem. From Figure 4(c) and 4(d) we can find that M3O
performs better than the Baseline, and can even recover the original orders of pixel blocks.

In the face recovery experiment, the cost matrix C is constructed as

C(i, j) = ∥PΩ(B(i)− M̂(j))∥2F ,

where B(1), ..., B(13) ∈ R30×30 are the shuffled pixel blocks from the upper left of the corrupted image shown in Figure
4(b), and M̂(1), ..., M̂(13) ∈ R30×30 are the corresponding recovered pixel blocks from the upper left of the current
recovered image.

We choose fixed stepsize ρk = 0.1, and choose the initial entropy coefficient as ϵ = 100. To obtain the initial matrix M̂ , we
first complete each pixel blocks independently using the Soft-Impute algorithm. We denote the filled matrix as M1, and
carry out the singular decomposition of it as M1 =

∑
i σiuiv

⊤
i . Then we set the initial matrix as M̂ = σ1u1v

⊤
1 .

More results similar to Figure 4 are shown in Figure 4.
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