
SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language Models
(Supplementary Material)

Vithursan Thangarasa1 Abhay Gupta1 William Marshall1 Tianda Li* Kevin Leong1

Dennis DeCoste* Sean Lie1 Shreyas Saxena1

1Cerebras Systems Inc., Sunnyvale, California, USA

APPENDIX

A EXPERIMENTAL SETUP AND HYPERPARAMETER DETAILS

A.1 PRE-TRAINING ON PILE

To train all GPT models, we use AdamW optimizer [Loshchilov and Hutter, 2017] with β1 = 0.9, β2 = 0.999 and ϵ = 10−8.
The global norm is clipped at 1.0, and a weight decay of 0.1 is used. There is a learning rate warm-up over the first
375M tokens, followed by a cosine decay to 10% of the peak learning rate. In Table 1, we provide details on the size and
architecture configurations of the models we pre-trained. Here, nparams is the total number of trainable parameters, nlayers

is the number of decoder layers, and dmodel is the base size of the model. The feedforward bottleneck is four times the base
size, i.e., dff = 4× dmodel. Finally, nheads are the number of attention heads and dhead is the dimension of each attention
head. The context window size is set to 2048 following [Brown et al., 2020].

Table 1: Sizes, architectures, and learning hyperparameters (batch size and learning rate) of the models, which are trained to
Chinchilla optimal configurations (≈ 20 tokens per parameter).

Model nparams nlayers dmodel nheads dhead Batch Size Learning Rate Training Tokens

GPT-2 Small 125M 12 768 12 64 256 6e-4 2.5B
GPT-3 XL 1.3B 24 2048 16 128 512 2e-4 26B

Sparsity Setup As mentioned in Section 2, we use random pruning (static sparsity) for training all our GPT models. The
sparsity is distributed uniformly across all layers (i.e., all layers get the same specified sparsity level) irrespective of the
number of parameters or FLOPs of a given layer. We only sparsify all dense linear layers including the two in the MLP
module; WI (intermediate) and WO (MLP output projection), and the four weight matrices in the self-attention module; WQ

(query), WK (key), WV (value) and WD (attention output projection). In this setting, we keep the embeddings (implemented
as sparse lookups), LayerNorm [Ba et al., 2016], and biases dense.

A.2 NATURAL LANGUAGE GENERATION

Similar to Hu et al. [2022], we train all of our GPT-2 Small and GPT-3 XL models using AdamW [Loshchilov and Hutter,
2017] with a linear learning rate schedule for 5 epochs, and perform early-stopping when the models began to overfit. We
perform a grid search to discover an appropriate learning rate that led to the best downstream BLEU score on each of the
tasks for a given compute budget. More specifically, on the dense baseline and sparse variants, we select the best batch size
among {8, 16, 32, 64} and select the best learning rate among {1e-4, 5e-5, 2.5e-5} on the validation set. The beam search
beam size, length penalty, and no repeat ngram size remain the same as described in [Hu et al., 2022].

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:vithu@cerebras.net


Table 2: Details on the total pre-training FLOPs for each pre-trained model.. We also report the relative FLOPs reduction of
the sparse variants over the dense baseline. We note that the reported FLOPs per sequence (seq) includes both forward and
backward passes.

Model
Pre-Train
Sparsity

Total
Seqs

Total FLOPs/
Seq

Total
FLOPs

Toal
exaFLOPs

FLOPs Reduction
over Dense

GPT-2 Small
0% 1.22e6 1.99e12 2.43e18 2.43 1x

50% 1.22e6 1.47e12 1.79e18 1.79 0.737x
75% 1.22e6 1.20e12 1.46e18 1.46 0.601x

GPT-3 XL
0% 1.27e7 1.86e13 2.36e20 236.10 1x

50% 1.27e7 1.12e13 1.42e20 141.87 0.601x
75% 1.27e7 7.46e12 9.48e19 94.76 0.401x

A.3 CURATION CORPUS

We fine-tune the dense GPT-2 Small and its sparse variants on the Curation Corpus [Curation, 2020] following the setup
presented in [Rae et al., 2021]. We fine-tune for 5 epochs on Curation Corpus, and perform early stopping once the models
start to overfit. To discover good hyperparameters, we perform a grid search to discover an appropriate learning rate that led
to the best perplexity for a given compute budget. More specifically, on the dense baseline and sparse variants, we use a
batch size of 32 and select the best learning rate among {3e-3, 1e-3, 3e-4, 1e-4, 3e-5, 1e-5} on the validation set.

A.4 TRAINING FLOPS FOR PRE-TRAINING AND FINE-TUNING

We compute the total pre-training FLOPs for the dense and sparse variants of GPT-2 Small and GPT-3 XL, and report them
in Table 2, along with their relative FLOPs reduction over the dense baseline. We also compute the total dense fine-tuning
FLOPs for GPT-2 Small and GPT-3 XL on E2E, WebNLG, DART and Curation Corpus, and report them in Table 3. The
total training FLOPs during the fine-tuning phase is a small fraction of the total pre-training FLOPs, even though fine-tuning
is performed in a dense manner.

Table 3: Details on the total fine-tuning FLOPs for GPT-2 Small and GPT-3 XL on E2E, WebNLG, DART and Curation
Corpus tasks. We note that the reported FLOPs per sequence (seq) includes both forward and backward passes.

Dataset Model
Total
Seq

Total FLOPs/
Seq

Total
FLOPs

Toal
exaFLOPs

E2E GPT-2 Small 1.26e5 1.36e11 5.15e16 0.052
GPT-3 XL 1.39e12 5.27e17 0.524

WebNLG GPT-2 Small 0.54e5 1.36e11 2.21e16 0.022
GPT-3 XL 1.39e12 2.26e17 0.226

DART GPT-2 Small 1.25e5 1.36e11 5.12e16 0.051
GPT-3 XL 1.39e12 5.24e17 0.524

Curation Corpus GPT-2 Small 0.34e5 1.36e11 1.38e16 0.014
GPT-3 XL 1.39e12 1.41e17 0.141

B DETAILED EXPERIMENTS ON NLG AND TEXT SUMMARIZATION

In Tables 4, 5 and 6, we provide detailed results on all official evaluation metrics for the E2E, WebNLG and DART tasks.
Even across other metrics, we do not observe any significant drop in performance with sparse pre-trained GPT-2 Small and
GPT-3 XL models.



Table 4: Downstream accuracy of GPT-2 Small and GPT-3 XL on E2E at different sparsity levels during pre-training. In the
metric column, the direction of the arrow indicates better result (e.g., up indicates higher is better).

Model Pre-Train
Sparsity

E2E

BLEU↑ NIST↑ METEOR↑ ROUGE-L↑ CIDEr↑

GPT-2 Small
0% 67.49± 0.60 8.59± 0.03 46.08± 0.22 70.22± 0.42 2.38± 0.03
50% 67.39± 0.38 8.62± 0.03 45.89± 0.18 70.10± 0.26 2.38± 0.01
75% 66.50± 0.01 8.46± 0.13 45.61± 0.32 70.02± 0.26 2.36± 0.02

GPT-3 XL
0% 68.10± 0.46 8.64± 0.06 46.40± 0.01 71.03± 0.22 2.41± 0.02
50% 67.98± 0.63 8.62± 0.07 46.40± 0.07 71.30± 0.20 2.43± 0.02
75% 67.66± 0.59 8.59± 0.09 46.07± 0.26 70.40± 0.26 2.42± 0.03

Table 5: Downstream BLEU, NIST, METEOR, ROUGE-L and CIDEr scores of GPT-2 Small and GPT-3 XL on WebNLG
at different sparsity levels during pre-training. In the metric column, the direction of the arrow indicates better result (e.g.,
down indicates lower is better).

Model Pre-Train
Sparsity

WebNLG

BLEU↑ METEOR↑ TER↓

GPT-2 Small
0% 63.42± 0.26 0.44 0.34

50% 63.10± 0.13 0.44 0.34
75% 62.64± 0.22 0.43 0.34

GPT-3 XL
0% 63.62± 0.23 0.45 0.32

50% 63.47± 0.21 0.45 0.33
75% 63.06± 0.11 0.45 0.33

Table 6: Downstream BLEU, MET and TER scores of GPT-2 Small and GPT-3 XL on DART at different sparsity levels
during pre-training. In the metric column, the direction of the arrow indicates better result (e.g., down indicates lower is
better).

Model Pre-Train
Sparsity

DART

BLEU↑ MET↑ TER↓

GPT-2 Small
0% 46.30± 0.16 0.38 0.51

50% 45.74± 0.10 0.37 0.51
75% 44.97± 0.11 0.37 0.52

GPT-3 XL
0% 47.71± 0.11 0.39 0.49

50% 47.10± 0.13 0.39 0.49
75% 46.96± 0.08 0.38 0.50



C UNSTRUCTURED SPARSITY ON SPECIALIZED HARDWARE ACCELERATORS

In Figure 1 we highlight the potential realized gains with unstructured weight sparsity on the Cerebras CS-2. This figure was
regenerated based on the plot in [Lie, 2021].

0.0 0.5 0.67 0.75 0.8 0.83 0.86 0.88 0.89 0.9
Sparsity Level (%)

2

4

6

8

10

S
pe

ed
-U

p 
(x

 fa
ct

or
)

MatMul Speedup vs. Sparsity Level
on GPT-3 Layer (12k*12k MatMul)

Theoretical Measured

Figure 1: Measured speedup versus theoretical speedup at varying sparsity levels for a GPT-3 layer 12k × 12k matrix
multiplication (MatMul) [Lie, 2021].



References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. In NeurIPS, 2020.

Curation. Curation corpus base, 2020.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA:
Low-rank adaptation of large language models. In ICLR, 2022.

Sean Lie. Thinking outside the die: Architecting the ml accelerator of the future, Nov 2021. URL https://www.micr
oarch.org/micro54/media/lie-keynote.pdf.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2017.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides, Sarah
Henderson, Roman Ring, Susannah Young, et al. Scaling language models: Methods, analysis & insights from training
gopher. arXiv, 2021.

https://www.microarch.org/micro54/media/lie-keynote.pdf
https://www.microarch.org/micro54/media/lie-keynote.pdf

	Experimental Setup and Hyperparameter Details
	Pre-training on PILE
	Natural Language Generation
	Curation Corpus
	Training FLOPs for Pre-training and Fine-tuning

	Detailed Experiments on NLG and Text Summarization
	Unstructured Sparsity on Specialized Hardware Accelerators

