SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language Models

Vithursan Thangarasa' Abhay Gupta' William Marshall! Tianda Li" Kevin Leong'

Dennis DeCoste” Sean Lie! Shreyas Saxena'

!Cerebras Systems Inc., Sunnyvale, California, USA

Abstract

The pre-training and fine-tuning paradigm has con-
tributed to a number of breakthroughs in Natural
Language Processing (NLP). Instead of directly
training on a downstream task, language models
are first pre-trained on large datasets with cross-
domain knowledge (e.g., Pile, MassiveText, etc.)
and then fine-tuned on task-specific data (e.g., nat-
ural language generation, text summarization, etc.).
Scaling the model and dataset size has helped
improve the performance of LLMs, but unfortu-
nately, this also lead to highly prohibitive com-
putational costs. Pre-training LLMs often require
orders of magnitude more FLOPs than fine-tuning
and the model capacity often remains the same
between the two phases. To achieve training ef-
ficiency w.r.t training FLOPs, we propose to de-
couple the model capacity between the two phases
and introduce Sparse Pre-training and Dense Fine-
tuning (SPDF). In this work, we show the benefits
of using unstructured weight sparsity to train only
a subset of weights during pre-training (Sparse
Pre-training) and then recover the representational
capacity by allowing the zeroed weights to learn
(Dense Fine-tuning). We demonstrate that we can
induce up to 75% sparsity into a 1.3B parame-
ter GPT-3 XL model resulting in a 2.5x reduction
in pre-training FLOPs, without a significant loss
in accuracy on the downstream tasks relative to
the dense baseline. By rigorously evaluating multi-
ple downstream tasks, we also establish a relation-
ship between sparsity, task complexity and dataset
size. Our work presents a promising direction to
train large GPT models at a fraction of the training
FLOPs using weight sparsity, while retaining the
benefits of pre-trained textual representations for
downstream tasks.

*Work done while at Cerebras Systems.

1 INTRODUCTION

Large language models (LLMs) have contributed to signif-
icant advances in natural language understanding (NLU)
and natural language generation (NLG) due to the introduc-
tion of pre-training methods [Devlin et al., 2019, [Radford
and Narasimhan, 2018]] on massive unannotated datasets
(e.g., Pile [Gao et al., [2020]], MassiveText [Rae et al., 2021]],
etc.). While scaling the model and dataset size has improved
the quality of LLMs [Wei et al.}[2022], it has also substan-
tially increased the computational cost of pre-training. For
instance, GPT-3 175B [Brown et al., 2020] is estimated to
cost millions of dollars to train [Li, 2022]]. Various tech-
niques have been proposed to reduce the computational cost
of training LL.Ms, including sparse attention [Dao et al.|
2022b|, Jaszczur et al}[2021]], improved optimization tech-
niques [Tang et all [2021]] and sequence-level curriculum
learning [Li et al.l 2022]]. While these methods can help
reduce computation time, weight sparsity is one promising
technique orthogonal to the above methods. Here, a subset
of model parameters are set to zero, reducing the FLOPs
required during training.

Despite recent advances in sparse training [[Hoefler et al.,
2022], it has yet to be widely adopted by practitioners. First,
it is difficult and expensive to find the optimal sparsity
pattern [Frankle and Carbin, [2018], Ma et al., [2022] that
can maintain the same level of accuracy as dense models.
Second, unstructured sparsity can be difficult to acceler-
ate on hardware architectures optimized for dense com-
putation [Hooker, 2020]]. In this work, we show how we
can leverage weight sparsity to reduce training FLOPs, and
then recover the lost representational capacity by shifting
to dense weight matrices when fine-tuning on downstream
tasks. In addition, while specialized software kernels have
been developed to achieve inference acceleration with un-
structured sparsity [Gale et al.| 2020, NeuralMagic, 2021},
Elsen et al.| 2019} |Ashby et al., 2019} [Wang]| [2021]], re-

Proceedings of the 39" Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:2134-2146.

mailto:vithu@cerebras.net

cent work has shown that we can realize the gains of un-
structured weight sparsity on specialized hardware (e.g.,
Cerebras CS-2 [Lie, [2023]2021]]) when training LLMs. For
example, |Lie| [2021]] shows the measured speedup for a
matrix multiplication kernel w.r.t to the sparsity level on
a single GPT-3 layer (see Appendix C for more details).
Therefore, as unstructured sparse training techniques con-
tinue to become co-designed with the hardware, we can
expect the FLOP reduction to translate into performance
and wall-clock speedups.

Prior work on sparsifying LLMs focus on reducing train-
ing [[Chen et al., 20224, |Dao et al., 2022a] or inference
FLOPs [Chen et al.| 2020]], while matching standard dense
training. (Chen et al.| [2022a] and |Dao et al.| [2022a] re-
place dense matrices with butterfly-based structured sparse
weight matrices to reduce a model’s size and accelerate pre-
training on block-oriented hardware (e.g., GPUs [Krashin{
sky et al. [2020], TPUs [He et al.| [2020]]). Training with
structured sparsity requires maintaining a regular sparse
structure, which can reduce expressivity at higher sparsity
levels. This is a well-known constraint observed when im-
posing structured sparsity in dense weight matrices [Zhou
et al., 2021}, Jiang et al.,[2022]]. The recent innovations in
hardware architectures aim to facilitate the widespread use
and adoption of unstructured weight sparsity, enabling the
ability to achieve higher compression ratios while attaining
practical speedups w.r.t wall-clock time. Our work focuses
on pre-training with unstructured weight sparsity to reduce
the FLOPs for training language models.

In the recent NLP literature, it is common to first pre-train,
then fine-tune a language model. Fine-tuning pre-trained
LLMs on downstream tasks leads to significantly better ac-
curacy than the zero or few-shot settings [Alt et al.| 2019,
Ouyang et al., 2022]]. The pre-training phase takes signif-
icantly longer compared to fine-tuning on a much smaller
dataset to learn the domain-specific task. In the standard
setup, the model size and capacity is generally kept the same
between the two phases. We propose to break this assump-
tion and show the benefits of modifying the model capacity
between pre-training and fine-tuning with weight sparsity.
First, we pre-train a sparse GPT model to reduce computa-
tional training FLOPs. Then, during the fine-tuning phase,
we densify the GPT model, allowing the zeroed weights to
learn and increase the modelling capacity to more accurately
learn the downstream task.

While previous work has explored sparse-to-dense training
to mitigate the difficulties of sparse-to-sparse training [Dao
et al.l 2022a] and improve the accuracy of dense mod-
els [Han et al., 2017]], we perform fully sparse pre-training
and only transition to dense weight matrices during fine-
tuning. We refer to this framework as Sparse Pre-training
and Dense Fine-tuning (SPDF) and demonstrate the ability
of the sparse pre-trained model to transfer effectively to
different downstream tasks (e.g., natural language genera-

tion and text summarization). The main contributions of our
work are:

1. We propose Sparse Pre-training and Dense Fine-tuning
(SPDF) as a new framework to reduce the FLOPs re-
quired during the pre-training phase, while maintaining
accuracy on downstream tasks.

2. We demonstrate that we can train GPT-3 XL, at 75%
sparsity, reducing the overall training FLOPS by 2.5x,
while retaining the benefits of pre-trained textual rep-
resentations in LLMs across a majority of tasks and
evaluation metrics.

3. We establish a correlation between the optimal sparsity
level during pre-training and the fine-tuning dataset
size and task difficulty.

2 METHODOLOGY

This section presents our method to reduce pre-training
FLOPs using unstructured weight sparsity. We first explain
our intuition and hypotheses, followed by our methodology
for the SPDF framework.

2.1 INTUITION AND HYPOTHESES

Prior works have shown that overparameterization of neu-
ral networks improves optimization and generalizabil-
ity [Soltanolkotabi et al., |2019| [Neyshabur et al 2019]
Allen-Zhu et al., [2019]], but leads to an increase in com-
pute cost [Brown et al.| [2020]]. Recent work on the Lottery
Ticket Hypothesis [Frankle and Carbin|[2018]] demonstrates
that overparameterized dense networks contain sparse sub-
networks which can be trained to the same accuracy as their
dense counterparts, as long as one initializes the training
with a good sparsity mask (“lottery ticket”). However, the
process of searching for highly quality sparse subnetworks
is computationally expensive [Frankle and Carbin} 2018|
Ma et al.| [2022]. Existing sparse training methods [Evci
et al.| 2020, Mocanu et al., 2018} Jayakumar et al.,|2020]
aim to discover the winning lottery ticket (i.e., optimal spar-
sity mask) in a single training run, but often fall short of the
dense model’s accuracy.

In our framework, we mitigate the loss in representational
power due to difficulties in sparse optimization [Evci et al.|
2019], by transitioning to fully dense weight matrices dur-
ing the fine-tuning phase. Even though we perform dense
fine-tuning, the computational costs associated with fine-
tuning are significantly lower than the cost of pre-training
LLM:s. Therefore, our method targets the phase which domi-
nates the training FLOPs (i.e., pre-training). Based on recent
theoretical findings and empirical studies on overparame-
terization and sparse neural networks, we lay out a set of
hypotheses which we aim to study in our work through
extensive experimental evaluation:

2135

Hypothesis 1: High degrees of weight sparsity can be used
during the pre-training phase of LLMs while preserving the
downstream accuracy with dense fine-tuning.

Inducing sparsity during pre-training may cause a loss in
representational power due to difficulties in sparse optimiza-
tion and inability to discover optimal sparsity masks [Evci
et al 2019]. To mitigate these challenges, we aim to in-
crease the representational power by allowing the zeroed
weights to grow during fine-tuning (i.e., dense fine-tuning).

Additionally, note the full capacity of the pre-trained model
is often not required to generalize on the simpler down-
stream task, when using sparsity during pre-training [Ding
et al.| 2022]]. /Aghajanyan et al.|[2021]] investigate this phe-
nomenon from a different angle and show pre-trained lan-
guage models can learn a large set of NLP tasks with only a
few parameters. This indicates that the full parameterization
of the model is not needed to generalize well across down-
stream fine-tuning tasks. Hence, we can exploit weight spar-
sity during pre-training while retaining important textual
representations despite the model’s lower representational
capacity.

Hypothesis 2: The performance of the sparse pre-trained
model is correlated with the dataset size and degree of
difficulty in the downstream task.

Liu et al.| [2023]] evaluate sparse networks on a diverse set
of tasks with varying degrees of difficulty and show a strong
correlation between a model’s ability to be sparsified and the
task difficulty. Hence, we hypothesize that models trained
on complex tasks with high sparsity levels can suffer more
from sparse training and experience a greater drop in perfor-
mance compared to simpler tasks. We also note that small
fine-tuning datasets may trigger over-fitting [Li and Zhang]
2021]). Therefore, we hypothesize that larger datasets can
allow the sparse model to improve its generalization error
on the task, and recover from training with high sparsity.

Hypothesis 3: As we increase the size of the language model,
larger models become more amenable to higher levels of
sparsity during pre-training.

Existing work [Liu et al.}|2022] has shown that the quality of
a network trained with random static sparsity (even at high
sparsity levels) improves quickly to match its dense coun-
terpart as the network grows wider and deeper. Also, larger
models tend to have a smaller intrinsic dimension [Agha{
janyan et al.}[2021]], which suggests that all parameters are
not required to represent the average NLP task. Therefore,
we expect the gap in downstream performance between the
sparse pre-trained model and its dense counterpart to grow
smaller as the size of the model increases.

2.2 SPARSE PRE-TRAINING AND DENSE
FINE-TUNING

Our training procedure consists of two phases. The first
phase involves pre-training a sparse language model on a
large corpus of text in an unsupervised manner. Here, we
induce unstructured weight sparsity into the neural network
to reduce the pre-training FLOPs. This is followed by a
dense fine-tuning stage, where we expand the representa-
tional capacity of the model by allowing zeroed weights to
learn, and adapt to a discriminative task with labeled data.

Unsupervised Dense Pre-training While our proposed
framework is agnostic to the training objective, we focus
on autoregressive language modeling as our motivating use
case. In an autoregressive language model, the sequence
generation process is modeled as a Markov chain, where
the token to be predicted depends on all the previous to-
kens [Bengio et al., 2003|]. Hence, the standard approach is
to learn the probability distribution over sequences of tokens
from an unsupervised pre-training corpus. Given an unsuper-
vised pre-training corpus of tokens U = {uy, ua, ..., upy},
where |U| is the total number of tokens. We aim to maxi-
mize the likelihood using the language modeling objective
formulated as follows,

|
LU) = Zlog(p(ui‘uifk» s uio1,0)),
i=1

where k is the size of the context window, and the condi-
tional probability p is modeled using a neural network with
parameters § € RY. The parameters of the (! layer € L
total layers are denoted as 6;, along with the total number
of parameters represented as NV;. We note that the network
parameters 6 are considered to be dense.

Unsupervised Sparse Pre-training To induce sparsity
into the [*" layer, we drop s; € (0,1) of its connections,
where s; to refer to the sparsity of layer /. This results in a
total of (1 — s;)N; parameters. Finally, the overall sparsity
of a sparse subnetwork is defined as the ratio of zeroes to the
total number of parameters in the original dense network,
ie,S = w In our sparse training setup, we apply a
binary sparsity mask m € {0, 1}/?! on the initial parameters
#°, such that its initialization is m © 6°. Here, the values
0 and 1 in the mask denote inactive (i.e., zero) and active
(i.e., non-zero) weights, respectively. As a result, the sparse
language model minimizes the following objective instead,

|A]
LU) = Zlog(p(uﬂui,k,...,ui,l,mGG)). (1)
i=1

In our work, we focus solely on static sparsity (i.e., m
remains fixed throughout training) and the weights are

2136

Sparse Pre-training

Dense Network

Dense Fine-tuning
ad
o

Figure 1: Sparse Pre-training and Dense Fine-tuning (SPDF)
framework. In this framework, we sparsify a dense network
and perform sparse pre-training followed by dense fine-
tuning (green connections indicate newly activated weights).
We use SPDF to pre-train large GPT models at a fraction of
the training FLOPs using weight sparsity, and still retain the
benefits on downstream tasks with dense fine-tuning.

o

randomly pruned at initialization. Specifically, we remove
weights in each layer [€ L randomly to the target sparsity
s;. Although several works have explored generating differ-
ent layer-wise sparsity ratios at initialization (e.g., Erdos-
Rényi-Kernel [Evci et al.|[2020], Ideal Gas Quota [Chen
et al.,[2022b]], SNIP [Lee et al., 2019]], GraSP [Wang et al.,
2020], SynFlow [Tanaka et al., [2020], etc.), we focus on the
simplest setup, which is uniform sparsity [Gale et al.l | 2019].
In uniform sparsity, each sparsified layer is pruned to the
same target sparsity level.

For the language model, we use GPT [Radford et al., 2019|
Brown et al.,|2020] in our experiments, which is a variant of
the Transformer [[Vaswani et al., 2017]]. We train the network
with objective shown in Eq.[[Jand AdamW [Loshchilov and
Hutter|, |2017]] optimizer on an unsupervised pre-training
dataset for a total of j iterations, arriving at parameters 6”.
Then, we adapt (i.e., fine-tune) the final pre-trained autore-
gressive language model p,, ¢ to the supervised target task.

Dense Fine-tuning Following Hu et al.|[2022] and |Li
and Liang [2021a], each downstream fine-tuning task is rep-
resented by a training dataset consisting of context-target
pairs defined as: Z = {(z1,91), (2,42),- -, (T||, Yy }»
where both x and y are sequences of tokens. For example, in
structured data-to-text (e.g., E2E [Novikova et al.|[2017]),
corresponds to a linearized data table and y a textual descrip-
tion; in text summarization (e.g., Curation Corpus [Curation,
2020]), z is the content of an article and y is its summary.

We initialize the start of dense fine-tuning to the final pre-
trained parameters 6’ and during fine-tuning are updated to
07 + A6. For each downstream task, we learn a different
set of parameters with the task-specific parameter increment
Af whose dimension |Af| equals |#]. Other works have
explored more parameter efficient approaches to reduce the
size of the task-specific parameters for the purpose of de-
ploying fine-tuned models [Ben Zaken et al.||2022| [Houlsby
et al.,|2019bl |Hu et al.,[2022]. However, in our approach, we
focus on reducing the pre-training FLOPs with unstructured
weight sparsity and perform dense fine-tuning to mitigate
the challenges of sparse optimization by increasing repre-
sentational power of the network. In the dense fine-tuning

phase, we essentially remove the sparsity mask m to allow
the inactive weights to grow. More specifically, we increase
the representational capacity in 67 by reviving all ZZL s1-IVp
inactive weights, where all newly activated weights are ini-
tialized to 0. We evaluated other initializations like scaled
normal distribution, but this did not lead to better results.
Finally, the network is updated in a dense manner with the
objective shown below,

lyl

LEZ)= > Y logpw(xs,...,-1),67 + A)).

(zy)ez t=1

The generic Sparse Pre-training and Dense Fine-Tuning
(SPDF) framework, illustrated in Figure [T} consists of the
following three steps:

1. Sparsify a given dense network to some target sparsity
level, s;, at each sparsifiable layer.

2. Pre-train the sparse model following the same training
schedule as the original dense model.

3. Fine-tune the pre-trained sparse network on a given
downstream task in a dense manner by allowing the
zeroed weights to learn.

3 EXPERIMENTAL SETUP AND
RESULTS

First, we provide details on our pre-training settings for
GPT-2 Small (125M) and GPT-3 XL (1.3B), as well as
our setups for the downstream fine-tuning tasks. Then, we
compare sparse pre-training and sparse fine-tuning against
sparse pre-training and dense fine-tuning to highlight the
benefits of fine-tuning in a dense manner. Next, we validate
our hypotheses (refer to Section by evaluating SPDF
across several tasks in natural language generation and text
summarization. Following this, we compare the parameter
subspaces between the pre-trained and fine-tuned models.
Last, we present the advantages in training efficiency w.r.t
total training FLOPs when using SPDF versus standard
dense pre-training and dense fine-tuning.

All GPT models are pre-trained and fine-tuned using the
Cerebras CS-2, taking advantage of its ability to accelerate
training with unstructured sparsity. At present, the special-
ized kernels of Cerebras CS-2 are designed to facilitate
training with static unstructured sparsity. Consequently, the
results presented in this section do not include the utiliza-
tion of dynamic sparse training methods (e.g., SET [Mocanu
et al.| 2018]], RigL [Evci et al.| 2020, etc). In Appendix C,
we emphasize the possible advantages achieved through un-
structured weight sparsity on the Cerebras CS-2. We provide
measured speedup results compared to theoretical speedup
across different sparsity levels for a GPT-3 layer’s 12k x
12k matrix multiplication (MatMul) [Liel 2023|.

2137

E2E
68 B
D67
-
[a1]
66
000 025 050 0.75 0.00

Sparsity Level (%)
=== Dense (baseline)

WebNLG

0.25
Sparsity Level (%)

—e— Sparse Fine-tune

0.50 0.75

0.00

0.25 0.50
Sparsity Level (%)

0.75

—e— Dense Fine-tune

Figure 2: Comparison of sparse-to-dense vs sparse-to-sparse pre-training and fine-tuning with GPT-2 Small on E2E,
WebNLG and DART. Across tasks dense fine-tuning noticeably outperforms sparse fine-tuning, especially at 75% sparsity.

Flop Optimal Pre-training via Chinchilla Scaling Law
It was previously conventional in the literature to train all
large language models (e.g., GPT-3 [Brown et al.| [2020],
Gopher [Rae et al., 2021, Jurassic [Lieber et al.| [2021]], etc.)
on approximately 300B tokens of data. More recently, Chin-
chilla [Hoffmann et al.| 2022]] shows how parameters and
data should be scaled equally as compute budget increases,
which leads to significant gains in FLOP efficiency. In our
pre-training setup, we follow Chinchilla’s scaling law which
suggests that we need approximately 20 tokens per parame-
ter. Thus, for GPT-2 Small, a model with 125M parameters
needs to be pre-trained on 2.5B tokens. Then, for GPT-3 XL,
a model which has 1.3B parameters, needs to be pre-trained
on 26B tokens. Unless stated otherwise, we pre-train our
sparse GPT models from scratch on the Pile dataset [Gao
et al., 2020] across sparsity levels S € {50%, 75%}.

Fine-tuning on Downstream Tasks We studied dense
fine-tuning on several downstream tasks in natural language
generation and text summarization. We follow Hu et al.
[2022] in using the three standard natural language genera-
tion benchmark datasets (i.e., E2E [Novikova et al.| 2017,
WebNLG [Gardent et al., |2017] and DART [Nan et al.,
2021])). In addition, we fine-tune on Curation Corpus [[Cura{
tion, |2020]] according to the details described in [Rae et al.|
2021]). We fine-tune all parameters of the pre-trained GPT
models and evaluate the final fine-tuning performance using
the official evaluation scripts. More details on the hyperpa-
rameters can be found in Appendix A.

3.1 DETAILS ON THE FINE-TUNING DATASETS

Our work uses four fine-tuning datasets to investigate the
efficacy of our SPDF framework. These datasets were cho-
sen for studying the effect of sparse pre-training on different
sizes and types of data, along with the varying degree of
difficulty in the tasks.

End-2-End (E2E) NLG challenge dataset contains approx-
imately 45k training, 4.6k validation, and 4.6k test examples
with 8 distinct fields from the restaurant domain. The goal
of the task is to generate natural language descriptions in
the restaurant domain from meaning representations. We

use the official evaluation script, which reports BLEU [Pa4
pineni et al., [2002[], NIST [Belz and Reiter, 2006], ME-
TEOR [Lavie and Agarwall 2007], ROUGE-L [Lin| [2004],
and CIDEr [Vedantam et al., 2015]].

WebNLG dataset consists of 18k training, 2.2k validation,
and 2.4k test examples, where the input is a sequence of
(subject, property, object) triples. In the training and val-
idation splits, the input describes entities from 9 distinct
DBpedia categories. The test set contains 15 different do-
mains where 10 are present only in the training data. Here,
the test data is split into two parts, where categories seen in
the train set are in the first half, while the second half con-
sists of 5 unseen categories. We use the official evaluation
script, which reports BLEU, METEOR and TER [Snover
et al., [2006]. The WebNLG dataset is the smallest of the
three NLG tasks we evaluate on.

DART is an open domain DAta-Record-to-Text (i.e., table-
to-text) dataset, with a similar input format to WebNLG. It
consists of 62.6k training, 6.9k validation, and 12.5k test ex-
amples from several sources: WikiSQL [Zhong et al.,[2017]],
WikiTableQuestions [Pasupat and Liang|, |2015]], Cleaned
E2 and WebNLG 201 and applies some manual or
automated conversion. We use the official evaluation script
and report BLEU, METEOR and TER. The DART dataset
is considered to be the most challenging NLG task out of
the three we evaluate.

Curation Corpus is a recently introduced dataset comprised
of 40,000 bespoke text summaries of finance articles for the
task of text summarization. We follow the instructions in the
Curation Corpus GitHub repositoryE] to download approxi-
mately 40k article summary pairs. After filtering examples
where either the article or the summary are empty, we are
left with 39,911 examples. Following Marfurt and Hender{
son| [2021]], we split them into train/validation/test sets as
80/10/10 to arrive at split sizes of 31,929/3,991/3,991.

"https://github.com/tuetschek/e2e-cleanin
g

thtps://gitlab.com/shimorina/webnlg—data
set/-/tree/master/webnlg_challenge_2017

https://github.com/CurationCorp/curation

Fcorpus

2138

https://github.com/tuetschek/e2e-cleaning
https://github.com/tuetschek/e2e-cleaning
https://gitlab.com/shimorina/webnlg-dataset/-/tree/master/webnlg_challenge_2017
https://gitlab.com/shimorina/webnlg-dataset/-/tree/master/webnlg_challenge_2017
https://github.com/CurationCorp/curation-corpus
https://github.com/CurationCorp/curation-corpus

Table 1: Downstream accuracy of GPT-2 Small and GPT-3
XL across various tasks (i.e., E2E, WebNLG, DART and
Curation Corpus) at sparsity levels 50% and 75% during
pre-training. In the metric column, the direction of the arrow
indicates better result (e.g., up indicates higher is better).

Pre-Train E2E WebNLG DART Curation
Model . Corpus
Sparsity
BLEU?T | PPL|

GPT-2 0% | 67491060 63424026 46304016 | 13.381000
Small 50% 67394033 63.104013 45.741010 | 15.091004
5% 66.501085 62.641020 44.971041 | 17144001

0% 68.101060 63.621023 47711011 8.28.10.01

GPT3XL 50% | 6798406 63474021 47.104013 | 921u00
75% 67.661050 63.061011 46.961008 | 11.034002

3.2 SPARSE FINE-TUNING VS DENSE
FINE-TUNING

In this section, we first empirically establish the need for
dense fine-tuning to help mitigate the difficulties of sparse-
to-sparse training (i.e., sparse pre-training followed by
sparse fine-tuning). In Figure 2| we compare dense fine-
tuning against sparse fine-tuning on GPT-2 Small and show
that across all three NLG tasks (i.e., E2E, WebNLG and
DART), dense fine-tuning helps reduce the drop in BLEU
score relative to the respective dense baselines. For exam-
ple, the 75% sparse GPT-2 Small model on WebNLG ob-
serves a delta of -1.48 and -0.78 in the BLEU scores, when
sparse fine-tuning and dense fine-tuning, respectively. This
suggests that fully sparse end-to-end pre-training and fine-
tuning can prevent the model from generalizing well on
downstream tasks. However, we can mitigate the difficul-
ties of poor generalizability due to sparse-only training by
transitioning from sparse to dense matrices during the fine-
tuning phase. Although dense fine-tuning consumes more
FLOPs compared to sparse fine-tuning, the overall fine-
tuning FLOPs relative to pre-training, still remains insignifi-
cant (discussed further in Section[3.3).

3.3 SPDF ON NATURAL LANGUAGE
GENERATION AND TEXT SUMMARIZATION

We perform an extended study on SPDF to further investi-
gate its effectiveness on a diverse set of fine-tuning tasks,
when using sparse pre-trained GPT-2 Small and GPT-3 XL
models. In this section, we focus on natural language gen-
eration (i.e., E2E, WebNLG, and DART) and text summa-
rization (i.e., Curation Corpus) tasks and refer to Table|[T|for
all the discussion points. We note that in Appendix B, we
provide evaluation scores on all the metrics used to officially
evaluate E2E, WebNLG and DART, respectively.

First, we validate Hypothesis|[I] that high degrees of weight
sparsity can be induced during pre-training. Our results in-
dicate that in most settings, we can pre-train these GPT

models with up to 75% sparsity without significant degra-
dation across all NLG tasks. On the 75% sparse GPT-3 XL
model, we observe deltas of -0.44, -0.56, and -0.75 in the
BLEU scores for E2E, WebNLG and DART, respectively.
In addition, the 50% sparse GPT-2 Small model observes
deltas of -0.10, -0.32, and -0.56 in the BLEU scores for
E2E, WebNLG and DART, respectively. Overall, our find-
ings show that these GPT models can be pre-trained with
50%-75% sparsity without losing significant accuracy on
these downstream tasks.

Second, we validate Hypothesis [2that the performance of
the sparse pre-trained model is correlated with the difficulty
of the fine-tuning task. E2E, WebNLG and DART are NLG
tasks which focus on mapping structured data content to
a text describing this content. The Curation Corpus task
focuses on summarizing the text description. While both
tasks involve generating semantically coherent natural lan-
guage, the summarization tasks are more difficult, since
it require understanding of long sequences and compress-
ing the sequence without loss of information. On the E2E,
WebNLG and DART tasks, GPT-3 XL can be pre-trained up
to 75% sparsity without a significant drop in BLEU score,
as discussed previously. In contrast, on Curation Corpus,
GPT-3 XL pre-trained at 75% sparsity loses 2.75 perplex-
ity. In general, all data-to-text NLG tasks obtain a lower
degradation compared to the more difficult Curation Corpus
summarization task at higher levels of sparsity.

Finally, we validate Hypothesis [3] that as the size of the
model increases, it becomes more amenable to higher spar-
sity levels. We analyze the relative drop in performance
between the dense baseline and its sparse variants for GPT-2
Small and GPT-3 XL. This trend is clearly evident on the
more difficult Curation Corpus task at 75% sparsity, where
relative to the dense baseline, the larger GPT-3 XL model
has a perplexity delta of +2.75 compared to a worse +3.76
delta observed in the smaller GPT-2 Small model. Similarly,
on the DART task, the most challenging NLG task out of the
three we evaluated, the delta in the BLEU score is -1.33 and
-0.75 for GPT-2 Small and GPT-3 XL, respectively. These
observations indicate that as the size of the language model
increases, it suffers less on downstream task performance
when training with high sparsity.

3.4 PRE-TRAINING VS FINE-TUNING
PARAMETER SUBSPACES

In this section we analyze the parameter subspaces of the
pre-trained model and its fine-tuned parameters across all
layers to further understand (a) the behaviour of dense and
spare pre-trained representations when fine-tuned, and (b)
the effect of scaling the model size on parameter subspaces
between the two phases. Inspired by |Radiya-Dixit and Wang
[2020]], we measure the angular distance (i.e., cosine dis-
tance) between the pre-trained model parameters and its

2139

GPT-2 Small Pre-trained vs. DART Weights - Sparsity (0%)

x
= 0.04

Wo

0.03

wy

-0.02

Wo

Angular Distance

w,

-0.01

Wo

i 2 3 4 5 6 7 8 9 10 11 12

Layer Number
GPT-2 Small Pre-trained vs. DART Weights - Sparsity (75%)

Wi

0.04

Wo

0.03

HEENEE

-0.01

Angular Distance
Wp Wy

W,

Wo
-HEH

-

~

5 6 7 8 9 10 11 12

Layer Number

Figure 3: The angular distances in parameter subspaces
between dense (top) and 75% sparse (bottom) pre-trained
and fine-tuned DART weights for GPT-2 Small.

fine-tuned parameters on a given downstream task. Specifi-
cally, in all layers of the language model, we inspect the four
weight matrices in the self-attention module; W¢ (query),
Wk (key), Wy (value) and Wp (attention output projec-
tion) and the two in the MLP module; W; (intermediate)
and Wo (MLP output projection). In this analysis we focus
on DART, the most difficult NLG task, and report the cosine
distances for all modules in each layer of the dense and 75%
sparse pre-trained GPT-2 Small and GPT-3 XL.

First, we aim to understand the behaviour of the parame-
ter subspaces of the dense and sparse pre-trained models
when fine-tuned. In GPT-2 Small (see Figure[3) and GPT-3
XL (see Figure [)), we observe that the dense pre-trained
parameters and its fine-tuned parameters have very small
cosine distances in almost all modules across each layer,
whereas the 75% sparse model has larger cosine distances
in certain modules (e.g., Wp and W) across all layers.
Here, the dense model’s fine-tuned parameters require less
change in the parameter subspace relative to the pre-trained
parameters, while the sparse model requires more move-
ment in certain modules to learn the downstream task. This
indicates that pre-trained models which learn high quality
textual representations need less movement in the parameter
subpsace to adapt to the downstream task. Although the
sparse model has less representational capacity in its pre-
trained parameters, it is capable of adapting certain modules
through dense fine-tuning to learn the downstream task and
stay competitive with the dense model’s performance.

Next, we study the effect of model size and the parameter
subspaces of the pre-trained and fine-tuned parameters. Ev-
idently, in Figure[d] we observe that the dense pre-trained
GPT-3 XL model has very small cosine distances across
all modules in almost each layer, in comparison to GPT-
2 Small. This suggests that as we increase the modeling

GPT-3 XL Pre-trained vs. DART Weights - Sparsity (0%)

|0.006

™ 10.004

-0.002

|0.006

-l [} -0.004

-0.002

Angular Distance
Wo W, Wp Wy Wo Wi

12 3 45 6 7 8 9101112131415 16 17 18 19 20 21 22 23 24
Layer Number

GPT-3 XL Pre-trained vs. DART Weights - Sparsity (75%)

Angular Distance
Wo W, Wp Wy Wo Wi

1234 5 6 7 8 9101112131415 16 17 18 19 20 21 22 23 24
Layer Number

Figure 4: The angular distances in parameter subspaces
between dense (top) and 75% sparse (bottom) pre-trained
and fine-tuned DART weights for GPT-3 XL.

capacity of the language model, only a few model parame-
ter updates traverse a very short distance in the parameter
space. This results in the pre-trained and fine-tuned weights
being highly close across all modules in almost each layer.
The larger language model is more capable of learning high
quality representations, thus requires less movement in the
fine-tuning parameter subspace. Even at 75% sparsity, the
GPT-3 XL model requires significantly less change to the
pre-trained parameters compared to GPT-2 Small in order
to perform competitively well with the dense model. Given
that many layers experience a very small change in the pa-
rameter subspace, we leave the investigation of freezing
these modules during the fine-tuning phase for future work.

3.5 SPDF TRAINING EFFICIENCY

We compare the standard dense pre-training followed by
dense fine-tuning framework to SPDF and highlight the
potential FLOP reduction we can achieve. In Table 2} we
report the total FLOPs (i.e., both the forward and backward
propagations) needed for pre-training and dense fine-tuning
GPT-2 Small and GPT-3 XL models on each of the tasks
we evaluated. We note that in the GPT-2 Small model, the
percentage of attention and vocab embeddings FLOPs ac-
count for approximately 13.3% and 27% of the total FLOPs,
respectively. Therefore, at 75%, we achieve approximately
1.65x FLOP reduction over the dense baseline. However, in
the larger GPT-3 XL, the percentage of attention and vocab
embeddings FLOPs account for 13.3% and 6.8%, respec-
tively. As a result, at the GPT-3 XL scale, SPDF provides
almost 2.5x FLOP reduction over the dense baseline when
pre-training with 75% sparsity. The trend of FLOP reduc-
tion relative to the dense baseline continues to increase with
larger models, so the potential gains from sparse pre-training
improves as model size grows. We also emphasize that the
total fine-tuning FLOPs is a small fraction of the total pre-
training FLOPs. In Appendix A.4, we provide details on
how the total pre-training and fine-tuning FLOPs for GPT-2
Small and GPT-3 XL were calculated.

2140

Table 2: Total FLOPs along with the associated theoretical speedup w.r.t the dense baseline (in brackets) for each of the
evaluated fine-tuning tasks on GPT-2 Small and GPT-3 XL. The reported training FLOPs includes both pre-training and
dense fine-tuning FLOPs. GPT-3 XL 75% SPDF provides ~ 2.5x FLOP reduction over end-to-end dense training.

Model Pre-Train | Pre-training + Fine-tuning FLOPs (x10'8)
Sparsity ‘ E2E WebNLG DART Curation Corpus

0% 2.48 (1.00x) 2.48 (1.00x) 2.45 (1.00x) 2.44 (1.00x)

GPT-2 Small 50% 1.84 (1.34x) 1.82 (1.35x%) 1.84 (1.34x) 1.81 (1.35x)

75% 1.52 (1.64x) 1.49 (1.65x) 1.52 (1.64x) 1.48 (1.65x)
0% 236.62 (1.00x) 236.62 (1.00x) 236.33 (1.00x) 236.32 (1.00x)
GPT-3 XL 50% 142.40 (1.66x) 142.10 (1.66x) 142.01 (1.66x) 142.40 (1.66x)
75% 95.29 (2.48x) 94.98 (2.49x) 95.29 (2.48x) 94.90 (2.49x)

4 RELATED WORK

Zero-Shot vs. Fine-tuning Recent works have shown that
large language models can achieve reasonable performance
without any parameter updates [Brown et al., 2020, |Chowd+
hery et al.|[2022, Rae et al.} 2021} Smith et al.| [2022], often
referred to as the zero-shot or few-shot setting. When no
parameters are fine-tuned, framing a target task in terms
of the pre-training objective enables zero-shot or few-shot
learning to use a task-specific prompt and a few examples of
a task [[Brown et al., [2020]. However, while such few-shot
learning is simple using such large models, there are alterna-
tive methods to obtain similar task accuracy using smaller
models [Schick and Schiitze, 2021]. In recent work, |Co{
hen et al.[[2022]] demonstrate that while scaling the size
of LaMDA can improve quality, combining scaling with
fine-tuning can improve the model across all metrics in-
cluding quality, safety and groundness. |[Solaiman and Den/{
nison| [2021]] show that fine-tuning also helps update lan-
guage model behaviour to mitigate harmful outputs, which
is highly critical for real-world deployment of LLMs (e.g.,
ChatGPT [OpenAl, 2022], Bard [Pichail [2023], etc.). To
achieve the best performance in practice, fine-tuning will
continue to be the modus operandi when using pre-trained
LLMs. Hence, our work focuses on pre-training and fine-
tuning language models across a diverse set of tasks, includ-
ing natural language generation and text summarization.

Efficient Fine-tuning While most large-scale models
such as GPT [Brown et al., 2020, Smith et al., [2022]
or T5 [Raffel et all [2022] are trained dense, there are
works [Houlsby et al.l [2019a, [Li and Liang| 2021b), [Za{
ken et al., 2021} |Hu et al.} 2022] that explore using limited
capacity (tuning a few layers or subset of parameters) in
the pre-trained models to fine-tune on downstream tasks.
These works are indicative that the total modeling capacity
is unnecessary for fine-tuning on downstream tasks. Our
work draws some inspiration from these works for exploit-
ing the limited capacity of models for final tasks. However,
we choose to reduce FLOPs for pre-training (significantly
more training FLOPs than fine-tuning) and then add all the
modeling capacity back during fine-tuning. This allows us

to train large models efficiently and yet retain accuracies
comparable to dense baselines. Although we do not explore
efficient fine-tuning in our study, we leave the exploration of
using alternative sparsity schedules [Zhu and Gupta, [2018|,
Liu et al. 2021]], adapting a subset of parameters during
fine-tuning [Ding et al.;|2022]] and imposing low-rank struc-
tures [Hu et al., 2022] for future work.

Weight Sparsification Techniques Many unstructured
weight sparsification techniques have been proposed in the
literature for training neural networks [Hoefler et al., [2022],
which can be categorized as static sparsity and dynamic
sparsity. Static sparsity methods have a fixed sparsity struc-
ture (i.e., sparsity mask) determined at initialization [Lee
et al.,[2019, Wang et al., 2020]. In contrast, dynamic sparse
training (DST) methods iteratively prune (drop) and add
(regrow) weights during training [Mocanu et al.| 2018} [Evci
et al., 2020, Jayakumar et al.l 2020, [Huang et al., [2022]]
to find the best possible sparse subnetwork while retaining
accuracy comparable to dense baselines. Although, dynamic
sparse training methods can help achieve Pareto improve-
ments in terms of number of training FLOPs to accuracy,
we leave this for future work. Inspired by [Li et al.,[2022],
which shows that scaling the size of CNNs closes the gap
between a randomly pruned sparse network and its dense
counterpart, we focus our study on language models with
static sparsity. While [Dao et al.| [2022a] demonstrate the
benefits of sparse-to-dense training, they mainly apply it
during pre-training and instead, focus their studies on dense-
to-sparse fine-tuning similar to other efficient fine-tuning
efforts. In our work, we show that sparse pre-training fol-
lowed by dense fine-tuning on downstream tasks can be on
par with the accuracy of a dense pre-trained model on many
tasks, while significantly lowering overall training FLOPS.

S CONCLUSION AND FUTURE WORK

In this work, we introduced Sparse Pre-training and Dense
Fine-tuning (SPDF) to reduce the computational FLOPs
of training GPT models using weight sparsity. To the best
of our knowledge, this is the first time a large GPT model

2141

has been pre-trained with high sparsity (50%-75%) without
significant loss in downstream task metrics. In our work, we
only use simple static sparsity, which is arguably the most
naive way to induce sparsity in neural networks. As for fu-
ture work, there are several natural directions for improving
our results on even larger models, including dynamic spar-
sity methods, better optimization techniques for sparse train-
ing, and architectures amenable to sparse training. Moreover,
to limit the computational cost of our study, we trained our
GPT models following the Chinchilla scaling law. Although
the Chinchilla pre-training schedule has been shown to be
FLOP-optimal for dense models, we plan to investigate how
well it transfers to sparse models. Our future work will
also investigate sparse scaling outside the Chinchilla dense
scaling laws. Regardless, we see the tremendous promise
of unstructured weight sparsity to accelerate the training
of LLMs, enabled by the recent advances in deep learning
hardware accelerators.

Author Contributions

We provide a summary of each author’s contributions:

e Vithursan Thangarasa led the effort for train-
ing/evaluation of large scale GPT models on the Cere-
bras CS-2, evaluated the technique in different FLOP
efficient training setups, brought up multiple down-
stream tasks, analyzed the parameter subspaces, and
wrote the manuscript.

* Abhay Gupta helped with pre-training GPT models
on the CS-2 and ran reference models to validate our
training and fine-tuning setup.

* William Marshall brought up various downstream tasks
on the CS-2 and assisted in running fine-tuning experi-
ments.

* Tianda Li assisted William Marshall and Vithursan
Thangarasa with running fine-tuning experiments.

» Kevin Leong assisted Abhay Gupta with pre-training
GPT models on the CS-2 and provided crucial help in
debugging issues.

* Dennis DeCoste conceived the original key idea.

* Sean Lie coordinated the bring up of GPT on CS-2 and
was involved in experimental validation and analysis.

» Shreyas Saxena advised the entire effort, brought up the
initial proof of concept and experimented with different
sparsity techniques.

» Shreyas Saxena and Sean Lie frequently met with
Vithursan Thangarasa to discuss the work and helped
revise several iterations of the manuscript.

6 ACKNOWLEDGEMENTS

We thank Anshul Samar, Dimitrios Sinodinos, and Joel Hes-
tness, for helpful edits and suggestions that improved the
clarity of our manuscript.

2142

References

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer.
Intrinsic dimensionality explains the effectiveness of lan-
guage model fine-tuning. In ACL, 2021.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A conver-
gence theory for deep learning via over-parameterization.
In ICML, 2019.

Christoph Alt, Marc Hiibner, and Leonhard Hennig. Fine-
tuning pre-trained transformer language models to dis-
tantly supervised relation extraction. In ACL, 2019.

Mike Ashby, Christiaan Baaij, Peter Baldwin, Martijn Bas-
tiaan, Oliver Bunting, Aiken Cairncross, Christopher
Chalmers, Liz Corrigan, Sam Davis, Nathan van Doorn,
Jon Fowler, Graham Hazel, Basile Henry, David Page,
Jonny Shipton, and Shaun. Steenkamp. Exploiting un-
structured sparsity on next-generation datacenter hard-
ware. 2019.

Anja Belz and Ehud Reiter. Comparing automatic and
human evaluation of NLG systems. In ACL, 2006.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfo-
gel. BitFit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models. In ACL,
2022.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. A neural probabilistic language model.
JMLR, 2003.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. In NeurIPS, 2020.

Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao
Song, Atri Rudra, and Christopher Re. Pixelated butterfly:
Simple and efficient sparse training for neural network
models. In ICLR, 2022a.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu,
Yang Zhang, Zhangyang Wang, and Michael Carbin. The
lottery ticket hypothesis for pre-trained bert networks. In
NeurIPS, 2020.

Tianlong Chen, Zhenyu Zhang, pengjun wang, Santosh Bal-
achandra, Haoyu Ma, Zehao Wang, and Zhangyang Wang.
Sparsity winning twice: Better robust generalization from
more efficient training. In /CLR, 2022b.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. Palm: Scaling language modeling with
pathways. arXiv, 2022.

Aaron Daniel Cohen, Adam Roberts, Alejandra Molina,
Alena Butryna, Alicia Jin, Apoorv Kulshreshtha, Ben
Hutchinson, Ben Zevenbergen, Blaise Hilary Aguera-
Arcas, Chung ching Chang, Claire Cui, Cosmo
Du, Daniel De Freitas Adiwardana, Dehao Chen,
Dmitry (Dima) Lepikhin, Ed H. Chi, Erin Hoffman-John,
et al. Lamda: Language models for dialog applications.
In arXiv. 2022.

Curation. Curation corpus base, 2020.

Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael
Poli, Jessica Grogan, Alexander Liu, Aniruddh Rao, Atri
Rudra, and Christopher Ré. Monarch: Expressive struc-
tured matrices for efficient and accurate training. In ICML,
2022a.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and
Christopher Re. Flashattention: Fast and memory-
efficient exact attention with IO-awareness. In NeurIPS,
2022b.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv, 2019.

Ning Ding, Yujia Qin, Guang Yang, Fu Wei, Zonghan
Yang, Yusheng Su, Shengding Hu, Yulin Chen, Chi-Min
Chan, Weize Chen, Jing Yi, Weilin Zhao, Xiaozhi Wang,
Zhiyuan Liu, Haitao Zheng, Jianfei Chen, Yang Liu, Jie
Tang, Juan Li, and Maosong Sun. Delta tuning: A com-
prehensive study of parameter efficient methods for pre-
trained language models. arXiv, 2022.

Erich Elsen, Marat Dukhan, Trevor Gale, and Karen Si-
monyan. Fast sparse convnets. arXiv, 2019.

Utku Evci, Fabian Pedregosa, Aidan N. Gomez, and Erich
Elsen. The difficulty of training sparse neural networks.
arXiv, 2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Cas-
tro, and Erich Elsen. Rigging the lottery: Making all
tickets winners. In ICML, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket
hypothesis: Finding sparse, trainable neural networks. In
ICLR, 2018.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of
sparsity in deep neural networks. arXiv, 2019.

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen.
Sparse gpu kernels for deep learning. In SC, 2020.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding,
Travis Hoppe, Charles Foster, Jason Phang, Horace He,
Anish Thite, Noa Nabeshima, et al. The pile: An 800gb
dataset of diverse text for language modeling. arXiv,
2020.

2143

Claire Gardent, Anastasia Shimorina, Shashi Narayan, and
Laura Perez-Beltrachini. The WebNLG challenge: Gen-
erating text from RDF data. In INLG, 2017.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao
Gong, Shijian Tang, Erich Elsen, Peter Vajda, Manohar
Paluri, John Tran, Bryan Catanzaro, and William J. Dally.
DSD: Dense-sparse-dense training for deep neural net-
works. In ICLR, 2017.

Xin He, Subhankar Pal, Aporva Amarnath, Siying Feng,
Dong-Hyeon Park, Austin Rovinski, Haojie Ye, Yuhan
Chen, Ronald Dreslinski, and Trevor Mudge. Sparse-tpu:
Adapting systolic arrays for sparse matrices. In ACM
International Conference on Supercomputing, 2020.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden,
and Alexandra Peste. Sparsity in deep learning: Pruning
and growth for efficient inference and training in neural
networks. In JMLR, 2022.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego
de las Casas, Lisa Anne Hendricks, Johannes Welbl,
Aidan Clark, Tom Hennigan, Eric Noland, Katherine Mil-
lican, George van den Driessche, Bogdan Damoc, Aure-
lia Guy, Simon Osindero, Karen Simonyan, Erich Elsen,
Oriol Vinyals, Jack William Rae, and Laurent Sifre. An
empirical analysis of compute-optimal large language
model training. In NeurIPS, 2022.

Sara Hooker. The hardware lottery. arXiv, 2020.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo,
Mona Attariyan, and Sylvain Gelly. Parameter-efficient
transfer learning for nlp. In ICML, 2019a.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo,
Mona Attariyan, and Sylvain Gelly. Parameter-efficient
transfer learning for NLP. In /ICML, 2019b.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. LoRA: Low-rank adaptation of large language
models. In ICLR, 2022.

Shaoyi Huang, Bowen Lei, Dongkuan Xu, Hongwu Peng,
Yue Sun, Mimi Xie, and Caiwen Ding. Dynamic sparse
training via more exploration. arXiv, 2022.

Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mo-
hiuddin, Lukasz Kaiser, Wojciech Gajewski, Henryk
Michalewski, and Jonni Kanerva. Sparse is enough in
scaling transformers. In NeurIPS, 2021.

Siddhant Jayakumar, Razvan Pascanu, Jack Rae, Simon
Osindero, and Erich Elsen. Top-kast: Top-k always sparse
training. In NeurIPS, 2020.

Peng Jiang, Lihan Hu, and Shihui Song. Exposing and ex-
ploiting fine-grained block structures for fast and accurate
sparse training. In NeurlIPS, 2022.

Ronny Krashinsky, Olivier Giroux, Stephen Jones, Nick
Stam, and Sridhar Ramaswamy. Nvidia ampere architec-
ture in-depth, May 2020. URL https://develope
r.nvidia.com/blog/nvidia-ampere-arch
itecture—-in-depth/.

Alon Lavie and Abhaya Agarwal. Meteor: An automatic
metric for mt evaluation with high levels of correlation
with human judgments. In Second Workshop on Statisti-
cal Machine Translation. ACL, 2007.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr.
SNIP: Single-Shot Network Pruning based on Connection
Sensitivity. In ICLR, 2019.

Chuan Li. Openai’s gpt-3 language model: A technical
overview. GPU Cloud, Workstations, Servers, Laptops
for Deep Learning, Aug 2022. URL https://lamb
dalabs.com/blog/demystifying—gpt—3.

Conglong Li, Minjia Zhang, and Yuxiong He. The
stability-efficiency dilemma: Investigating sequence
length warmup for training GPT models. In NeurlPS,
2022.

Dongyue Li and Hongyang Zhang. Improved regularization
and robustness for fine-tuning in neural networks. In
NeurIPS, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing
continuous prompts for generation. ACL, 2021a.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing
continuous prompts for generation. arXiv, 2021b.

Sean Lie. Thinking outside the die: Architecting the ml
accelerator of the future, Nov 2021. URL https://ww
w.microarch.org/micro54/media/lie—ke
ynote.pdf.

Sean Lie. Hot chips 34. cerebras architecture deep dive:
First look inside the hardware/software co-design for deep
learning. IEEE Micro, 2023.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham.
Jurassic-1: Technical details and evaluation. AI21 Labs,
2021.

Chin-Yew Lin. ROUGE: A package for automatic evalua-
tion of summaries. In Text Summarization Branches Out.
ACL, 2004.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atash-
gahi, Lu Yin, Huanyu Kou, Li Shen, Mykola Pech-
enizkiy, Zhangyang Wang, and Decebal Constantin Mo-
canu. Sparse training via boosting pruning plasticity with
neuroregeneration. In NeurIPS, 2021.

2144

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://lambdalabs.com/blog/demystifying-gpt-3
https://lambdalabs.com/blog/demystifying-gpt-3
https://www.microarch.org/micro54/media/lie-keynote.pdf
https://www.microarch.org/micro54/media/lie-keynote.pdf
https://www.microarch.org/micro54/media/lie-keynote.pdf

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Dece-
bal Constantin Mocanu, Zhangyang Wang, and Mykola
Pechenizkiy. The unreasonable effectiveness of random
pruning: Return of the most naive baseline for sparse
training. In ICLR, 2022.

Shiwei Liu, Tianlong Chen, Zhenyu Zhang, Xuxi Chen,
Tianjin Huang, Ajay Kumar Jaiswal, and Zhangyang
Wang. Sparsity may cry: Let us fail (current) sparse
neural networks together! In ICLR, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2017.

Xiaolong Ma, Minghai Qin, Fei Sun, Zejiang Hou, Kun
Yuan, Yi Xu, Yanzhi Wang, Yen-Kuang Chen, Rong Jin,
and Yuan Xie. Effective model sparsification by sched-
uled grow-and-prune methods. In /CLR, 2022.

Andreas Marfurt and James Henderson. Sentence-level plan-
ning for especially abstractive summarization. In Third
Workshop on New Frontiers in Summarization, 2021.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone,
Phuong H. Nguyen, Madeleine Gibescu, and Antonio
Liotta. Scalable training of artificial neural networks with
adaptive sparse connectivity inspired by network science.
Nature Communications, 2018.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Ab-
hinand Sivaprasad, Chiachun Hsieh, Xiangru Tang, Aa-
dit Vyas, Neha Verma, Pranav Krishna, Yangxiaokang
Liu, Nadia Irwanto, Jessica Pan, Faiaz Rahman, Ahmad
Zaidi, Mutethia Mutuma, Yasin Tarabar, Ankit Gupta,
Tao Yu, Yi Chern Tan, Xi Victoria Lin, Caiming Xiong,
Richard Socher, and Nazneen Fatema Rajani. DART:
Open-domain structured data record to text generation.
In ACL, 2021.

NeuralMagic. Deepsparse, 2021. URL https://gith
ub.com/neuralmagic/deepsparsel

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli,
Yann LeCun, and Nathan Srebro. The role of over-
parametrization in generalization of neural networks. In
ICLR, 2019.

Jekaterina Novikova, Ondfej Dusek, and Verena Rieser. The
E2E dataset: New challenges for end-to-end generation.
In SIGdial Meeting on Discourse and Dialogue, 2017.

OpenAl. Chatgpt: Optimizing language models for dialogue,
Nov 2022. URL https://openai.com/blog/ch
atgpt/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Car-
roll Wainwright, Pamela Mishkin, Chong Zhang, Sand-
hini Agarwal, Katarina Slama, Alex Gray, John Schul-
man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie

Simens, Amanda Askell, Peter Welinder, Paul Christiano,
Jan Leike, and Ryan Lowe. Training language models
to follow instructions with human feedback. In NeurIPS,
2022.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. Bleu: A method for automatic evaluation of machine
translation. In ACL, 2002.

Panupong Pasupat and Percy Liang. Compositional seman-
tic parsing on semi-structured tables. In ACL and IJCNN,
2015.

Sundar Pichai. An important next step on our ai journey, Feb
2023. URL https://blog.google/technolo
gy/ai/bard-google—ai-search—-updates/|

Alec Radford and Karthik Narasimhan. Improving language
understanding by generative pre-training. OpenAl Blog,
2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsu-
pervised multitask learners. OpenAl Blog, 2019.

Evani Radiya-Dixit and Xin Wang. How fine can fine-
tuning be? learning efficient language models. In AIS-
TATS, 2020.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Mil-
lican, Jordan Hoffmann, Francis Song, John Aslanides,
Sarah Henderson, Roman Ring, Susannah Young, et al.
Scaling language models: Methods, analysis & insights
from training gopher. arXiv, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li,
and Peter J. Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. In JMLR, 2022.

Timo Schick and Hinrich Schiitze. It’s not just size that mat-
ters: Small language models are also few-shot learners.
In ACL, 2021.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick
LeGresley, Samyam Rajbhandari, Jared Casper, Zhun Liu,
Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti,
et al. Using deepspeed and megatron to train megatron-
turing nlg 530b, a large-scale generative language model.
arXiv, 2022.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea Mic-
ciulla, and John Makhoul. A study of translation edit
rate with targeted human annotation. In Association for
Machine Translation, 2006.

Irene Solaiman and Christy Dennison. Process for adapting
language models to society (palms) with values-targeted
datasets. In NeurIPS, 2021.

2145

https://github.com/neuralmagic/deepsparse
https://github.com/neuralmagic/deepsparse
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://blog.google/technology/ai/bard-google-ai-search-updates/
https://blog.google/technology/ai/bard-google-ai-search-updates/

Mahdi Soltanolkotabi, Adel Javanmard, and Jason D. Lee.
Theoretical insights into the optimization landscape of
over-parameterized shallow neural networks. IEEE Trans-
actions on Information Theory, 2019.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya
Ganguli. Pruning neural networks without any data by
iteratively conserving synaptic flow. In NeurIPS, 2020.

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan,
Samyam Rajbhandari, Conglong Li, Xiangru Lian, Ji Liu,
Ce Zhang, and Yuxiong He. 1-bit adam: Communication
efficient large-scale training with adam’s convergence
speed. arXiv, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N Gomez, . ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, NeurIPS, 2017.

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi
Parikh. Cider: Consensus-based image description evalu-
ation. In CVPR, 2015.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking
winning tickets before training by preserving gradient
flow. In ICLR, 2020.

Ziheng Wang. Sparsednn: Fast sparse deep learning infer-
ence on cpus. arXiv, 2021.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Bar-
ret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten
Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tat-
sunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean,
and William Fedus. Emergent abilities of large language
models. TMLR, 2022. Survey Certification.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit:
Simple parameter-efficient fine-tuning for transformer-
based masked language-models. arXiv, 2021.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql:
Generating structured queries from natural language us-
ing reinforcement learning. arXiv, 2017.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie
Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li. Learn-
ing n:m fine-grained structured sparse neural networks
from scratch. In ICLR, 2021.

Michael Zhu and Suyog Gupta. To prune, or not to prune:
Exploring the efficacy of pruning for model compression.
In ICLR, 2018.

2146

	Introduction
	Methodology
	Intuition and Hypotheses
	Sparse Pre-training and Dense Fine-tuning

	Experimental Setup and Results
	Details on the Fine-tuning Datasets
	Sparse Fine-tuning vs Dense Fine-tuning
	SPDF on Natural Language Generation and Text Summarization
	Pre-training vs Fine-tuning Parameter Subspaces
	SPDF Training Efficiency

	Related Work
	Conclusion and Future Work
	Acknowledgements

