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A PROOFS OF FORMAL RESULTS

A.1 PROOF OF ERROR GUARANTEES

We recall the notion of distance defined in the main paper, inspired by the H-divergence in the domain adaptation literature
[Kifer et al., 2004, Ben-David et al., 2010],

dH,β (P∥Q) =

sup
g∈H:P [I(g)]≤β

2
∣∣∣P [I(g)]−Q [I(g)]

∣∣∣.
Let us prove the first part of Theorem 4.3:

Lemma A.1. For a novelty detection problem as in Definition 3.1, let h ∈ H and denote α(h) = EPT [h(x)], while
β(h) = EPS [h(x)]. Define,

R̄l01
T (h) = [α− α(h)]+

(1− α)
[
β(h) + dH,β(h) (PS∥PT ,0)

]
.

Then we have that Rl01
T (h) ≤ R̄l01

T (h).

Proof. We decompose the error as follows:

Rl01
T (h) = (1− α) · Ex∼PT ,0

[h(x)] + α · Ex∼PT ,1
[1− h(x)]

= (1− α) · Ex∼PT ,0
[h(x)] + α ·

(
1− Ex∼PT ,1

[h(x)]
)

= α− Ex∼(1−α)PT ,0+αPT ,1
[h(x)] + 2 · (1− α) · Ex∼PT ,0

[h(x)]

= α− Ex∼PT [h(x)] + 2 · (1− α) · Ex∼PT ,0
[h(x)] (1)

= α− Ex∼PT [h(x)] + 2 · (1− α) ·
[
Ex∼PS [h(x)] + Ex∼PT ,0

[h(x)]− Ex∼PS [h(x)]
]

≤ α− Ex∼PT [h(x)] + 2 · (1− α) · Ex∼PS [h(x)] + 2 · (1− α) · |PT ,0 (h(x) = 1)− PS (h(x) = 1)|
= α− α(h) + 2 · (1− α)β(h) + 2 · (1− α) · |PT ,0 (h(x) = 1)− PS (h(x) = 1)|
≤ α− α(h) + 2 · (1− α)

[
β(h) + dH,β(h)(PS∥PT ,0)

]
= R̄l01

T (h).

With this inequality in hand, we can now prove Proposition 4.1.
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Proposition. Assume separability holds, which postulates that PT ,0(B) > 0 ⇒ PS(B) > 0 for any measurable subset B
w.r.t both distributions. 1 Scarcity-of-Unicorns (Assumption 4.2) holds with β, εshift set to 0.

Proof. Let B denote the measurable subsets w.r.t both PS and PT ,0 and define,

d1,β (PS∥PT ,0) = sup
B∈B:PS(B)≤β

2
∣∣∣PS(B)− PT (B)

∣∣∣.
Taking for any g ∈ H the subset of inputs where it equals 1, I(g) ⊆ X , and I(H) = {I(g) : g ∈ H}, we see that
I(H) ⊆ B and hence we have

dH,β (PS∥PT ,0) ≤ d1,β (PS∥PT ,0) , (2)

for any β ≥ 0. Under separability we have that d1,0 (PS∥PT ,0) = 0, since if PT ,0(B̃) > 0 for some B̃ ∈ B then we
must also have PS(B̃) > 0 and then B̃ /∈ {B ∈ B : PS(B) ≤ 0}. This means that for any B̃ ∈ {B ∈ B : PS(B) ≤ 0}
we must have PT ,0(B̃) = 0 and hence d1,0 (PS∥PT ,0) = 0. The claim is proved by combining this with Equation (2),
to obtain dH,β (PS∥PT ,0) ≤ d1,β (PS∥PT ,0) = 0, and since the divergence is non-negative it must equal 0, meaning
Scarcity-of-Unicorns holds with β, εshift set to 0.

Next let us restate the proposed learning rule

max
h∈H

α̂(h)

s.t. β̂(h) ≤ β

We derive generalization bounds for solutions to the empirical version of this problem. Recall the Rademacher complexity of
H with respect to n samples from distribution P is denoted by Rn,P (H) = EPn

[
1
nEσ[suph∈H

∑
i σih(xi)]

]
, the following

statement gives the statistical guarantee we require for our result.

Lemma A.2. Let H be a hypothesis class with Rademacher complexities RnS ,PS (H) and RnT ,PT (H) respectively, and ĥ a

solution to the empirical estimate of Equation (5), with β ≥ β(h∗) +
RnS ,PS (H)

2 +
√

ln(1/δ)
2nS

. Then with probability at least
1− 4δ we have that simultaneously,

α(ĥ) ≥ α(h∗)−RnT ,PT (H)−

√
2 ln(1/δ)

nT
, (3)

β(ĥ) ≤ β +
RnS ,PS (H)

2
+

√
ln(1/δ)

2nS
. (4)

Proof. From standard Rademacher bounds on the risk of classifiers in a hypothesis class (e.g. Bartlett and Mendelson [2002,
Theorem 5]), we have that with probability 1− 2δ:

∣∣∣β̂(h)− β(h)
∣∣∣ ≤ RnS ,PS (H)

2
+

√
ln(1/δ)

2nS
∀h ∈ H.

Therefore Equation (4) holds since β̂(ĥ) ≤ β. Also, from the lower bound on β assumed in our lemma statement, all
classifiers with False Positive Rate smaller than β(h∗) will be in the feasible set of Equation (5). This follows from the
above inequality since for all h ∈ H where β(h) < β(h∗) it holds that

β̂(h) ≤ β(h) +
RnS ,PS (H)

2
+

√
ln(1/δ)

2nS

⇒ β̂(h) ≤ β(h∗) +
RnS ,PS (H)

2
+

√
ln(1/δ)

2nS
.

1separability also assumes ∃h∗ ∈ H such that Rl01
T (h∗) = 0, but to prove Proposition 4.1 we do not require this.



Specifically, this means that with probability at least 1− 2δ, h∗ is a feasible solution to Equation (5) and taking ĥ that is
optimal for Equation (5), we can gather that α̂(ĥ) ≥ α̂(h∗). For the second part of the proof, we use the same inequality as
before to obtain that with probability at least 1− 2δ,

|α̂(h)− α(h)| ≤ RnT ,PT (H)

2
+

√
ln(1/δ)

2nT
∀h ∈ H. (5)

Then we take a union bound to conclude that with probability at least 1− 4δ,

α(h∗)− α(ĥ) = α(h∗)− α̂(h∗) + α̂(h∗)− α̂(h) + α̂(h)− α(ĥ)

≤ α(h∗)− α̂(h∗) + α̂(h)− α(ĥ)

≤ RnT ,PT (H) +

√
2 ln(1/δ)

nT
.

The first inequality follows from our previous conclusion that α̂(ĥ) ≥ α̂(h∗) and the second from Equation (5).

With the concentration properties in hand, recall that we assume dH,β(PS∥PT ,0) ≤ εshift for some fixed β, εshift ≥ 0, and let
us combine this with the previous claims to bound the error as required for the second part of Theorem 4.3.

Lemma A.3. Let h∗ ∈ H be a minimizer of Rl01
T (h) and assume ĥ solves Equation (5) with β ≥ β(h∗) +

RnS ,PS (H)

2 +√
ln(1/δ)
2nS

, then with probability at least 1− 4δ it holds that

Rl01
T (ĥ) ≤ Rl01

T (h∗) + 4εshift + 2(β − β(h∗))

+RnS ,PS (H) +RnT ,PT (H)

+
√

2 ln(1/δ)
[
n
− 1

2

S + n
− 1

2

T

]
.

Proof. Let us assume that the inequalities in Lemma A.2 hold, which occurs with probability at least 1− 4δ. We write down
the gap in risks between the hypotheses ĥ and h∗, while using these inequalities:

Rl01
T (ĥ)−Rl01

T (h∗) = Ex∼PT

[
h∗(x)− ĥ(x)

]
+ 2 · (1− α) · Ex∼PT ,0

[
ĥ(x)− h∗(x)

]
= α(h∗)− α(ĥ) + 2 · (1− α) · Ex∼PT ,0

[
ĥ(x)− h∗(x)

]
= α(h∗)− α(ĥ) + 2 · (1− α) ·

[
Ex∼PT ,0

[
ĥ(x)− h∗(x)

]
− Ex∼PS

[
ĥ(x)− h∗(x)

]
+ Ex∼PS

[
ĥ(x)− h∗(x)

]]
= α(h∗)− α(ĥ) + 2 · (1− α) ·

[
Ex∼PT ,0

[
ĥ(x)

]
− Ex∼PS

[
ĥ(x)

]
+ Ex∼PS [h

∗(x)]− Ex∼PT ,0
[h∗(x)]

+ Ex∼PS

[
ĥ(x)− h∗(x)

]]
≤ Rnt,PT (H) +

√
2 ln(1/δ)

nT
+ 2 · (1− α) ·

[
Ex∼PT ,0

[
ĥ(x)

]
− Ex∼PS

[
ĥ(x)

]
+ Ex∼PS [h

∗(x)]− Ex∼PT ,0
[h∗(x)]

+ Ex∼PS

[
ĥ(x)− h∗(x)

]]
≤ Rnt,PT (H) +

√
2 ln(1/δ)

nT
+ 2 · (1− α) ·

[
2ϵshift + Ex∼PS

[
ĥ(x)− h∗(x)

]]]

≤ Rnt,PT (H) +

√
2 ln(1/δ)

nT
+ 2 · (1− α) ·

2ϵshift + β − β(h∗) +
RnS ,PS (H)

2
+

√
ln(1/δ)

2nS

] .



The first and third inequalities are obtained by applying Lemma A.2, the second holds due to Assumption 4.2. It is easy to
see that the above expression lower bounds the one in our claim since α ∈ [0, 1] and hence our proof is concluded.

The theorem in the main paper follows directly from the statements we proved above.

Proof of Theorem 4.3. The first part of the theorem follows directly from Lemma A.1, while the second is a direct conse-
quence of Lemma A.3.

Possible Extension of Results. We note that one clear gap in our results is that they apply to l01 instead of other surrogate
losses that we use in practice. This is also a gap in the work of Ben-David et al. [2010] on domain adaptation and it is a
result of using the dH divergence. Hence a possible path to generalize our result is to use other divergences in the proof
of Lemma A.1, e.g. like that used in Mansour et al. [2009] to extend the results of Ben-David et al. [2010]. The other
component for proving Theorem 4.3, namely the proof of Lemma A.2, does not depend explicitly on l01 and can be extended
using standard arguments on Rademacher complexity.

A.2 SUFFICIENT AND NECESSARY CONDITIONS FOR LEARNING AND MIXTURE PROPORTION
ESTIMATION

We complete proofs of claims made in the main paper with simple proofs for the necessity and sufficiency of assumptions in
detecting classes under distribution shift. Our first claim was impossibility of learning when no distributional assumptions
are made.

Proposition. Let A be a learning algorithm for the task of OOD novel category detection. There are distributions
PS , PT ,0, PT ,1 such that ∃h∗ ∈ H for which Rl01

T (h∗) = 0, while ESS ,ST

[
Rl01

T (A(SS , ST ))
]
≥ 0.5.

Proof. Let α = 0.5, and P,Q,D distributions such that for some hypothesis class H there is h∗ ∈ H for which EQ[h
∗(x)] =

0,ED[h∗(x)] = 1. Consider two problems where in one PS = P, PT ,0 = Q,PT ,1 = D, and in the other P̃S = P, P̃T ,0 =

D, P̃T ,1 = Q. That is, the roles of D and Q are switched between the two problems. Notice that the target distributions
PT and P̃T are the same in both problems since PT = 0.5PT ,0 + 0.5PT ,1 = 0.5P̃T ,0 + 0.5P̃T ,1 = P̃T . Hence training
data for a learning algorithm A are drawn from the same distribution. Yet if we denote the risk w.r.t to the second problem
by R̃l01

T : H → [0, 1] then for any h ∈ H if Rl01
T (h) = ε it holds that R̃l01

T = 1 − ε. Hence a learning algorithm A that
achieves expected error smaller than 0.5 on one problem will incur expected error larger than 0.5 in the other, which proves
the statement.

Note that Blanchard et al. [2010] prove that irreducibility is required for identification of α and for learning under the SCAR
assumption (i.e. PS = PT ,0). Irreducibility states that maxγ≥0 {PT ,1 = γPS + (1− γ)Q : Q ∈ ∆} = 0, where ∆ is the
set of all distributions over the measurable set X . While the statement we prove above is much simpler and says we cannot
learn unless something is known about the target distribution, it does not follow from their proof. When irreducibility does
not hold, then there is also no h∗ ∈ H with Rl01

T (h∗) = 0 since PT ,1 is a mixture with a non-zero component of PS , and
thus cannot be perfectly separated from PT ,0 = PS . Our statement demands the existence of h∗ that achieves loss 0, and
thus the conditions for the statments are different.

The last remaining claim we made in the paper and has not been proven above, is that under separability and given perfect
knowledge of PS and PT the mixture proportion α can be recovered.

Lemma A.4. Assume the novel class detection problem satisfies (No-Overlap): there exists a subset Bsep ⊂ B such that
PS(Bsep) = 1, PT ,0(Bsep) = 1 and PT ,1(Bsep) = 0, Then α is identifiable.

Proof. Define the set of distributions over X that fully overlaps with PS , that is P(PS) = {P ∈ ∆ : P (B) > 0 ⇒
PS(B) > 0 ∀B ∈ B} where B is the set of all measurable subsets of X . Let us define the following principle for
approximating α:

α̂ = arg min
γ∈[0,1]

{PT = (1− γ)P + βQ : P ∈ P(PS) and Q a distribution}. (6)



Because given the ground truth distributions PT ,0, PT ,1, we know that PT = (1 − α)PT ,0 + αPT ,1, we have that
PT (Xsep) = (1−α)PT ,0(Xsep) = 1−α. Clearly, taking γ = α, P = P0 and Q = P1 gives a feasible solution to the right
hand side of Equation (6). Now assume that there exists some feasible solution with γ < α, P ∈ P(PS) and a distribution
Q. Then PT (Xsep) ≥ (1− γ)P (Xsep) = 1− γ > 1− α, which contradicts our conclusion that PT (Xsep) = 1− α must
hold. Hence α is identifiable and given by the solution to Equation (6).

Having proven all claims made in the main paper, we turn to a short supplementary discussion on the divergence dH,β(P∥Q)
we used in our assumptions and corresponds to the frequency that rare events in P take in distribution Q.

A.3 FURTHER DISCUSSION ON dH,β(P∥Q)

In the domain adaptation literature [Ben-David et al., 2010, Kifer et al., 2004], the H-divergence defined as

dH(P,Q) = 2 sup
g∈H

|P [I(g)]−Q [I(g)]|,

is used for two reasons. As in our use of dH,β(P∥Q), the term dH(PS , PT ) is included in an upper bound on error w.r.t
a target distribution. While dH(PS , PT ) can be estimated from data, and therefore one can optimize the resulting upper
bound w.r.t H, this is not true in our case. Unfortunately calculation of dH,β(PS , PT ,0) requires a sample from PT ,0,
and to obtain an upper bound we require an assumption about the magnitude of the divergence. The second reason that
the H-divergence is used in domain adaptation is that it provides a much tighter bound than the one based on standard
divergences between distributions, e.g. in our case it is an alternative to d1,β (P∥Q) = supB∈B:P (B)≤β 2

∣∣∣P (B)−Q(B)
∣∣∣,

taken w.r.t measurable subsets B under the two distributions. This indeed tightens our bounds by weakening the assumption
required in Assumption 4.2, though it has no practical implication on the algorithm we use.

It is worth noting that if we obtain samples from distributions P and Q then dH,β(P∥Q) can be estimated efficiently by
solving a rate-constrained classification problem. This can be helpful in case we wish to reason about dH,β(PS∥PT ,0)
in a data-driven manner. For instance, say PS is a distribution over EHRs in one hospital, and we have a dataset from
another hospital with corresponding distribution Q where we do not think that novel groups have emerged. If we are
willing to assume that in our target distribution PT = αPT ,1 + (1− α)PT ,0, it holds that dH,β(PS∥PT ,0) does not exceed
dH,β(PS∥Q), then we can get an upper bound on the divergence we are interested in by estimating dH,β(PS∥Q) from data.
The following lemma tells us this can be done by solving a rate-constrained Empirical Risk Minimization problem.

Lemma A.5. Let SP , SQ be i.i.d sampled datasets of size n from P,Q respectively, H a symmetric hypothesis class (i.e.
that 1− h ∈ H for any h ∈ H), and dH,β(P̂∥Q̂) the empirical estimate of dH,β(P∥Q) (i.e. where we replace P,Q with
empirical distributions defined by a uniform distribution over the examples in the datasets). Then we have that:

dH,β(SP ∥SQ) = 2

1− min
h∈H:n−1

∑
x∈SP

h(x)≤β

 1

n

∑
x:h(x)=1

I[x ∈ SP ] +
1

n

∑
x:h(x)=0

I[x ∈ SQ]


Proof. Denoting by P̂ , Q̂ the empirical distributions corresponding to SP and SQ, we will follow the proof of Ben-David
et al. [2010, Lemma 2] to show that for any h ∈ H,

Q̂[I(h)]− P̂ [I(h)] = 1−

 1

n

∑
x:h(x)=1

I[x ∈ SP ] +
1

n

∑
x:h(x)=0

I[x ∈ SQ]

 . (7)

Once this is shown, we get the result in the statement by maximizing w.r.t h ∈ H : β̂(h) ≤ β, since β̂(h) =
n‘−1

∑
x∈SP

h(x) by definition. The absolute value on the left hand side of the above equation, which appears in the
definition of dH,β(P∥Q) is obtained from the symmetry of H. Now for completeness let us give the proof of the required
equality. We start by taking,

1 =
1

2n

∑
x:h(x)=0

I[x ∈ SP ] + I[x ∈ SQ] +
1

2n

∑
x:h(x)=1

I[x ∈ SP ] + I[x ∈ SQ],



and plugging-in to the right hand side of Equation (7) we get:

1−

 1

n

∑
x:h(x)=1

I[x ∈ SP ] +
1

n

∑
x:h(x)=0

I[x ∈ SQ]


=

1

2n

∑
x:h(x)=0

I[x ∈ SP ]− I[x ∈ SQ] +
1

2n

∑
x:h(x)=1

I[x ∈ SQ]− I[x ∈ SP ]

=
1

2
(1− P̂ [I(h)]− 1 + Q̂[I(h)]) +

1

2

(
Q̂[I(h)]− P̂ [I(h)]

)
=Q̂[I(h)]− P̂ [I(h)].

The lemma tells us that the divergence can be estimated with rate-constrained optimization, and using similar techniques to
the ones used in other constrained learning works [Donini et al., 2018, Chamon et al., 2022] and in Theorem 4.3, we can
obtain generalization bounds for estimation of dH,β(P∥Q) from a finite sample.

B ADDITIONAL DETAILS ON EXPERIMENTAL RESULTS

In this section we provide additional details on our experiments. We start with details about relative AU-ROC and Av.-
Precision in cases where CoNoC is not the best performing method. On MIMIC-III CoNoC obtains a mean relative AU-ROC
(denoted by AU-ROC/AU-ROCbest) of 0.997 even in the 3 rounds where it is not the best method. For comparison, the
propensity baseline achieves a mean relative AU-ROC of 0.953 in rounds where it is not the best method. Similarly with
relative Av.-Precision, the propensity baseline achieves a mean value of 0.844 in rounds where it is not the best performing
method, while CoNoC has mean 0.964 under the respective rounds. For Tabula-Muris, the relative AU-ROC upon not being
best performing is similar for all methods, but in relative Av.-Precision CoNoC only loses one round and it is comparable to
the best performing method as it achieves 0.995 relative AU-ROC. The losses for other methods are by a far more significant
margin, as implied in Table 1.

The rest of this section begins by describing the way we generate distribution shifts, continue to implementation details, and
finally provide a few additional analyses.

Generation of distribution shifts. As explained in Section 6, from the collection of available labels in the dataset Y , one
label is taken as the novel subgroup ynovel. Then for each label y ∈ Y \ {ynovel}, denoting by Iy = {i : yi = 1} the examples
with label y, we draw a number γy uniformly from [0.1, 1] and put (randomly drawn) γy · |Iy| of the examples with label y
in SS . The other (1− γy) · |ST | go in ST . In MIMIC-III, the labels are phenotypes and each example (corresponding to a
patient admission) can be assigned with more than one label. In this case we iterate over the different labels in some order
and create the shift for each one as described above, but Iy will not contain indices where patients were assigned with a
label that came before it in the iterative process. Before the iterative process begins we also keep away all the examples
belonging to the novel class {x}i∈Inovel where Inovel = {i : ynovel = 1} and put them in ST .

Finally, we also draw validation sets VS , VT out of SS and ST respectively, to be used for model selection and validation as
described later in the next part.

Details on implementation and model selection. In our experiments we use a multilayer perceptron with 2 hidden layers
for Tabula-Muris (feature dimension 2866, number of hidden units at each layer 64), following [Cao et al., 2021], and a
linear model for MIMIC-III (features dimension is 714) used as one of the methods in [Harutyunyan et al., 2019]. We note
that the computational complexity of the algorithm depends on the implementation of the constrained optimization step
(line 4 in Algorithm 1), results on some methods are given in Chamon et al. [2022], Cotter et al. [2019] and to obtain the
computational complexity of CoNoC we should multiply the running time by L, which is the size of α. It is likely that
this runtime can be reduced significantly by more efficient search methods for α, we keep exploration of implementation
improvements for CoNoC to future work.

The Domain Discriminator baseline, hdisc, is trained by minimizing the log-loss. For MIMIC-III we use the cross validated
Logistic Regression method from sklearn [Pedregosa et al., 2011], while for Tabula Muris we train with Adam [Kingma and
Ba, 2015] for 150 epochs and select the weights at the end of the epoch where the model achieves highest accuracy (on



classification of VS vs. VT ) over a held-out validation set. The propensity-weighted baseline is trained in the same manner,
except we use the following weighted loss from Bekker et al. [2019], Gerych et al. [2022]:

Rlog
S,e(h) = n−1

S

∑
x∈SS

e(x)−1llog(h(x), 0) + (1− e(x)−1)llog(h(x), 1)

+ n−1
T

∑
x∈ST

llog(h(x), 1). (8)

Here e(x) is the propensity score, which we obtain from the output of the Domain Discriminator model, hdisc. Namely, it is
the probability assigned by the model used in hdisc that the example x is from PS . We calibrate the Domain Discriminator
model over the validation set using Platt scaling [Platt et al., 1999] before retrieving e(x), this improves the propensity score
estimation and also downstream performance on the learning task. Finally, model selection for this baseline is the same as
for the hdisc, except we use the weighted accuracy (i.e. Equation (8) with l0−1 instead of unweighted accuracy).

In both datasets, CoNoC is trained by alternating steps of Adam for the model parameters, and gradient descent for the
Lagrange multiplier. Model selection for CoNoC is done by selecting weights at the end of the epoch where the recall,
α̂(h) = |VT |−1

∑
x∈VT

h(x), is highest and False Positive Rate, |VS |−1
∑

x∈VS
h(x), is smaller than β = 0.01. We train

models with several values of α and choose the final model using this criterion.

For additional details on the implementation of methods, please advise our code, to be released here upon publication.

Mixture Proportion Estimation As mentioned in Section 6, the outputs of hdisc and the propensity weighted risk minimizer
are not good binary classifiers in case we simply set their decision threshold at probability 0.5 for y = 1. Instead we need to
adjust this threshold with a Mixture Proportion Estimation. We use methods from Elkan and Noto [2008], Li and Liu [2003],
denoted by EN and FPR < 0.1 respectively. The first estimator is designed under the assumption that PS = PT ,0, while
the second one is included since it follows the model selection principle we use in our method of thresholding the FPR. To
report the MPE for CoNoC we simply use α̂(h), the fraction of positive labels predicted on the validation set from the target
distribution.

For the same reasons mentioned in Section 6, the metric we use for evaluation is a relative metric. We denote the estimated
mixture proportion by α̂, the true proportion by α, and use a quantity we call Relative Absolute Mixture Proportion Error
(RAMPE), |1− α̂

α |. E.g., if the novel class comprises 4% of the population, and our approximation is 1%, the RAMPE is
0.75.

As seen in Figure 1, the combination of the estimator from Elkan and Noto [2008] and the domain discriminator give
the best performance for MIMIC-III (note that the domain discriminator is worst in terms of AU-ROC and Av.-Precision
according to Table 1 of the main paper). However, this estimator is very inaccurate for the Tabula Muris dataset. Occurences
of such large errors may be expected, as the estimator is designed under the assumption that PS = PT ,0. Hence, while it
may happen to provide a reasonable estimate at times, it can have very large errors at others. These results suggest that in
terms of estimating the mixture proportion, no single combination of baseline algorithm and MPE technique is preferred for
both datasets, while CoNoC performs comparably to using the FPR, which avoids the very large errors that estimators
based on the SCAR assumption can incur.

Effect of distribution shift on performance of CoNoC vs. baselines. Continuing our motivating example from Section 3.1,
Figure 2 shows how the methods compare under the same categories, but when there is no distribution shift, i.e. PS = PT ,0.
As expected, the methods learn weights that are very close to one another, but differ in their bias terms. Hence in terms of
detection abilities for the novel class they are equivalent. That is, under an appropriate setting of the decision threshold, both
models will detect the novel class.

Details on values of α and raw AU-ROC values. We include raw AU-ROC and AU-PRC values for all repetitions of our
experiments. Table 1 has gives the details for the Tabula-Muris experiments. We observe that in repetitions where α is large,
the gap between CoNoC and baselines is somewhat smaller. This is intuitive, since in case the addition of the novel category
makes up most of the distribution shift between PS and PT , we arrive at a case that is somewhat similar to our synthetic
example in Figure 2 where CoNoC coincides with a domain discriminator. However, in all repetitions CoNoC has either the
best AU-ROC or AU-PRC, and in 5 out of 8 runs it is best on both metrics. We note that for very small classes (i.e. smaller
than 0.002), all methods perform poorly and we do not include such novel categories in our experiments.

In MIMIC-III we use one phenotype as the novel category and draw different distribution shifts on each repetition. Hence
the size of the novel category does not vary much, and it is α = 0.075±0.002. The raw values of the AU-ROC and AU-PRC
can still change quite a lot, since different shifts entail different detection abilities for all the methods. Hence Table 2 gives

https://github.com/yowald/OOD-Novel-Category/tree/main


Algorithm
RAMPE: |1− α̂/α|

MPE method MIMIC-III Tabula Muris

Domain Disc. EN 0.28± 0.18 6.60± 5.52
FPR < 0.1 0.55± 0.12 0.72± 0.86

Propensity EN 0.62± 0.14 6.58± 5.45
FPR < 0.1 0.54± 0.12 0.50± 0.57

CoNoC 0.44± 0.11 0.76± 0.99

Figure 1: Average Relative Absolute Mixture Proportion Error (|1− α̂/α|) for evaluated methods, where α̂ is the estimated
proportion and α is the true one. The estimator derived in Elkan and Noto [2008] under assumptions that do not hold in our
setting of distribution shift, demonstrates unstable performance while thresholding FPR values seems to offer comparable
performance on all methods.

Figure 2: (Left) Toy example from Section 3.1, but without distribution shift. The learned models mostly differ in their
bias terms, hence under an appropriate choice of the decision threshold (e.g. via the results of Elkan and Noto [2008]) both
can detect the novel category successfully. Hence CoNoC performs on-par with unconstrained approaches. (Right) The
ROC-Curves of the two classifiers coincide, emphasizing their equivalence in terms of ability to detect the novel category.

the details results for these runs. We observe that the performance of all methods changes in unison according to the drawn
shifts (as explained earlier, some shifts entail more difficult problems than others), but in relative performance CoNoC
performs best on most repetitions.

Effect of β on performance of CoNoC. We use the Tabula-Muris dataset to examine the effect of choosing different values
of β in our procedure. To do that we take the training history from running Algorithm 1, and change the model selection in
the last step of the algorithm to have a different value of β. Hence by varying the values of β we choose different models.
Appendix B shows the relative AU-ROC and Av.-Precision as we vary β between low and high values. It is important to
note that the problem here is separable in the sense that training classifiers with true label for the novel class achieves
AU-ROC values around the range of 0.97 to 0.99. Hence low values of β are expected to produce favorable results, as may
be confirmed by the figure. As we move towards larger values of β the metrics become more noisy and also comparable to
the baseline (we do not show the propensity estimation baseline since it has inferior performance in this dataset). It also
worth mentioning that increasing β only affects the performance of CoNoC, hence the change in relative performance is
only due to variation in performance of our method. Our conclusion is that while the method is robust to the choice of β,
large deviations from the ideal selection β(h∗) will result in degraded performance.
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