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Abstract

In this work, we solve the problem of novel cate-
gory detection under distribution shift. This prob-
lem is critical to ensuring the safety and efficacy of
machine learning models, particularly in domains
such as healthcare where timely detection of novel
subgroups of patients is crucial.
To address this problem, we propose a method
based on constrained learning. Our approach is
guaranteed to detect a novel category under a rel-
atively weak assumption, namely that rare events
in past data have bounded frequency under the
shifted distribution. Prior works on the problem do
not provide such guarantees, as they either attend
to very specific types of distribution shift or make
stringent assumptions that limit their guarantees.
We demonstrate favorable performance of our
method on challenging novel category detection
problems over real world datasets.

1 INTRODUCTION

Distribution shifts occur in most real-world scenarios where
machine learning (ML) is deployed and these shifts can
result from both natural and adversarial changes including
differences in data recording protocols, shifts in the un-
derlying population being monitored, or the way the ML
tool is being used [Koh et al., 2021, Finlayson et al., 2021,
Quinonero-Candela et al., 2008, Saria and Subbaswamy,
2019]. While some shifts do not pose an immediate safety
concern, others warrant examination and proper treatment.
In this paper, we are concerned with potential risks that
arise from the emergence of a novel category or subgroup
and will study guarantees around the automated detection
of such subgroups under practical, real-world assumptions.

As motivation, consider dataset shift scenarios in the health-
care domain [Finlayson et al., 2021, Table 1]. At the start

of the COVID-19 pandemic, a Michigan hospital described
how a predictive tool for catching patients at-risk for a life-
threatening complication called sepsis started to over-alert
and incorrectly flag patients as the underlying population
shifted [Finlayson et al., 2021]. Ultimately they had to turn
off the tool because of the harms it posed to patients. In this
scenario, the tool was scanning and providing predictions
on new patient groups (e.g., patients with likely COVID-19)
which led to the safety issue. 1

In this paper we tackle the problem of Out-of-Distribution
(OOD) Novel Category Detection (also called novel class,
or subgroup). We aim to identify novel instances within
a dataset that contains both known and novel categories.
What sets our approach apart is that we not only account
for the introduction of a new category but also allow other
distribution shifts between the new and previously observed
data. This aspect is of utmost importance when it comes to
monitoring risks in real-world applications, as distributions
tend to change over time and new data continually emerges.

Returning to the healthcare scenario described above, be-
sides the introduction of new patient subgroups related to
COVID-19, the baseline population itself shifted because
the types of patients coming into the hospital evolved over
the course of the pandemic. Early on, only those with ur-
gent needs visited. Over time, those with longer term needs
and planned surgeries began to use the hospital. Requiring
the baseline distribution to remain constant over time is a
highly restrictive assumption and in many real-world set-
tings, we need the ability to detect novel categories without
enforcing this assumption [Koh et al., 2021, Finlayson et al.,
2021] (that is, the ability to work OOD). To this end, we
develop a method with guarantees on classification error of
the novel category, that hold under a wide range of distribu-
tion shifts. Formal guarantees are particularly important in

1A trivial solution might be to filter out new likely subgroups
including COVID-19 patients from the list of patients that the tool
was allowed to make predictions on. However, because patient
diagnoses were not available upon presentation to the hospital, this
was inadequate.
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safety-critical applications, where these can help substan-
tiate trust and confidence by users and regulators. Many
approaches have been devised for detection of novel cate-
gories, mainly in the Open World learning literature (e.g.
[Panareda Busto and Gall, 2017, Han et al., 2019, Xu et al.,
2019]). These methods are often applied in complex sce-
narios, yet give little to no theoretical guarantees. On the
other hand, methods that are rigorously justified apply to
scenarios without distribution shifts, and are hence substan-
tially simpler [Blanchard et al., 2010, Garg et al., 2022, Liu
et al., 2018], or less suitable for novel category detection
than the setting we pursue here [He et al., 2018]. We make
the following contributions:

• We propose a new learning algorithm for the problem of
OOD novel category detection (i.e. novel category detec-
tion when the baseline distribution shifts). The method
builds on approaches for constrained learning [Eban et al.,
2017, Agarwal et al., 2018, Chamon et al., 2022, Cotter
et al., 2019a, Donini et al., 2018] and seeks to maximize
the number of points correctly detected as novel, while
keeping false detections below a certain rate.

• We provide guarantees on the error of the learned model
that hold under a certain assumption, namely, that rare
events in past data have bounded frequency under the new
distribution. Prior works either provide much weaker guar-
antees or rely on stringent assumptions. Works that study
the label-shift scenario assume that the only change is in
frequency of known and labelled subgroups [Garg et al.,
2022, Shanmugam and Pierson, 2021]. In our healthcare
scenario, such methods require defining all possible pa-
tient subgroups that can shift, labelling the membership
of patients in them, and accurately estimating the change
in their frequency. Methods based on this strong assump-
tion can also become impractical considering the tedious
labelling and amount of data required. Other approaches
require access to perfectly accurate density ratios between
the distribution of past and current data (or propensity
scores, that cannot necessarily be estimated from data)
[Bekker et al., 2019, Gerych et al., 2022, Jain et al., 2020],
which limits both theoretical guarantees and their per-
formance in many settings, for instance those involving
high-dimensional data where density ratio estimation is
challenging [Sugiyama et al., 2012, Chapter 8].

• Finally, we show favorable performance of the algorithm
on challenging novel category detection tasks that we
simulate over real world datasets.

The problem we study is related to OOD detection and Open-
World learning [Ruff et al., 2021]. We provide a short review
of these problems below, and after defining our specific
setting formally in Section 3, we will review assumptions
made in more closely related work in Section 3.2. Our own
assumptions are described in Section 4 along with their
theoretical guarantees. Then in Section 5 and Section 6 we
present our method CoNoC and its experimental evaluation.

2 RELATED WORK

Our results apply to a generalized form of Novel Category
Detection. Let us discuss this setting and other problems
related to ours.

Novel Category Discovery, Open World Learning and
PU Learning. In Open World Learning [Parmar et al.,
2023] (and specifically Open Set Domain Adaptation
[Panareda Busto and Gall, 2017]) and Novel Category Detec-
tion [Liu et al., 2018] the learner is given labelled data from
known categories, and unlabelled data from both known and
novel categories. These problems bear similarity to learning
from Positive and Unlabelled data (PU-learning) [Bekker
and Davis, 2020], where we are given data that are labelled
as positive, which in our terminology means “from a pre-
viously observed category", or unlabelled (i.e. from both
observed and novel categories). The task is then to learn a
model that classifies categories, both known and novel. The
main difference between these settings and our work is that
prior work provides guarantees for cases where the base
distribution does not shift 2. We thus refer to our generalized
setting as OOD Novel Category Detection.

OOD Detection. Identifying anomalous instances that are
not members of previously seen classes, or out-of-support
for the distribution of observed data, is a well-studied prob-
lem in ML. The main difference from our setting is that in
OOD detection the learner does not observe any examples
from the target distribution (e.g. COVID-19 patients and
shifted baseline population in our healthcare example) at
training time, and the baseline distribution is assumed to
be fixed. Classic approaches for this problem include One-
Class Support Vector Machines [Schölkopf et al., 2001]
and Kernel Density Estimation [Parzen, 1962], they have
modern counterparts suited for flexible models such as neu-
ral networks [Chalapathy et al., 2018, Nachman and Shih,
2020]. We refer the reader to [Ruff et al., 2021] for a com-
prehensive survey. Since in OOD detection no data from
the target distribution is observed, theoretical guarantees
such as PAC-learning generalization bounds are limited. Re-
cent work shows that it is often impossible to provide such
guarantees on OOD detection, unless we make restrictive
assumptions relating our hypothesis class (i.e. architecture),
and the target distribution [Fang et al., 2022]. In our setting,
we instead allow the learner to access target data. This is
a reasonable assumption in any setting where our novelty
detector can adapt to newly observed data, and it lets us
alleviate assumptions on the hypothesis class and to provide
guarantees under shifts in the baseline distribution.

Constrained Learning and Fairness. Our method draws
on developments in learning with data-dependent con-
straints, and specifically rate-constraints (e.g. constraining
the amount of examples that are labelled positive) (e.g [Eban

2we elaborate on existing results in Section 3.2
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et al., 2017, Donini et al., 2018]). Many of these methods
were motivated by applications in fairness [Agarwal et al.,
2018, Woodworth et al., 2017, Donini et al., 2018], yet
general frameworks for learning with data dependent con-
straints are useful for many other tasks and there is growing
interest in them [Donti et al., 2021, Chamon et al., 2022].

We now turn to provide a formal definition of the OOD
novel category detection problem, and an intuition to our
proposed solution.

3 PROBLEM SETTING

In OOD Novel Category Detection we seek to detect a novel
category (also called novel class, or subgroup) within a
dataset that contains both known and novel categories. Cru-
cially, the distribution of known categories can shift.

Consider a dataset SS = {xi}NS
i=1 collected under a cer-

tain protocol, we formally treat this as an i.i.d sample from
some source distribution PS . For instance, in our health-
care example, data collected in the months preceding the
pandemic. At a later time or under different conditions, we
collect more data ST = {xi}NT

i=1 which contains a novel cat-
egory that we would like to detect, of proportion α ∈ [0, 1]
in the population. The category is unlabelled, i.e. we are
not given any examples that are labelled as novelties. We
treat this category as a sample from a novelty distribution
PT ,1, and call its proportion in the new data, α, the mixture
proportion. The rest of the data in ST is sampled from a
nominal distribution PT ,0, which we think of as a shifted
version of PS . In summary, ST is an i.i.d sampled dataset
from PT = (1− α)PT ,0 + αPT ,1. Our task is as follows.

Definition 3.1 (OOD Novel Category Detection). The
tuple 〈PS , PT ,0, PT ,1, α, nS , nT 〉 defines an OOD novel
category detection problem where SS , ST are datasets of
nS , nT examples sampled i.i.d from PS , PT respectively,
where PT = (1− α)PT ,0 + αPT ,1. For a hypothesis class
of binary classifiersH, Let h∗ ∈ H be the minimizer of the
expected 0− 1 risk over the target distribution:

Rl01T (h) =(1− α) · Ex∼PT ,0 [h(x)]

+ α · Ex∼PT ,1 [1− h(x)] . (1)

An algorithm A : XnS × XnT → H is a learner for the
novel class detection problem if for every ε, δ > 0 it satis-
fies Rl01T (A(SS , ST )) ≤ Rl01T (h∗) + ε with probability at
least 1− δ whenever min{nS , nT } ≥ mH(ε−1, δ−1) for a
function mH : [0, 1]2 → N.

Further, in this problem PS and PT ,0 may contain differ-
ent mixture proportions of the same latent subpopulations
(Duchi et al. [2022], Sagawa et al. [2020a]). This allows us
to tackle challenging scenarios like the healthcare scenario
described earlier where the types of patients visiting the hos-
pital changes over time including the introduction of new

COVID-19 related patient subgroups. Later we will specify
the precise distribution shifts that we treat. Denoting the
distributions corresponding to subpopulations by {Gi}Ki=1

for some K ∈ N, and the probability simplex over [K] by
∆K−1,

PS =

K∑
i=1

γiGi, PT ,0 =

K∑
i=1

γ̂iGi, γ, γ̂ ∈ ∆K−1. (2)

3.1 MOTIVATING EXAMPLE

To motivate our solution consider a simple case of latent
subpopulation shift, as in Equation (2), plotted in Figure 1
(Left). There are two latent subpopulations that make up
known categories in SS , and the novel category is marked
with a dashed circle. Let us examine how a method that does
not handle distribution shift works in this example.

Detection without distribution shift. Formally, our prob-
lem can be cast in the framework of learning from Pos-
itive and Unlabelled data (PU-learning). Most work un-
der this framework relies on the Selected-Completely-At-
Random assumption (SCAR) [Elkan and Noto, 2008], that
is PS = PT ,0. Besides being very restrictive, it turns out
that many of the approaches based on SCAR can fail when it
breaks. Common algorithms for PU-learning are based on a
classifier trained to distinguish the domains PS and PT (Do-
main Discriminator). Intuitively, this approach is effective
since examples from the novel class turn out to be “farthest"
from the decision threshold. Then adjustment of the deci-
sion threshold according to a successful Mixture Proportion
Estimation (MPE), i.e. an estimate of α, should enable us to
classify novelties [Elkan and Noto, 2008, du Plessis et al.,
2014, Garg et al., 2021]. The example in Figure 1 shows this
approach can run into problems when there is distribution
shift between PS and PT ,0. A domain discriminator trained
with logistic regression is biased towards separating the cat-
egories that are observed in the source data SS . This is due
to their varying mixture coefficients between PS and PT ,0,
and it results in the examples from the novel category not
being farthest from the decision boundary.

Why CoNoC solves this. However, a linear classifier can
separate the novel category, and the method we propose in
this work is able to recover it as can be seen for the classifier
labelled CoNoC in Figure 1 (Left). In a nutshell, CoNoC
seeks to maximize the number of points in ST that are de-
tected as novelties, while keeping the number of points in
SS that are wrongly detected as novelties below a certain
threshold. Figure 1 (Right) illustrates why this approach is
expected to work by plotting the Receiver-Operator Curve
(ROC) for two models, the domain discriminator and the one
trained with CoNoC. The domain discriminator does better
(in terms of aggregate classification metrics such as average
loss, or F1-Score) in classifying SS vs. ST , and note that
larger distribution shifts further improve its discriminative
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Figure 1: (Left) Toy example where a classifier learned with CoNoC is favorable over a domain discriminator in detecting a
novel category. A domain discriminator is trained to reduce overall loss and hence it is biased towards labelling the upper
right cluster with label 1 (i.e. as a novelty). (Right) ROC-Curves for a domain discriminator and a model trained with
CoNoC for the data in the left panel, where ST are labeled positive and SS negative. An optimal classifier for the novel
category is suboptimal w.r.t aggregate performance metrics (e.g. AU-ROC), but has higher TPR when constrained to a small
FPR, illustrating why our constrained learning approach can recover novel categories successfully.

ability. This is clear from the figure, as its ROC curve domi-
nates the other one for most values of the False Positive Rate
(FPR). However, an optimal novel category detector (in our
case this coincides with CoNoC) has better True Positive
Rate (TPR) for small FPR values, as observed in Figure 1
(Right). Intuitively, this model sees a sharp increase in the
TPR for low FPR values due to correct classifications of the
novel category. Hence our suggested approach should prefer
the novel category detector over the domain discriminator.
But when is this approach guaranteed to detect the novel
category? What are the required assumptions, sample size,
and how should we set the bound on the FPR? In the follow-
ing sections we provide answers to these questions and an
implementation of the proposed principle.

Concluding this example, we note that other solutions can be
devised for the specific dataset we considered. For instance
clustering, or training a domain discriminator from a larger
hypothesis class. Yet these solutions do not extend grace-
fully to more general settings. For instance, it is unlikely
that in every dataset of interest, clustering high dimensional
data retrieves the accurate subgroups that undergo shift. Ex-
pressive hypothesis classes are also not a reliable solution,
as they introduce biases of their own. For example, it is
well-known that large overparameterized models tend to
perform poorly on small subgroups [Hashimoto et al., 2018,
Sagawa et al., 2020b, Menon et al., 2021, Wald et al., 2022].
In our setting these may correspond to the novel category
which comprises a small part of ST , thus detection of the
novel category may be poor.

3.2 NECESSARY AND SUFFICIENT
ASSUMPTIONS FOR LEARNING

Moving towards a principled approach for OOD Novel Cat-
egory Detection, our first challenge is that we do not have

access to samples from PT ,0 and PT ,1, hence Rl01T (h) can-
not be estimated from data. It is easy to show that without
any distributional assumptions, guarantees on the perfor-
mance of a learning algorithm cannot be derived. We state
this below and give the proof in Appendix A.2.

Proposition 3.1. LetA be a learning algorithm for the task
of OOD novel category detection. There are distributions
PS , PT ,0, PT ,1 such that ∃h∗ ∈ H for which Rl01T (h∗) = 0,

while ESS ,ST

[
Rl01T (A(SS , ST ))

]
≥ 0.5.

Since it is impossible to guarantee better-than-chance per-
formance for a learning algorithm, several distributional
assumptions have been formulated in the literature under
which learning is possible.

No distribution shift scenario When PS = PT ,0, assump-
tions like irreducibility, which says that PT ,1 cannot be
written as a mixture of PS and another distribution, enable
identification of α and learning [Blanchard et al., 2010].
Stricter assumptions can help devise more efficient algo-
rithms, e.g. [Scott, 2015, Garg et al., 2021], but they are
insufficient once we consider distribution shifts.

Known subpopulations and invariance of order More
recent works [Garg et al., 2022, Shanmugam and Pierson,
2021, Jain et al., 2020], consider the subpopulation shift
scenario of Equation (2) where the subgroups are known,
or the learner is given a sample from each Gi. Once sub-
groups are known, some variations on the assumptions for
the no-distribution-shift scenario enable learning, and meth-
ods such as reweighting and resampling can counteract the
effects of the shift to obtain learning algorithms. In contrast,
in this work we ask what can be done in cases where the
subgroups are unknown to the learner. Another type of as-
sumption that has been explored is “invariance of order"
[Kato et al., 2018, He et al., 2018], which can roughly be
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summarized as PS(x) > PT (x) ⇒ PT ,0(x) > PT ,1(x).
Meaning examples that are more likely in the source distri-
bution are less likely to be novelties. This type of assumption
is unsuitable for our goals, as it entails an asymmetry be-
tween PS and PT ,0. For instance, it is reasonable to expect
that detection of a novel subgroup of patients is possible
regardless of whether it has been introduced in hospital A
(corresponds to PS), or hospital B (resp. PT ,0). This type
of symmetry is denied by the assumption on orderings.

Separability The closest assumption to ours is separability,
which says that the support of PS must be disjoint from
that of PT ,1 and fully overlap with that of PT ,0. Showing
that the mixture proportion can be recovered, given per-
fect knowledge of PS and PT is rather straightforward (see
Appendix A.2), and learning with infinitely large samples
can also be done. Bekker et al. [2019] propose using the
propensity score, PS(x)/ (PS(x) + PT ,0(x)) to augment
and reweigh SS , forming a debiased risk minimization prob-
lem. 3 Gerych et al. [2022] show that under separability, the
propensity score can be identified from data. They do not
provide finite sample guarantees, and the method requires
solving a challenging density ratio approximation problem.
Our contributions include a relaxed version of the separabil-
ity assumption, which leads to finite sample generalization
bounds and a learning rule that is markedly different from
approaches based on estimating importance scores.

4 AN ASSUMPTION ON THE RATE OF
RARE EVENTS AND AN ERROR
BOUND

We now turn to develop our algorithm and derive its sta-
tistical guarantees. Our first step is to define a divergence
that measures the extent to which rare events in a distribu-
tion P are likely under distribution Q. Given a threshold
β > 0, used to describe an event being “rare", we consider
the following divergence. 4

Definition 4.1. For distributions P,Q over domain X , a
hypothesis class H and β > 0, we define for each g ∈ H
the set it characterizes I(g) = {x|g(x) = 1} and denote,

dH,β (P‖Q) = (3)

sup
g∈H:P [I(g)]≤β

2
∣∣∣P [I(g)]−Q [I(g)]

∣∣∣.
3This expression for the score assumes a uniform prior on

being sampled from the source vs. target distribution. Generally,
the score is the probability that x was sampled from PS .

4It is worth noting that this notion of distance, taken
w.r.t measurable subsets B under the two distributions in-
stead of the hypothesis class H, that is d1,β (P‖Q) =

supB∈B:P (B)≤β 2
∣∣∣P (B)−Q(B)

∣∣∣, upper bounds dH,β and is
perhaps more intuitive to reason about.

The divergence is similar to the well-knownH-divergence
from the domain adaptation literature [Ben-David et al.,
2010, Kifer et al., 2004], but has an additional rate con-
straint where g(x) may only make a fraction β of positive
predictions under P . We use this divergence to state our dis-
tributional assumption in what follows, in Appendix A.3 we
also give a short discussion on properties of this divergence.

The Scarcity-of-Unicorns Assumption. Intuitively, if rare
events (or “unicorns”) under our source distribution PS
are common under PT ,0, it is impossible to tell whether
such events are novelties (i.e. were sampled from PT ,1)
or not. Therefore a bound on the rate of such rare events
seems like a reasonable assumption to form the basis of
our learning algorithm. In practice, users will have to set a
parameter β ≥ 0 that approximates the False Positive Rate
(FPR) of an ideal classifier for the new category (which
we denote by β(h∗)). For instance, if we expect to find
distinct novel patterns in images, we may set β = 0. An
alternative, more involved scenario, may arise when we
observe features such as vitals and lab results of patients,
where a novel subpopulation can have some small overlap
with previous data. Then regulators and domain experts may
define appropriate values for this overlap that warrant further
examination. The probability of these false positive events
under the shifted distribution PT ,0 appears as an additional
error εshift in our bound (that is presented in Theorem 4.3),
and our main assumption is that this error is bounded.

Assumption 4.2. For a known value β ≥ 0 and εshift ∈
[0, 1) it holds that dH,β (PS‖PT ,0) ≤ εshift.

The error εshift is incurred due to distribution shift, and it can
be reduced for setting a smaller value for β. However, if β
is too low we cannot detect instances of the novel category.
Our theoretical result provides guidance on how to scale β
with the sample size and complexity ofH, however in gen-
eral we must reason about β(h∗) using domain knowledge,
and this will be reflected by the term β − β(h∗) in our error
bound. We discuss potential data-driven methods to reason
about β in the appendix, and close this part by emphasizing
an important special case of Assumption 4.2. Namely the
separability assumption, common in PU-learning literature
(e.g. [Bekker and Davis, 2020, Gerych et al., 2022]).

Proposition 4.1. Assume separability holds, which postu-
lates that PT ,0(B) > 0⇒ PS(B) > 0 for any measurable
subset B w.r.t both distributions. 5 Scarcity-of-Unicorns
(Assumption 4.2) holds with β, εshift set to 0.

4.1 A CONSTRAINED LEARNING RULE AND ITS
GENERALIZATION PROPERTIES

We are now in place to present our learning rule and its
statistical guarantee. The following theorem, that we prove

5separability also assumes ∃h∗ ∈ H such that Rl01T (h∗) = 0,
but to prove Proposition 4.1 we do not require this.
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in Appendix A.1, summarizes our proposal and result. We
use the Rademacher complexity [Bartlett and Mendelson,
2002], denoted by Rn,P (H) for a distribution P and sample
size n, as a measure for the expressiveness ofH, yet other
standard notions can be used.

Theorem 4.3. Let 〈PS , PT ,0, PT ,1, α, nS , nT 〉 define an
OOD novel category detection problem (see Definition 3.1)
and h∗ ∈ H the minimizer ofRl01H . The following statements
hold:

• Let β(h) = Ex∼PS [h(x)], α(h) = Ex∼PT [h(x)] be the
False Positive Rate (FPR) and recall of a hypothesis h ∈
H w.r.t the task of classifying source and target data. The
target risk on detecting the novel category can be bounded
by

Rl01T (h) ≤ [α− α(h)]+ (4)

(1− α)
[
β(h) + dH,β(h) (PS‖PT ,0)

]
.

• Let δ > 0 and assume our problem satisfies Assump-
tion 4.2 with parameters β ≥ β(h∗) +

RnS ,PS (H)

2 +√
ln(1/δ)
2nS

and εshift ≥ 0. Consider ĥ = A(SS , ST ) that
solves the empirical learning rule,

max
h∈H

α̂(h) (5)

s.t. β̂(h) ≤ β,

where α̂(h), β̂(h) are empirical estimates of α(h), β(h)
from ST , SS respectively. We have with probability at
least 1− 4δ that

Rl01T (ĥ) ≤ Rl01T (h∗) + 4εshift + 2(β − β(h∗))

+RnS ,PS (H) +RnT ,PT (H)

+
√

2 ln(1/δ)
[
n
− 1

2

S + n
− 1

2

T

]
. (6)

Let us break down the statement and draw conclusions. The
proposed learning rule in Equation (5) optimizes an up-
per bound on the error, where the upper bound is drawn
in the first part of the theorem (Equation (4)). Unfortu-
nately, the upper bound in Equation (4) cannot be estimated
from data, since a sample from PT ,0 is required to estimate
dH,β(h) (PS‖PT ,0). This is where Assumption 4.2 comes in
and lets us replace the divergence term, under the condition
that β(h) is small enough. Finally, we draw a generalization
bound on the error of the learned classifier in Equation (6).

Takeaways from Theorem 4.3 Focusing on separable prob-
lems (see Proposition 4.1), we may discard the terms that
depend on εshift and β from the generalization bound in
Equation (6).6 Then we gather that the algorithm A which

6That is if we set β according to the separability assumption,
approaching 0 with growing nS . Otherwise the error β − β(h∗)
does not approach 0, reflecting how well we approximate β(h∗).

solves Equation (5) is a learning algorithm for the problem,
as prescribed in Definition 3.1, so long thatH is learnable
under the standard terminology of learning theory [Shalev-
Shwartz and Ben-David, 2014]. Note that previously pro-
posed approaches solve more general problems such as
clustering [Jain et al., 2020] or density ratio approximation
[Gerych et al., 2022], and hence do not provide this type
of learnability guarantee. Following the principle that one
should not solve a more general problem than required [Vap-
nik, 2006], we opt for direct optimization of an upper-bound
on the error, sidestepping such intermediate steps. We also
conclude that upon using our proposed learning rule, the
value of β in the constraint of Equation (5) should be set
above 0 even when separability holds (i.e. β(h∗) = 0). It
should scale with the complexity of H and inversely with
nS . When separability does not hold, we incur an additional
irreducible error proportional to εshift.

5 CONOC: A CONSTRAINED LEARNING
METHOD FOR OOD NOVEL
CATEGORY DETECTION

Most computationally efficient gradient methods and classi-
cal ML theory results on statistical efficiency apply to stan-
dard risk minimization problems, hence applying them to
our problem of solving Equation (5) is not straightforward.
Fortunately, recent literature on fairness and constrained
learning presents effective tools and beautiful theory to
tackle this type of problem [Eban et al., 2017, Chamon
et al., 2022, Cotter et al., 2019b,a, Donini et al., 2018, Agar-
wal et al., 2018, Woodworth et al., 2017]. In this section
we adapt these methods and insights to tackle our novelty
detection problem and arrive at a constrained learning ap-
proach, that we call CoNoC (Constrained Novel Category
detection).

In terms of formal guarantees, constrained learning methods
offer attractive bounds on the optimization error for solving
equation 5, whereas Theorem 4.3 provides statistical guar-
antees. By directly plugging in optimization error terms to
the bound of Theorem 4.3, error bounds on the complete
procedure can be derived. Since combining these results
does not require any novel insight or technique, we dedicate
the rest of this section to present parts of the method we
use in practice which depart from the algorithms discussed
in the works above. Our implementation of a constrained
learning optimization algorithm uses a simple primal-dual
optimization approach with alternating gradient steps where
one player controls the model parameters, and the other
controls a Lagrange multiplier for the rate constraint. Many
further improvements and variations are possible, and we
refer the interested reader to Cotter et al. [2019b,a], Wood-
worth et al. [2017], Chamon et al. [2022], Agarwal et al.
[2018] for details on a variety of optimization algorithms
and their guarantees.
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5.1 DETECTING NOVEL CATEGORIES IN
PRACTICE

Empirically, we find that estimating the solution to Equa-
tion (5) directly with Lagrangian Optimization delivers poor
results. Intuitively, this happens sinec for a loss function l :
R× {0, 1} → R, maximizing α̂l(h) =

∑
x∈ST

l(h(xi), 1)
fits noisy labels to mixed data. That is, the dataset ST con-
tains both novel and non-novel points, trying to fit as many
of them with y = 1 (i.e. labelling them as novelties) results
in overfitting. On the other hand, minimizing β̂l(h) fits cor-
rect labels since examples from SS do not belong to the
novel category, and we observe that this inhibits overfitting.
Hence we find that constraining α̂l01(h) while minimizing
β̂l(h) works much better than a direct implementation of
Equation (5) which constrains β̂l01(h) while maximizing α̂.
As we explain shortly, this will be performed with various
values to constrain α̂l01(h).

To obtain solutions for an optimization problem of the form

min
h∈H

β̂(h) (7)

s.t. α̂(h) ≥ α̃,

where α̃ > 0 is some threshold on the empirical recall,
define the Lagrangian

Lα̂(h, λ, SS , ST ) =n−1S
∑
x∈SS

llog(h(x), 0)

+ λ ·

[
n−1T

∑
x∈ST

lσ(h(x))− α̂

]
.

We replace the 0 − 1 loss over SS with a surrogate log-
loss (denoted by llog), and the loss in the constraints with
a sigmoid (resp. lσ) which past work found to be effective
for differentiable approximation of the indicator function in
several problems, including rate-constrained optimization
[Chamon et al., 2022, Goh et al., 2016, Maddison et al.,
2017, Jang et al., 2017]. We optimize this Lagrangian with
alternating gradient steps over the parameters of h and λ.

In summary, beyond the Lagrangian optimization proce-
dure, our proposal for a practical algorithm includes two
important components. One is a line search on the value
of α, where in practice we simply solve problems with
several values α̃ that constrain α̂(h) in Equation (7). The
second component is model selection using a validation set.
For each learned model we approximate its error rate on
PS , and its recall w.r.t PT (treating the target data as pos-
itively labelled) using a validation set. We then select the
hypothesis h that achieves highest empirical recall (α̂(h))
whose empirical error on PS , β̂(h), does not exceed the
user-provided value β. Hence our model selection is dic-
tated by Equation (5) which is the overall objective of our
algorithm.7 The procedure is summarized in Algorithm 1.

7Note that in principle, if we consider h∗ that solves Equa-

Algorithm 1 CoNoC: Constrained Learning for OOD Novel
Category Detection

1: Input: datasets SS , ST , hypothesis classH, target FPR
β > 0 and search range α ∈ [0, 1]L.

2: Draw validation set VS , VT from SS , ST respectively
3: for α ∈ α do
4: Train model hα to solve Equation (5) using primal-

dual optimization.
5: Calculate approx. FPR β̂(hα) = 1

|VS |
∑

x∈VS
hα(x),

and recall α̂(hα) = 1
|VT |

∑
x∈VT

hα(x).
6: end for
7: return arg maxhα:α∈α,β̂(hα)<β α̂(hα)

Let us turn to evaluate the performance of our method.

6 EXPERIMENTS

We evaluate CoNoC in two real-world large and high-
dimensional datasets.

Experimental Setting. For each dataset we have features
S = {xi}Ni=1 that are available to the learner and labels
{yi}Ni=1 that are not. These labels are used to set up the
novel categories and distribution shifts in our experiments.
The procedure for each experiment is as follows; From a
set of possible labels Y , we choose ynovel ∈ Y , and collect
all examples that belong to the group I = {i : yi = ynovel}
into a dataset Snovel = {xi}i∈I . This divides our data into
disjoint subsets Snovel containing the novel category and
Sseen = S \ Snovel containing the rest of the examples. We
further split Sseen into disjoint subsets SS and ST ,0, where
we create a sub-population shift (see Equation (2)) between
these two subsets by randomly drawing the prevalence of
each subgroup in Y \ {ynovel} (see further details in the
Appendix B).8 Then each algorithm is run with the datasets
SS and ST = ST ,0 ∪ Snovel as inputs (this means the true
mixture proportion is α = |Snovel|/(|ST ,0|+ |Snovel|)). We
repeat this procedure, creating a different subpopulation
shift each time.

Baselines and evaluation metrics. We compare CoNoC
with the algorithm proposed in [Gerych et al., 2022] based
on propensity weighting [Bekker et al., 2019] (the idea
is to estimate the density ratio of PS and PT and use it
as importance weights, see Appendix B for details). We
choose to present results for this method since it outperforms
other relevant baselines (e.g. a clustering based approach

tion (5), and hdual that solves Equation (7) with α̂ set to α(h∗) then
we can show hdual is also be optimal for Equation (5). Hence our
procedure is indeed an approximate solution to Equation (5)

8In MIMIC-III, each example has multiple labels, hence nota-
tion here is slightly abused. This is also detailed in the appendix.
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Algorithm
AU-ROC/AU-ROCbest

(wins | reps.)
MIMIC-III Tabula Muris

Domain Disc. 0.940± 0.035 0.954± 0.035
(1 | 15) (0 | 8)

Propensity 0.959± 0.028 0.953± 0.046
(2 | 15) (2 | 8)

CoNoC 0.999± 0.001 0.988± 0.020
(12 | 15) (6 | 8)

AU-PRC/AU-PRCbest
(wins | reps.)

MIMIC-III Tabula Muris

0.797± 0.098 0.815± 0.173
(1 | 15) (1 | 8)

0.854± 0.064 0.428± 0.235
(1 | 15) (0 | 8)

0.995± 0.015 0.999± 0.001
(13 | 15) (7 | 8)

Table 1: Average Relative Area Under the Receiver-Operator Curve, AU-ROC/AU-ROCbest, where at each repetition
AU-ROCbest is taken as the area for the best method and AU-ROC is that of the evaluated method. Relative performance to
best method is reported instead of raw AU-ROC since performance under different drawn distribution shifts varies. We also
present the Relative Average Precision in the same manner, to summarize the Precision-Recall curve.

of Jain et al. [2020]), and since other methods for biased
PU-learning Kato et al. [2018], He et al. [2018] are based
on assumptions that do not hold in our setting. Our second
baseline is a domain discriminator, trained to distinguish
between SS and ST , which forms the basis for many PU-
learning techniques, e.g. [Elkan and Noto, 2008, du Plessis
et al., 2014, Garg et al., 2021].

To calculate metrics such as accuracy, precision and recall,
we need to obtain binary predictions of whether examples
belong to ynovel or not. In both baselines, this requires an ap-
proximation of α (an MPE), that should be incorporated into
the classifier (e.g. by setting the appropriate decision thresh-
old, see Bekker and Davis [2020, Sections 5.3, 6]). Since
most MPE methods are designed under the assumption that
PS = PT ,0 and there is no single method that is designed
to perform well under a variety of distribution shifts, we
evaluate methods with metrics for predictive ability that are
independent of the decision threshold. In Appendix B we
include MPE results, with two different techniques [Elkan
and Noto, 2008, Li and Liu, 2003] for the baselines (CoNoC
does not require MPE, since we simply use the raw outputs
for classification). Another point we take into account in
choosing evaluation metrics is that for each repetition of the
experiment, a different distribution shift is drawn. Therefore
the ability of models to distinguish ynovel from the rest of
the data can vary between repetitions. In this case, compar-
ison of raw metrics becomes less informative and relative
metrics between the different methods are more appropriate.
Taking together the above considerations, Table 1 includes
the following metrics.

We use Area Under the Receiver-Operator Curve (AU-ROC),
and the Average Precision (Av.-Precision) as summaries of
the ROC and Precision-Recall curves respectively, where
the classification task is detection of ynovel vs. Y \ {ynovel}.
At each round we take the AU-ROC for the best perform-
ing method, denoted by AU-ROCbest, and for each method
calculate AU-ROC/AU-ROCbest to get a relative measure

of performance (respectively for Av.-Precision). We also
include the number of rounds where each method turned
out to perform best. The absolute AU-ROC values for each
repetition of the experiments are detailed in Appendix B.

Datasets. In the Tabula Muris single cell dataset [Consor-
tium, 2020], the categories Y are cell types and features
X are gene expressions. Then the shift between SS and
ST ,0 is due to differing proportions of the observed cell
types. This follows the experimental setting in Garg et al.
[2022], with the crucial difference that in our setting the
learner does not observe cell types in SS . In the benchmark
dataset devised by Harutyunyan et al. [2019] for MIMIC-III
[Johnson et al., 2016], categories correspond to phenotypes
(e.g., kidney disease, pneumonia, liver disease) and features
are high-dimensional extracted statistics from time-series
data, such as vitals and lab measurements, recorded over
ICU stays (see Harutyunyan et al. [2019, Tables 2,3] for
list of phenotypes and features considered). The proportion
of novel categories α within ST in these experiments is
between 0.005 and 0.06, more details on these values and
the effect of α on performance are in Appendix B.

6.1 RESULTS

Table 1 shows that CoNoC performs favorably with re-
spect to the baselines in terms of relative AU-ROC and
Av.-Precision on both datasets. It is the best performing
method in the vast majority of repeated experiments and a
further examination of the results shows that when it is not,
the gap in performance is very small (see Appendix B for
more details).

Takeaways from experiments. The results above demon-
strate the effectiveness of constrained learning approaches
in detecting novelties under distribution shift. The main
choice to be made when using CoNoC is the value of β,
denoting our approximation to the false positive rate of
the optimal hypothesis. In our experiments, the setting of
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β = 0.01 turned out to be good enough to obtain favorable
performance with respect to baselines, though we observe
that it is not necessarily the optimal choice. For instance
in the Tabula-Muris dataset, examining the results under a
lower setting of β reveals an improvement in performance
(details are given in Appendix B). We attribute this to our
conservative over-estimation of β(h∗), as training an ora-
cle classifier with true labels of ynovel gives a near perfect
predictor in terms of test accuracy (i.e. the problem is ap-
proximately separable). On the other hand, in MIMIC-III
an oracle classifier does not achieve near-perfect accuracy,
and decreasing β does not improve results. This may be
expected, as subgroups of patients, such as those with a
certain phenotype are diagnosed using additional features
that are not available to the learner. Our conclusion is that
while most reasonable choices of β with a sufficiently small
value lead to favorable performance w.r.t baselines, reason-
ing about the expected β(h∗) with domain knowledge can
further improve the performance of CoNoC.

We note that in many works on robustness to distribution
shifts, benchmark tasks are designed to fail standard meth-
ods such as Empirical Risk Minimization (e.g. the Water-
birds and CelebA examples in [Sagawa et al., 2020a], or
Colored MNIST in [Arjovsky et al., 2019]). In contrast, our
setting randomly assigns prevalence of human-annotated
subgroups (following Equation (2)), hence the shifts are not
specially designed to create extreme and adversarial sce-
narios. This suggests that accounting for distribution shifts
with our method might be beneficial in many cases, and the
results are not limited to carefully designed examples. With
that being said, in Appendix B we demonstrate by further
experiments on MIMIC-III and a synthetic example that
when there is no distribution shift between PS and PT ,0,
CoNoC does not improve over the baselines. Let us turn to
conclude our work with a broad overview of the results and
potential ways forward.

7 DISCUSSION, LIMITATIONS AND
FUTURE WORK

We proposed a constrained learning approach for OOD
novel category detection, based on a distributional assump-
tion that bounds the shift in probability of rare events. A
potential use of our method is in ML safety, where by de-
tecting novel groups that were not part of our historical
data, we may alert practitioners to issues that require fur-
ther analysis. This complements methods that detect other
types of safety issues such as error cases [d’Eon et al., 2022,
Eyuboglu et al., 2022, Singla et al., 2021], under-performing
subgroups [Subbaswamy et al., 2021], and OOD-detection
methods that provide alerts on single examples instead of
classes [Ruff et al., 2021].

Our formal framework is based on PU-learning and our
method on advances in rate-constrained optimization. Early

literature on the PU-learning problem (without distribution
shift) recognizes that constrained optimization may be a
useful approach, yet forgoes this path since it seems like a
challenging optimization problem [Liu et al., 2002] (mixture
proportion estimation based on trade-offs between recall and
FPR has been explored more extensively [Blanchard et al.,
2010, Scott, 2015, Jain et al., 2016a,b]). Later it has been
shown that unconstrained risk minimization techniques may
be devised to solve PU-learning problems under the SCAR
assumption [Elkan and Noto, 2008, du Plessis et al., 2014],
which seems to make constrained optimization unnecessary.
Our work claims that without the SCAR assumption, a con-
strained learning approach can be beneficial. Importantly,
we show that for our constrained learning rule, formal guar-
antees can be derived in settings where to the best of our
knowledge, learnability in the sense of Definition 3.1 has
not been shown.

Our approach has some limitations. The choice of hyperpa-
rameter β should be done carefully and requires reasoning
about properties of the groups we hope to detect. Theo-
rem 4.3 provides guidance in cases where we have a good
approximation of β(h∗), for instance when we are willing
to assume that separability (approximately) holds, which
is a reasonable assumption in many applications. In exper-
iments, the performance of our method is still favorable
w.r.t baselines when β is not fine-tuned. This is encourag-
ing, yet it does not prove that such insights generalize to
all real-world scenarios. Other aspects of Algorithm 1 can
likely be improved, such as replacing line search over α
with other approaches for hyperparameter tuning, and exper-
imenting with more sophisticated constrained optimization
algorithms than the alternating primal-dual steps we use in
our implementation.

Assumption 4.2 on the frequency of rare events is rather non-
restrictive and is likely to hold in several cases of interest.
On the other hand, its generality also means it is not tailored
towards other types of distribution shifts. For instance, re-
cent works on PU-learning make structural assumptions on
the distribution shift [Garg et al., 2022, Shanmugam and
Pierson, 2021] that are very different from ours and can
be useful. Combining different types of assumptions into
a rich framework for novelty detection under distribution
shift is an exciting avenue for future research. Extensions to
settings such as time-series and multiple data sources is also
an exciting future direction. Recent works on invariance
and stability under distribution shifts offer structural frame-
works that would be interesting to explore in the context of
novelty detection [Peters et al., 2016, Arjovsky et al., 2019,
Subbaswamy et al., 2019, 2021, Puli et al., 2022, Wald et al.,
2021]. We hope that this paper encourages further work on
novelty detection in changing environments with guarantees
on their performance.
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