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A RELATED WORKS

The most relevant work to us is Yang et al. [2022] which considers a special case of heterogeneous rewards with known
agent-specific rewards. In Section 1.2, we discussed in details how the MA2B-HR model covers the AC-MA2B model studied
by Yang et al. [2022] as a special case. We provide a tighter regret lower bound and a more efficient algorithm than those
given by Yang et al. [2022] as we discover the free exploration mechanism while Yang et al. [2022] was not aware of it.
Further, Yang et al. [2022] additionally considers an asynchronous action frequencies setting, which our algorithm (with
minor modifications) can address as well. We omit this extension in our paper and focus on the heterogeneous arm set
setting for clearly presenting the free exploration mechanism and its importance on improving the regret.

The free exploration mechanism in cooperation among agents does not make sense when agent specific rewards are unknown,
as discussed in Appendix B.1, and hence this setting is not at the core of this paper’s interest. Nevertheless, many works study
heterogeneous rewards with unknown agent specific rewards [Hossain et al., 2021, Bistritz and Leshem, 2021, Mehrabian
et al., 2020, Shi et al., 2021b, Zhu et al., 2021, Shi and Shen, 2021, Shi et al., 2021a, Chen et al., 2018, Shi et al., 2021c]
in the MA2B literature, which are intellectually and practically interesting under various settings and goals. Among these
works, Bistritz and Leshem [2021], Mehrabian et al. [2020], Shi et al. [2021b] consider the collision model, where agents
who pull the same arm at the same time collide and receive zero reward. On the other hand, Zhu et al. [2021], Shi and
Shen [2021], Shi et al. [2021a] study the federated learning framework, where the central server aims to learn the global
bandit model through the information agents learned from the local bandit models. It is worth noting that, the term "free
exploration" is also used by Chen et al. [2018] and Shi et al. [2021c] who study the problem of incentivizing exploration in
multi-armed bandit. Specifically, Chen et al. [2018], Shi et al. [2021c] consider a principal who aims to learn the global
bandit model offers bonuses to agents to do explorations on the principal’s behalf. Chen et al. [2018], Shi et al. [2021c] study
the "free exploration" with regard to the principal’s cost, while we study the free exploration in cooperation among agents in
this work. Hence, leveraging the idea of free exploration in a cooperative multi-agent bandit setting is the unique difference
of this work with the prior literature on heterogeneous multi-agent bandits. The “free exploration” also differs from another
term “exploration-free” recently proposed in contextual bandits Bastani et al. [2021], where their algorithms did not need to
deliberately explore arms while our algorithm explores arms without cost. Besides, Jiang and Cheng [2023] also considered
a multi-agent bandits model with agent-dependent rewards. The key difference between this work and ours is that their
agent-dependent reward mean was disturbed by a zero-mean Gaussian, while ours is by a non-zero-mean Gaussian. Hence,
their model does not provide a chance for free exploration as ours.

Homogeneous arm rewards setting [Landgren et al., 2016, Martínez-Rubio et al., 2019, Szorenyi et al., 2013, Landgren
et al., 2016, Buccapatnam et al., 2015, Martínez-Rubio et al., 2019], in which an arm generates rewards for all agents from
the exact same distribution, is the most extensively studied model in the MA2B literature. It is worth noting that the models
of Yang et al. [2021] and Chawla et al. [2020], though may seem close to the AC-MA2B model studied by Yang et al. [2022]
at first glance, essentially fall into the category with homogeneous agent-specific reward (see Table 1). Specifically, Yang
et al. [2021] considers the heterogeneity of arms in terms of their feedback rather than their rewards. Therefore, in the model
of Yang et al. [2021], the reward of an arm is essentially the same for each agent, and the optimal arm is the same one for all
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agents; hence no room for free exploration. Similarly, there exist a single optimal arm for all agents in the model of Chawla
et al. [2020]; hence, Chawla et al. [2020] lets agents update their arm sets, which at the beginning contains different arms,
with the goal of eventually containing this optimal arm.

Besides, stochastic rewards with heavy tails [Dubey et al., 2020] and non-stochastic rewards [Bar-On and Mansour, 2019,
Cesa-Bianchi et al., 2016] have also been studied in the MA2B literature. Apart from various ways of modeling and
assumptions on arm rewards or arm sets, many other variations of MA2B are also studied in the literature. For example, Kolla
et al. [2018], Szorenyi et al. [2013], Chawla et al. [2020], Landgren et al. [2016], Buccapatnam et al. [2015], Martínez-Rubio
et al. [2019], Bistritz and Bambos [2020], Madhushani et al. [2021], Chakraborty et al. [2017], Cesa-Bianchi et al. [2016],
Hillel et al. [2013], Dubey et al. [2020], Yang et al. [2021, 2022], Sankararaman et al. [2019], Féraud et al. [2019] deal
with decentralized learning scenarios where agents communicate with each other to improve their performance, while Shi
et al. [2021a], Mehrabian et al. [2020], Shi et al. [2021b], Shi and Shen [2021], Wang et al. [2019, 2020], Bar-On and
Mansour [2019], Chakraborty et al. [2017], Dubey et al. [2020] consider the models with central servers or leaders that
can coordinate the learning process. Many different communication schemes are also considered in the literature, such as
immediate broadcasting [Buccapatnam et al., 2015, Yang et al., 2021, 2022], peer-to-peer protocols [Szorenyi et al., 2013],
gossip-style communication [Martínez-Rubio et al., 2019, Chawla et al., 2020], etc.

Lastly, there is a similarity between our model and meta bandits [Kveton et al., 2021, Wan et al., 2021], where we assume
all agents have the same arm-specific reward distributions but have different agent-specific rewards, while meta bandits
assume that all bandit instances are drawn from a common prior (function) but are different realizations. However, there is a
key difference between our model and meta bandits: The agent-specific reward means in our model are known and given,
while the reward mean realizations of meta bandits are unknown and randomly drawn from the prior. Therefore, the meta
bandits algorithms—which learn the common prior via multiple instances’ random realizations—does not fit in our case
(because our agent-specific reward means are given and fixed) and thus cannot be applied to addressing our model.

B ADDITIONAL DISCUSSION ON MODEL

B.1 OTHER POSSIBLE SCENARIOS OF MA2B-HR

Table 1: Different possible scenarios of the MA2B-HR model based on agent-specific reward values.
ν(i)(k) Homogeneous (ν(i)(k) = ν(j)(k),∀i, j ∈ M) Heterogeneous

Unknown (1) The majority of prior work on MA2B (2) No useful information to cooperate
Known (3) This work (Section 2)

While the focus of this paper is on MA2B-HR with known and heterogeneous agent-specific rewards, one can imagine other
settings of this model, as outlined in Table 1. In particular, the agent-specific reward mean ν(i)(k) can be (i) homogeneous
or heterogeneous among different agents (i.e., ν(i)(k) = ν(j)(k), ∀i, j ∈ M or not); (ii) known or unknown by the agent.

Given the above possibilities, there are three scenarios. In scenario (1) agent-specific reward means ν(i)(k) are identical
across all agents, and MA2B-HR reduces to the case where all agents play the same bandit game, which has been studied
previously, e.g., in Landgren et al. [2016], Martínez-Rubio et al. [2019]. In scenario (2) agent-specific reward means are
heterogeneous and unknown. In this case, cooperation among agents becomes impossible since each agent is essentially
solving a different bandit problem and there is no useful information to share between agents. Scenario (3) with heterogeneous
and known agent-specific reward means is of interest in this paper.

B.2 THE DIFFERENCE BETWEEN MA2B-HR AND CONTEXTUAL BANDITS

Although the contextual bandits model, e.g., Li et al. [2010], Slivkins [2011], can capture the reward heterogeneity of
agents, contextual bandits cannot express the advantage of free exploration as clearly as MA2B-HR. One needs to associate
the heterogeneous rewards (agents) with contexts to model the reward heterogeneity via contexts. However, some contexts
(agents) that can be utilized to explore some arms freely may arrive rarely, and, therefore, their corresponding free arms
cannot be freely explored at most times. For example, in the adversarial arrival setting, these contexts may only arrive a few
times, and in the stochastic case, these contexts may arrive with a pretty small probability, e.g., 1/T . Instead, the modeling
of this paper allows agents to sample their local optimal arms and provides room for free exploration. In addition, as we



explain in the next section, several application scenarios can be captured by MA2B-HR and its special cases Yang et al.
[2022], Baek and Farias [2021].

C PROOFS

C.1 PRELIMINARY LEMMAS

Lemma C.1 ([Wang et al., 2020, Lemma 3]). Let k ∈ K, and c > 0. Let H be a random set of rounds such that for all
t, {t ∈ H} ∈ Ft−1. Assume that there exists (Ct)t⩾0, a sequence of independent binary random variables such that for any
t ⩾ 1, Ct is Ft-measurable and P[Ct = 1] ⩾ c. Further assume for any t ∈ H , arm k is selected if Ct = 1. Then,∑

t⩾1

P [{t ∈ H, |µ̂t(k)− µ(k)| ⩾ ε}] ⩽ 2c−1(2c−1 + ε−2).

Lemma C.2 ([Combes et al., 2015, Lemma 6]). For any arm k, we have∑
t⩾1

P[dt(k) ⩽ µ(k)] ⩽ 15,

where dt(k) is the KL-divergence of arm k at time slot t.

Lemma C.3. The the KL-divergence of two Gaussian random variables with means µ1, µ2 and same variance σ2 has the
following expression,

kl(µ1, µ2) =
(µ1 − µ2)

2

2σ2
. (1)

Lemma C.4 (Abel Transformation). For two sequences {an} and {bn} with n ∈ N, we have

N∑
n=0

anbn =

N∑
n=0

anbN −
N−1∑
n=0

n∑
k=0

ak(bn+1 − bn).

Proof of Lemma C.4. We use induction to prove this lemma. When N = 0, we have that a0b0 = a0b0 holds.

Suppose when N = m (∈ N) the above equation holds. We show when N = m+ 1 the above equation holds as follows,

RHS =

m+1∑
n=0

anbm+1 −
m∑

n=0

n∑
k=0

ak(bn+1 − bn)

=

m+1∑
n=0

anbm+1 −
m−1∑
n=0

n∑
k=0

ak(bn+1 − bn)−
m∑

k=0

akbm+1 +

m∑
k=0

akbm

= am+1bm+1 +

m∑
k=0

akbm −
m−1∑
n=0

n∑
k=0

ak(bn+1 − bn)︸ ︷︷ ︸
use the supposition

=

m+1∑
n=0

anbn

= LHS.

C.2 PROOF OF THEOREM 4.1 (REGRET LOWER BOUND)

Fix an arm k whose ∆̄(k) > 0. Recall that ī(k) is the agent whose local optimal arm’s reward mean is the closest to arm
k’s. For this agent ī(k), we define θ = (Pθ(1), Pθ(2), . . . , Pθ(K)) as an instance of the K arms’ reward distributions (arm
specific reward plus agent specific reward). Then, we consider another instance θ′ = (Pθ′(1), Pθ′(2), . . . , Pθ′(K)), whose



distributions are the same as instance θ’s except for that arm k reward distribution Pθ′(k)’s mean is increased by λ, i.e.,
E[Pθ′(k)] = E[Pθ(k)] + λ, where ∆̄(k) < λ < mini∈M\{ī(k)} ∆

(i)(k). Therefore, in instance θ, the arm k is suboptimal,
while in instance θ′, arm k becomes the optimal arm. Denote Pθ,π as the probability measure of T -round action-reward
histories induced by the interconnection of policy π and the environment θ. Denote Eθ,π[RT (k)] as MA2B-HR’s regret of
pulling the suboptimal arm k under instance θ and policy π, and NT (k) as the total pulling times of this suboptimal arm k
in T time slots. Then, we have

Eθ,π[RT (k)] + Eθ′,π[RT (k)]

⩾
T ∆̄(k)

2
Pθ,π

(
NT (k) ⩾

T

2

)
+

T (λ− ∆̄(k))

2
Pθ′,π

(
NT (k) <

T

2

)
⩾

T

2
min

{
∆̄(k), λ− ∆̄(k)

}(
Pθ,π

(
NT (k) ⩾

T

2

)
+ Pθ′,π

(
NT (k) <

T

2

))
(a)

⩾
T

2
min

{
∆̄(k), λ− ∆̄(k)

}
exp (−KL(Pθ,π,Pθ′,π))

⩾
T

2
min

{
∆̄(k), λ− ∆̄(k)

}
exp (−Eθ,π[NT (k)] KL(Pθ(k), Pθ′(k))) ,

where the inequality (a) is due to the Bretagnolle-Huber inequality [Bretagnolle and Huber, 1978] and the KL represents the
KL-divergence between two general probability distributions.

Rearranging the above inequality, we have

Eθ,π[NT (k)]

log T
⩾

1

KL(Pθ(k), Pθ′(k))

1 +
log

min{∆̄(k),λ−∆̄(k)}
2

log T
− log(Eθ,π[RT (k)] + Eθ′,π[RT (k)])

log T

 .

When T → ∞, for RHS, the second term inside the bracket is equal to 0 and the third term becomes arbitrarily small since
π is a consistent policy. So, we have

lim inf
T→∞

Eθ,π[NT (k)]

log T
⩾

1

KL(Pθ(k), Pθ′(k))
.

Notice that the smallest cost of pulling the suboptimal arm once in instance θ is ∆̄(k). We transform the pull times of arm k
to regret costs of pulling arm k as follows,

lim inf
T→∞

Eθ,π[RT (k)]

log T
⩾

∆̄(k)

KL(Pθ(k), Pθ′(k))

(a)
=

∆̄(k)

kl(ω̄(k), ω̄(k) + ∆̄(k))
,

where kl represents the KL-divergence between two Gaussian distributions with the same variance, and the the equation (a)
is by choosing the reward distribution as Gaussian and letting λ → ∆̄(k) and the definition of ω̄(k) in (6). Lastly, we take a
summation over all arms k whose suboptimality gap ∆̄(k) > 0 and obtain a regret lower bound as follows,

lim inf
T→∞

Eθ,π[RT]

log T
⩾

∑
k:∆̄(k)>0

∆̄(k)

kl(ω̄(k), ω̄(k) + ∆̄(k))
.

C.3 PROOF OF THEOREM 4.3 (REGRET UPPER BOUND)

Fix an agent i. Recall that I(i)t is the arm index with highest reward empirical mean at time slot t for agent i, and J
(i)
t is the

arm that agent i pulls in time slot t in FreeExp. We first define two sets of time slots as follows,

A(i) := {t ⩾ 1 : I
(i)
t ̸= k

(i)
∗ },

B(i) := {t ⩾ 1 : |ω̂(i)
t (I

(i)
t )− ω(i)(I

(i)
t )| ⩾ δ} = {t ⩾ 1 : |µ̂t(I

(i)
t )− µ(I

(i)
t )| ⩾ δ},

where A(i) denotes a set of time slots in which the empirical optimal arm I
(i)
t is not the true optimal arm k

(i)
∗ ; B(i) denotes

the set of time slots in which the empirical optimal arm I
(i)
t ’s empirical mean is different from its true reward mean by at

least a δ.



Denote T = {1, 2, . . . , T} and T̃ := ∪i∈M(A(i) ∪ B(i)). We can decompose regret E[RT(A)] as

E[RT(A)] = E

[∑
i∈M

R(i)
T

]
= E

∑
i∈M

∑
t∈T

∑
k∈K(i)

∆(i)(k)1{J (i)
t = k}


= E

∑
i∈M

∑
t∈T̃

∑
k∈K(i)

∆(i)(k)1{J (i)
t = k}+

∑
i∈M

∑
t∈T \T̃

∑
k∈K(i)

∆(i)(k)1{J (i)
t = k}


(a)

⩽ bME
[
|T̃ |
]

︸ ︷︷ ︸
(I)

+E

∑
i∈M

∑
t∈T \T̃

∑
k∈K(i)\Kfr

∆(i)(k)1{J (i)
t = k}


︸ ︷︷ ︸

(II)

,

(2)

where inequality (a) is due to that (1) the first term is scaled by ∆(i)(k) < b for all k ∈ K(i); (2) when t ∈ T \ T̃ all free
exploration arms (in Kfr) are correctly identified, so these arms will not be explored with cost in the second term, and we
can replace k ∈ K(i) with k ∈ K(i) \ Kfr.

Next, we provide Lemmas C.5 and C.6 to show that the first term (I) is upper bounded by a constant, and Lemmas C.7
and C.8 to show that the second term (II) is upper bounded by a logarithmic term.

Bounding term (I) We define the following two sets,

C(i) := {t ⩾ 1 : d
(i)
t (k

(i)
∗ ) < ω(i)(k

(i)
∗ )},

E(i) := {t ∈ A(i) \ (B(i) ∪ C(i)), |ω̂(i)
t (k

(i)
∗ )− ω(i)(k

(i)
∗ )| ⩾ δ}

= {t ∈ A(i) \ (B(i) ∪ C(i)), |µ̂t(k
(i)
∗ )− µ(k

(i)
∗ )| ⩾ δ},

where C(i) denotes the set of time slots in which the optimal arm k
(i)
∗ ’s KL-UCB index is smaller than this optimal arm’s

true reward mean ω(i)(k
(i)
∗ ); E(i) denotes the subset of time slots of A(i) \ (B(i) ∪ C(i)) and in which the optimal arm k

(i)
∗ ’s

empirical mean is different from its true reward mean by at least a δ.

Lemma C.5 shows the set A(i) ∪ B(i) can be covered by another set B(i) ∪ C(i) ∪ E(i). Lemma C.6 separately upper bounds
the expected set cardinality of B(i), C(i), E(i). We defer both lemmas’ proof to the end of this subsection.

Lemma C.5. A(i) ∪ B(i) ⊆ B(i) ∪ C(i) ∪ E(i). Thus, E
[
A(i) ∪ B(i)

]
⩽ E

[
B(i)

]
+ E

[
C(i)
]
+ E

[
E(i)
]
.

Lemma C.6. E
[
|B(i)|

]
⩽ 4K(i)(4 + δ−2),E

[
|C(i)|

]
⩽ 15,E

[
|E(i)|

]
⩽ 4(K(i))2(4K(i) + δ−2).

Given Lemmas C.5 and C.6, we have E
[
|A(i) ∪ B(i)|

]
⩽ 6(K(i))2(4K(i) + δ−2). Then, we can upper bound the term (I)

as follows,

(I) = bME
[
|T̃ |
]
= bME

[∣∣∣∪i∈M(A(i) ∪ B(i))
∣∣∣]

⩽ bM
∑
i∈M

E
[∣∣∣A(i) ∪ B(i)

∣∣∣] ⩽ bM2 max
i∈M

E
[∣∣∣A(i) ∪ B(i)

∣∣∣]
⩽ 6bM2K2(4K + δ−2).

(3)

Bounding term (II) One key challenge to upper bound (II) is that the pulls of an arm k is among agents with
heterogeneous rewards and the costs of pulling arm k can be different among these agents. So, the common technique of
bounding the pull times of arm k in current bandits literature is not applicable in bounding these agents’ total pulling arm k.
To address the challenge, we sort these agents according to their reward gaps ∆(i)(k) of this arm k, bound the pull times of
arm k among a group of incremental agent subsets where these subsets gradually include agents with higher reward gaps
∆(i)(k), and apply an Abel transformation to bound these agents’ total regret cost at last.

Fix an arm k ∈ K \ Kfr that cannot be freely explored. Denote M(k) := {i ∈ M : k ∈ K(i)} as the set of agents having
access to arm k and M(k) := |M(k)| is the number of such agents. We consider an order {i(k; 1), i(k; 2), . . . , i(k;M(k))}



of those M(k) agents such that ∆(i(k;1))(k) ⩾ ∆(i(k;2))(k) ⩾ . . . ⩾ ∆(i(k;M(k)))(k). With this order, we rearrange
summations of (II) as follows,

(II) = E

[∑
i∈M

∑
t∈T \T̃

∑
k∈K(i)\Kfr

∆(i)(k)1{J (i)
t = k}

]
= E

[∑
i∈M

∑
k∈K(i)\Kfr

∆(i)(k)
∑

t∈T \T̃

1{J (i)
t = k}

]

(a)
= E

[ ∑
k∈K\Kfr

M(k)∑
m=1

∆(i(k;m))(k)
∑

t∈T \T̃

1{J (i(k;m))
t = k}

]
(b)
= E

[ ∑
k∈K\Kfr

M(k)∑
m=1

∆(i(k;m))(k)n
(i(k;m))
T (k)

]
,

where (a) is because the arm k ∈ K \ Kfr is only pulled by agents {i(k; 1), i(k; 2), . . . , i(k;M(k))}, and (b) is from a
simplified definition n

(i(k;m))
T (k) :=

∑
t∈T \T̃ 1{J (i(k;m))

t = k}.

In Lemma C.7, we provide an intermediate result that bounds the number of times of pulling arm k by agents
{i(k; 1), i(k; 2), . . . , i(k;m)} for any m ⩽ M(k). Lemma C.8 is derived via an Abel transformation and based on
Lemma C.7. We defer both lemmas’ proof to the end of this subsection.

Lemma C.7. E

[
m∑
ℓ=1

n
(i(k;ℓ))
T (k)

]
⩽

log T + 4 log(log T )

kl(ω(i(k;m))(k) + δ, ω(i(k;m))(k
(i(k;m))
∗ )− δ)

+m(4 + 2δ−2).

Lemma C.8.

E

M(k)∑
m=1

n
(i(k;m))
T (k)∆(i(k;m))(k)

 ⩽ (4 + 2δ−2)

M(k)∑
m=1

∆m +
1

2(σ2
1 + σ2

2)

(∆m − 2δ)(log T + 4 log(log T ))

kl(ω̄(k) + δ, ω̄(k) + ∆̄(k)− δ)
.

In Lemma C.8, we bound the regret cost of pulling arm k ∈ K \ Kfr when t ∈ T \ T̃ by agents
{i(k; 1), i(k; 2), . . . , i(k;M(k))}. Given Lemma C.8, we can upper bound the term (II) as follows,

(II) =
∑

k∈K\Kfr

E

M(k)∑
m=1

∆(i(k;m))(k)n
(i(k;m))
T (k)


⩽

∑
k:∆̄(k)>0

1

2(σ2
1 + σ2

2)

(∆m − 2δ)(log T + 4 log(log T ))

kl(µ(k) + δ, µ(k) + ∆̄(k)− δ)
+ (4 + 2δ−2)

∑
k:∆̄(k)>0

M(k)∑
m=1

∆m

⩽
1

2(σ2
1 + σ2

2)

∑
k:∆̄(k)>0

(∆m − 2δ)(log T + 4 log(log T ))

kl(µ(k) + δ, µ(k) + ∆̄(k)− δ)
+ bMK(4 + 2δ−2).

(4)

Finally, we obtain the regret bound by substituting (3) and (4) into (2) as follows,

E[RT(A)] ⩽
1

2(σ2
1 + σ2

2)

∑
k:∆̄(k)>0

(∆m − 2δ)(log T + 4 log(log T ))

kl(µ(k) + δ, µ(k) + ∆̄(k)− δ)
+ 7bM2K2(4K + δ−2) (5)

Letting T → ∞, δ → 0, we obtain the asymptotic regret upper bound. The main proof of Theorem 4.3 is finished.

In the rest of this section, we present the detailed proofs of Lemmas C.5–C.8.

Proof of Lemma C.5. Denote t ∈ A(i) \ (B(i) ∪ C(i)). We only need to show that this condition leads to t ∈ E(i). From the
condition, we have

ω̂
(i)
t (k

(i)
∗ )

(a)

⩽ ω̂
(i)
t (I

(i)
t )

(b)

⩽ ω(i)(I
(i)
t ) + δ

(c)

⩽ ω(i)(k
(i)
∗ )− δ,

where the inequality (a) is due to t ∈ A(i), inequality (b) is due to t ̸∈ B(i), and inequality (c) is due to the definition of
δ < 1

4mini∈M,k1 ̸=k2∈K|ω(i)(k1)− ω(i)(k2)|.

Therefore, we have µ(k
(i)
∗ )− µ̂t(k

(i)
∗ ) = ω(i)(k

(i)
∗ )− ω̂

(i)
t (k

(i)
∗ ) ⩾ δ. That is, t ∈ E(i).



Proof of Lemma C.6. To show E
[
|B(i)|

]
⩽ 4K(i)(4 + δ−2): for any arm k ∈ K(i), denote B(i)(k) := {t ⩾ 1 : I

(i)
t =

k, |µ̂t(k)− µ(k)| ⩾ δ}. Then, applying Lemma C.1 (in Appendix) via letting H = {t ⩾ 1 : I
(i)
t = k}, Ct = 1{J (i)

t = k}
and P(Ct = 1|H) ⩾ 1

2 (because the agent has a probability of 1/2 to pull the empirical optimal arm I
(i)
t ), we have∑

t>1 P(t ∈ B(i)(k)) ⩽ 4(4 + δ−2), that is, E
[
|B(i)(k)|

]
⩽ 4(4 + δ−2). Applying union bound over all arms in K(i), we

obtain E
[
|B(i)|

]
⩽ 4K(i)(4 + δ−2).

To show E
[
|C(i)|

]
⩽ 15: this is from KL-UCB’s property in Lemma C.2 in Appendix.

To show E
[
|E(i)|

]
⩽ 4(K(i))2(4K(i) + δ−2): for any arm k ∈ K(i), denote E(i)(k) := {t ⩾ 1 : t ∈ A(i) \ (B(i) ∪

C(i)), I
(i)
t = k, |µ̂t(k

(i)
∗ )− µ(k

(i)
∗ )| ⩾ δ}. Applying Lemma C.1 via letting H = {t ⩾ 1 : t ∈ A(i) \ (B(i) ∪ C(i)), I

(i)
t =

k}, Ct = 1{J (i)
t = k

(i)
∗ } and thus P(Ct = 1|H) ⩾ 1

2K(i) (which will be proven next), we then have E
[
|E(i)(k)|

]
⩽

4K(i)(4K(i) + δ−2). Then, with union bound over all arms in K(i), we derive the result.

We now show P(Ct = 1|H) ⩾ 1
2K(i) . From the choice of H , we have

d
(i)
t (k

(i)
∗ )

(a)

⩾ ω(i)(k
(i)
∗ )

(b)

⩾ ω(i)(I
(i)
t ) + δ

(c)

⩾ ω̂
(i)
t (I

(i)
t ),

where inequality (a) is due to t ̸∈ C(i), inequality (b) is due to t ∈ A(i) and the definition of δ, and inequality (c) is due
to t ̸∈ B(i). Therefore, d(i)t (k

(i)
∗ ) > ω̂

(i)
t (I

(i)
t ), which implies that the agent may explore this arm with a probability of at

least 1/2K(i) (cf. Algorithm 1’s line 11 and if this arm is removed from D(i)
t , then some other agents pull this arm with a

probability of at least 1/2).

Proof of Lemma C.7. Fix an arm k ∈ K \ Kfr and an integer m ∈ {1, 2, . . . ,M(k)}. Denote a set of agent-time pairs (i, t)
as follows,

G(k;m) := {(i, t) : i ∈ {i(k; 1), . . . , i(k;m)}, t ⩽ T, t ̸∈ ∪m
ℓ=1(A(i(k;ℓ)) ∪ B(i(k;ℓ))), J

(i)
t = k}.

Let n0 := (log T + 4 log(log T ))/kl(ω(i(k;m))(k) + δ, ω(i(k;m))(k
(i(k;m))
∗ )− δ), and denote ct :=∑t

s=1

∑m
ℓ=1 1{(ℓ, s) ∈ G(k;m)} as the number of times that the agent-time pair (i, t) lies inside G(k;m). Define

two subsets of G(k;m) as follows,

G1(k;m) = {(i, t) ∈ G(k;m) : |µ̂t(k)− µ(k)| ⩾ δ},
G2(k;m) = {(i, t) ∈ G(k;m) : ct < n0}.

We first show that G(k;m) ⊆ G1(k;m) ∪ G2(k;m). Let t ∈ G(k;m) \ (G1(k;m) ∪ G2(k;m)), from which we have

d
(i(k;m))
t (k)

(a)

⩾ ω̂
(i(k;m))
t (I

(i(k;m))
t )

(b)
= ω̂

(i(k;m))
t (k

(i(k;m))
∗ )

(c)
> ω(i(k;m))(k

(i(k;m))
∗ )− δ

(d)
> ω(i(k;m))(k) + δ

(e)
> ω̂

(i(k;m))
t (k),

where the inequality (a) is due to the definition of KL-UCB d
(i)
t (k), the equation (b) is due to t ̸∈ A(i), the inequality (c) is

due to t ̸∈ B(i), the inequality (d) is due to the definition of δ, the inequality (e) is due to t ̸∈ G1(k;m). Recall that nt(k) is
the number of times that arm k has been pulled up to time t. Then, we have

n0 kl(ω̂
(i(k;m))
t (k), ω(i(k;m))(k

(i(k;m))
∗ )− δ)

(a)

⩽ nt(k) kl(ω̂
(i(k;m))
t (k), ω(i(k;m))(k

(i(k;m))
∗ )− δ)

(b)

⩽ nt(k) kl(ω̂
(i(k;m))
t (k), d

(i(k;m))
t (k))

(c)

⩽ log T + 4 log(log T ),

where the inequality (a) is due to t ̸∈ G2(k;m) and thus n0 ⩽ ct ⩽ nt(k), the inequality (b) is due to that kl(x, y) is
increasing for y when 0 < x < y < 1, the inequality (c) is due to the definition of d(i(k;m))

t (k).

We then substitute n0 into the above inequality and obtain kl(ω̂
(i(k;m))
t (k), ω(i(k;m))(k

(i(k;m))
∗ )− δ) ⩽ kl(ω(i(k;m))(k) +

δ, ω(i(k;m))(k
(i(k;m))
∗ ) − δ). Noticing kl(x, y) is decreasing for x when 0 < x < y < 1, the inequality further leads

to ω̂
(i(k;m))
t (k) ⩾ ω(i(k;m))(k) + δ, which contradicts t ̸∈ G1(k;m). From this contradiction, we have G(k;m) ⊆

G1(k;m) ∪ G2(k;m).



Next, we upper bound E [|G1(k;m)|] and E [|G2(k;m)|]. To bound E [|G1(k;m)|], we apply Lemma C.1 for a fixed agent
i, let H = {(j, t) ∈ G1(k;m) : j = i}, Ct = c = 1, and obtain E [|G1(k;m)||agent i] ⩽ 4 + 2δ−2. Summing up over all
agent in {i(k; 1), . . . , i(k;m)}, we have E [|G1(k;m)|] ⩽ m(4 + 2δ−2).

We bound E [|G2(k;m)|], via its definition as follows,

E [|G2(k;m)|] ⩽ n0 =
log T + 4 log(log T )

kl(ω(i(k;m))(k) + δ, ω(i(k;m))(k
(i(k;m))
∗ )− δ)

.

Combining both bounds together, we have, for any m ⩽ M(k) and arm k,

E [|G(k;m)|] ⩽ log T + 4 log(log T )

kl(ω(i(k;m))(k) + δ, ω(i(k;m))(k
(i(k;m))
∗ )− δ)

+m(4 + 2δ−2).

Denote n(i)
t (k) as the number of times that agent i pulls arm k in time slots {s ⩽ t : s ̸∈ A(i) ∪ B(i)}. The above inequality

can be rewritten as

E

[
m∑
ℓ=1

n
(i(k;ℓ))
t (k)

]
⩽

log T + 4 log(log T )

kl(ω(i(k;m))(k) + δ, ω(i(k;m))(k
(i(k;m))
∗ )− δ)

+m(4 + 2δ−2).

Proof of Lemma C.8. For the fixed arm k, we first simplify the notations by using nm = n
(i(m))
T (k) and ∆m = ∆i(k;m)(k)

as follows,

E

M(k)∑
m=1

n
(i(k;m))
T (k)∆(i(k;m))(k)

 =

M(k)∑
m=1

E
[
n
(i(k;m))
T (k)

]
∆(i(k;m))(k) =

M(k)∑
m=1

E [nm] ∆m.

To simplify the result of Lemma C.7 as well, we denote Am := log T+4 log(log T )

kl(ω(i(k;m))(k)+δ,ω(i(k;m))(k
(i(k;m))
∗ )−δ)

and Bm := m(4 +

2δ−2). Then, Lemma C.7 becomes
∑m

ℓ E[nl] ⩽ Am +Bm for all integer m ⩽ M(k).

Next, we rewrite the summation and upper bound it as follows,

M(k)∑
m=1

E [nm] ∆m = (A1 +B1)∆1 + ((A1 +B1)− E[n1])︸ ︷︷ ︸
>0, Lemma C.7

(∆2 −∆1)︸ ︷︷ ︸
<0

+((A2 +B2)− (A1 +B1))∆2

+ ((A2 +B2)− (E[n1] + E[n2]))︸ ︷︷ ︸
>0, Lemma C.7

(∆3 −∆2)︸ ︷︷ ︸
<0

+((A3 +B3)− (A2 +B2))∆3

+
...

+

(AM(k)−1 +BM(k)−1)−
M(k)−1∑
m=1

E[nm]


︸ ︷︷ ︸

>0, Lemma C.7

(∆M(k) −∆M(k)−1)︸ ︷︷ ︸
<0

+

(
M(k)∑
m=1

E[nm]︸ ︷︷ ︸
<AM(k)+BM(k)

−(AM(k)−1 +BM(k)−1)

)
∆M(k)

⩽ (A1 +B1)∆1 +

M(k)−1∑
m=1

((Am+1 +Bm+1)− (Am +Bm))∆m

= A1∆1 +

M(k)−1∑
m=1

(Am+1 −Am)∆m +B1

M(k)∑
m=1

∆m.



One can bound ∆m as follows,

∆m

(a)

⩽ 2(∆m − 2δ) = 2((ω(i(k;m))(k
(i(k;m))
∗ )− δ)− (ω(i(k;m))(k) + δ))

(b)
=

√
8(σ2

1 + σ2
2) kl(ω

(i(k;m))(k) + δ, ω(i(k;m))(k
(i(k;m))
∗ )− δ) =: xm,

where the inequality (a) is due to δ’s definition, the equation (b) is due to the property of the KL-divergence in Lemma C.3,

and we define xm :=

√
kl(ω(i(k;m))(k) + δ, ω(i(k;m))(k

(i(k;m))
∗ )− δ) for simplicity. We can substitute ∆m ⩽ xm into the

above inequality and further scale it up as follows,

A1∆1 +

M(k)−1∑
m=1

(Am+1 −Am)∆m +B1

M(k)∑
m=1

∆m ⩽ A1x1 +

M(k)−1∑
m=1

(Am+1 −Am)xm +B1

M(k)∑
m=1

∆m

(a)
=

M(k)−1∑
m=1

Am(xm − xm+1) +AM(k)xM(k) +B1

M(k)∑
m=1

∆m

= 8(σ2
1 + σ2

2)

M(k)−1∑
m=1

log T + 4 log(log T )

x2
m

(xm − xm+1) +
log T + 4 log(log T )

x2
M(k)

xM(k)

+ (4 + 2δ−2)

M(k)∑
m=1

∆m

⩽ 8(σ2
1 + σ2

2)(log T + 4 log(log T ))

(∫ x1

xM(k)

1

x2
dx+

1

xM(k)

)
+ (4 + 2δ−2)

M(k)∑
m=1

∆m

⩽ 16(σ2
1 + σ2

2)
log T + 4 log(log T )

xM(k)
+ (4 + 2δ−2)

M(k)∑
m=1

∆m

(b)
=

16(σ2
1 + σ2

2)√
8(σ2

1 + σ2
2)

√
kl(ω̄(k) + δ, ω̄(k) + ∆̄(k)− δ)(log T + 4 log(log T ))

kl(ω̄(k) + δ, ω̄(k) + ∆̄(k)− δ)
+ (4 + 2δ−2)

M(k)∑
m=1

∆m

(c)
=

4(∆m − 2δ)(log T + 4 log(log T ))

kl(ω̄(k) + δ, ω̄(k) + ∆̄(k)− δ)
+ (4 + 2δ−2)

M(k)∑
m=1

∆m,

where equation (a) applies the Abel transformation in Lemma C.4 in Appendix, equation (b) is by
ω(i(k;M(k)))(k

(i(k;M(k)))
∗ ) = ω̄(k) + ∆̄(k) where ω̄(k) = ω(̄i(k))(k) and ī(k) = i(k;M(k)), and equation (c) is due

to the KL-divergence’s property in Lemma C.3. The above inequality upper bounds the regret cost paying for the suboptimal
arm k.
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