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1 ADDITIONAL EXPERIMENTS

In this section, we present additional experiment results on nonconvex logistic regression and convolutional neural networks.

1.1 RESULTS ON IJCNN1 DATASET

In this subsection, we present the additional experiment of our method on ijcnn1 dataset. In this dataset, we follow the
same settings as before: we set the clipping thresholds C1 = 1, C2 = 0.01, and set the momentum parameter γ = C2.
Figures 1 illustrates the objective function value and the gradient norm of different algorithms under various privacy
budgets ϵ ∈ {0.2, 0.5}. We can see that our proposed algorithm (DP-SRM) outperforms the other three baseline algorithms
(RRPSGD, DP-GD, and DP-AGD) in terms of the objective loss, gradient norm, and convergence rate by a large margin.
Table 1 shows the test error of different algorithms as well as the CPU time (in seconds) of the training process on ijcnn1
dataset. It demonstrates that our algorithm convergences faster and can achieve a better test error on the test set than other
baselines.

Table 1: Comparison of different algorithms on ijcnn1 dataset under different privacy budgets ϵ ∈ {0.2, 0.5} and δ = 10−5.
Note that the non-private baseline denotes the test error of the non-private STORM algorithm [Cutkosky and Orabona,
2019].

Privacy Non-private
Method Test Error

Data
CPU time Gradient Norm

Budget Baseline Passes

ϵ = 0.2 0.2096

DP-GD 0.3160 (0.0120) 20 0.5180 0.0184 (0.0024)
DP-AGD 0.2645 (0.0044) 346 90.05 0.0133 (0.0018)
RRPSGD 0.3110 (0.0106) 8 47.64 0.0175 (0.0023)

(0.002) DP-SRM 0.2503 (0.0090) 4 0.4748 0.0117 (0.0008)

ϵ = 0.5 0.2096

DP-GD 0.2717 (0.0081) 20 0.4990 0.0171 (0.0024)
DP-AGD 0.2416 (0.0029) 365 94.28 0.0397 (0.0025)
RRPSGD 0.3033 (0.0110) 10 59.06 0.0160 (0.0018)

(0.002) DP-SRM 0.2341 (0.0042) 5 0.4368 0.0082 (0.0005)

1.2 ADDITIONAL EXPERIMENTS ON CONVOLUTIONAL NEURAL NETWORKS

In this subsection, we present additional experiment results on training convolutional neural networks. Figures 2 shows the
average test error (over 30 trials) and the corresponding 95% confidence interval of different methods versus the number of
iterations as well as the training time under different privacy budgets on MNIST and CIFAR-10 datasets.

Results on MINST dataset. We can see from Figure 2(a) and Figure 2(b) that our proposed method can achieve 2.91%
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(a) ϵ = 0.2
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(b) ϵ = 0.5
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(c) ϵ = 0.2
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(d) ϵ = 0.5

Figure 1: Results for nonconvex logistic regression on ijcnn1 dataset. (a), (b) show the objective loss versus the number of
epochs. (c), (d) illustrate the gradient norm versus the number of epochs.

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e4

0.025

0.100

0.175

0.250

Te
st

 e
rro

r

DP-SGD
DP-SRM

(a) ϵ = 7.0
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(b) ϵ = 7.0
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(c) ϵ = 8.0
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(d) ϵ = 8.0
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(e) ϵ = 6.0
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(f) ϵ = 6.0
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(g) ϵ = 8.0
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(h) ϵ = 8.0
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(i) ϵ = 10.0
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(j) ϵ = 10.0

Figure 2: Results for CNN on MNIST and CIFAR-10 datasets. (a), (b) illustrate the results on MNIST dataset. (c), (d)
demonstrate the results for CNN6 on CIFAR-10 dataset. (e)-(j) show the results for CNN5 on CIFAR-10 dataset.

test error when ϵ = 7.0, which is comparable to the 2.93% test errors achieved by DP-SGD. Furthermore, the results show
that our method is more efficient than DP-SGD in terms of iteration numbers and the training time. More specifically, our
method is more than 2× faster than DP-SGD to achieve the desired test error.

Parameters for CNN5. We choose three different privacy budgets ϵ ∈ {6.0, 8.0, 10.0}, and set δ = 10−5. We set the
clipping parameter C1 = 2 for the term ∥∇fi(θ

t)∥2. For the term ∥∇fi(θ
t) − ∇fi(θ

t−1)∥2, we choose the clipping
parameter C2 by searching the grid {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}. For DP-SGD, we tune the batch size by searching
the grid {32, 64, 128} and the step size by {0.01, 0.02, 0.05, 0.1, 0.2}. For DP-SRM, we tune the batch size b by searching
the grid {32, 64, 128}, step size by {0.01, 0.02, 0.05, 0.1, 0.2}, and b0 by {b, 2b, 4b}. In addition, we set the momentum
parameter γ = C2.

Results for CNN5 on CIFAR-10 dataset. Figures 2(e)-2(j) present the average test error of different methods versus the
number of iterations as well as the training time under different privacy budgets for CNN5 on CIFAR-10 dataset. The
CNN5 trained by the non-private SGD will have 39.5% test error after 100 epochs. The results show that that our proposed
method has 50.3%, 48.2% and 47.1% test errors when ϵ = 6.0, ϵ = 8.0 and ϵ = 10.0. Nevertheless, DP-SGD has 51.0%,



50.2% and 49.3% test errors under the privacy budgets ϵ = 6.0, ϵ = 8.0 and ϵ = 10.0, which are worse than our method.
Furthermore, we can see from the plots that compared with DP-SGD, our method can reduce both the iteration numbers and
the training time.

Results for CNN6 on CIFAR-10 dataset. Figure 2(c) and Figure 2(d) illustrate the average test error of different methods
versus the number of iterations and the training time for CNN6 on CIFAR-10 dataset. We can see from the results that that
our proposed method can achieve 29.3% test errors given the privacy budget ϵ = 8.0, which are comparable to the results of
DP-SGD with 29.4% under the same privacy budget. However, we can see from the plots that our method can significantly
reduce the iteration numbers and the training time. When ϵ = 8, DP-SGD takes 5.8× 104 iterations and 5176 seconds to
achiever 29.4% test error. In sharp contrast, our method only takes 2.6× 104 iterations and 2589 seconds to achieve 29.3%
test error.

2 PROOF OF MAIN RESULTS

In this section, we present the proofs of our main results.

2.1 PROOF OF THEOREM 5.1

We will provide the privacy guarantee of Algorithm 1 in this subsection. To this end, we need the following composition
rule for RDP.

Lemma 2.1 (Mironov [2017). ] If k randomized mechanisms Mi : Sn → R for i ∈ [k], satisfy (α, ρi)-RDP, then their
composition

(
M1(S), . . . ,Mk(S)

)
satisfies (α,

∑k
i=1 ρi)-RDP. Moreover, the input of the i-th mechanism can base on the

outputs of previous (i− 1) mechanisms.

We will first show that our proposed algorithm satisfies RDP using Lemma 3.7 and Lemma 2.1. Then we will transform it
into (ϵ, δ)-DP based on Lemma 3.9. For the given dataset S, we use S′ to denote its neighboring dataset with one different
example indexed by i′ in the following discussion. According to Algorithm 1, we use the following Mt to denote the
mechanism at t-th iteration

Mt =

{
∇FBt

(θt) + (1− γ)
(
vt−1
p −∇FBt

(θt−1)
)
+ ut, t > 0,

v0 + u0, t = 0.
(2.1)

Therefore, our goal is to show the privacy guarantees of Mt for t = 0, 1, . . . , T .

Case 1: If t = 0, we have v0 = ∇FB0(θ
0) and M0 is equivalent to the following Gaussian mechanism

G0 = ∇FB0
(θ0) + u0,

where u0 ∼ N(0, σ2
0Id). Note that the mechanism G0 is based on the subsampling, thus we will use the results of privacy-

amplification by subsampling, i.e., Lemma 3.7, to show that G0 satisfies RDP given appropriate u0. To this end, we first
consider the following Gaussian mechanism without subsampling

G̃0 =
1

b0

n∑
i=1

∇fi(θ
0) + u0.

Sensitivity. Consider the query on the dataset S as follows q̃0(S) =
∑n

i=1 ∇fi(θ
0)/b0, where q̃0(S) denotes that the query

is based on the dataset S. Thus, we have

q̃0(S)− q̃0(S
′) =

1

b0

(
∇fi(θ

0)−∇fi′(θ
0)
)
.

Since each component function is G-Lipschitz, we can obtain the ℓ2-sensitivity of this query as follows

∆̃0 =
1

b0
∥∇fi(θ

0)−∇fi′(θ
0)∥2 ≤ 2G

b0
. (2.2)



Privacy guarantee of G0. By Lemma 3.7, if the Gaussian noise u0 in G̃0 has the following variance

σ2
0 =

14TαG2

βn2ϵ
, (2.3)

the mechanism G̃0 satisfies
(
α, βϵn2/

(
7b20T

))
-RDP. Therefore, according to the privacy-amplification by subsampling

result in Lemma 3.7, we have that the mechanism G0 satisfies (α, ρ0)-RDP, where ρ0 = βϵ/T . Furthermore, the variance
σ2
0 should satisfy the following condition

σ2
0

∆̃2
0

=
σ2
0b

2
0

4G2
=

7b20Tα

βn2ϵ
≥ 0.7.

And the parameter α should satisfy α ≤ 1 + 2(σ0/∆̃0)
2 log

(
1/τα(1 + (σ0/∆̃0)

2)
)
/3.

Case 2: If t > 0, according to the definition of Mt in (2.1), we consider the following Gaussian mechanism

Gt = ∇FBt
(θt)− (1− γ)∇FBt

(θt−1) + ut.

Now, we are going to show that Gt satisfies RDP given appropriate ut. Since the mechanism Gt is based on the subsampling,
we will use the similar proof procedure as in Case 1 to show that Gt satisfies RDP. Thus we consider the following Gaussian
mechanism without subsampling

G̃t =
1

b

n∑
i=1

∇fi(θ
t)− (1− γ)

1

b

n∑
i=1

∇fi(θ
t−1) + ut.

Sensitivity. We consider the following query without subsampling

q̃t(S) =
1

b

n∑
i=1

∇fi(θ
t)− (1− γ)

1

b

n∑
i=1

∇fi(θ
t−1).

Thus we have

q̃t(S)− q̃t(S
′) =

1

b

(
∇fi(θ

t)− (1− γ)∇fi(θ
t−1)−∇fi′(θ

t) + (1− γ)∇fi′(θ
t−1)

)
.

As a result, we can obtain the ℓ2-sensitivity of the query q̃t as follows

∆̃t =
1

b

∥∥(1− γ)
(
∇fi(θ

t)−∇fi(θ
t−1)−∇fi′(θ

t) +∇fi′(θ
t−1)

)
+ γ

(
∇fi(θ

t)−∇fi′(θ
t)
)∥∥

2

≤ 2L(1− γ)

b
∥θt − θt−1∥2 +

2γG

b
,

where the inequality is due to L-Lipschitz continuous gradient and G-Lipschitz of each component function. Furthermore,
according to the update rule of Algorithm 1 and the definition of ηt−1, we have

∥θt − θt−1∥2 ≤ ηt−1∥vt−1
p ∥2 ≤ min

{
ζ

n0L∥vt−1
p ∥2

,
1

2n0L

}
· ∥vt−1

p ∥2 ≤ ζ

n0L
,

which implies that

∆̃t ≤
2L(1− γ)

b
∥θt − θt−1∥2 +

2γG

b
≤

2
(
(1− γ)ζ/n0 + γG

)
b

. (2.4)

Privacy guarantee of Gt. By Lemma 3.7, if we the Gaussian noise ut in G̃t has the variance as follows

σ2
t =

14Tα
(
(1− γ)ζ/n0 + γG

)2
βn2ϵ

, (2.5)



the mechanism G̃t satisfies
(
α, βϵn2/

(
7b2T

))
-RDP. Thus based on the privacy-amplification by subsampling result (Lemma

3.7), we can get that the mechanism Gt satisfies (α, ρ)-RDP, where ρ = βϵ/T . In addition, the variance σ2
t should satisfy

the following condition

σ2
t

∆̃2
t

=
σ2
t b

2

4
(
(1− γ)ζ/n0 + γG

)2 =
7b2Tα

βn2ϵ
≥ 0.7.

And the parameter α should satisfy α ≤ 1+ 2(σt/∆̃t)
2 log

(
1/τα(1+ (σt/∆̃t)

2)
)
/3. As a result, we show that Gt satisfies

(α, ρ)-RDP.

Privacy guarantee of Mt. By the definition of the mechanism Mt in (2.1), Mt is a composition of G0, . . . ,Gt, i.e.,
Mt = (G0, . . . ,Gt). According to the composition property of RDP, i.e., Lemma 2.1, we have Mt satisfies (α, ρ0+(t−1)ρ)-
RDP. Since ρ0 = ρ = βϵ/T , we have that after T ′ iterations of Algorithm 1, it satisfies (α, βT ′ϵ/T )-RDP. According to
Lemma 3.9 and α = log(1/δ)/

(
(1− β)ϵ

)
+ 1, we have that after T ′ iterations, Algorithm 1 satisfies (T ′ϵ/T, δ)-DP. As a

result, we have that for each θt, where t = 1, . . . , T , it satisfies (ϵ, δ)-DP. Finally, by the definition of θ̃, we have θ̃ satisfies
(ϵ, δ)-DP.

2.2 PROOF OF COROLLARY 5.3

In this subsection, we show that by choosing a larger mini-batch size, we can get rid of the constraints in Theorem 5.1. More
specifically, let b20 = b2 = n2ϵ/T and β = 1/2, we have σ′2 = 7Tαb2/(βn2ϵ) = 14α. Furthermore, we have

τα
(
1 + σ′2)

(i)

≤ 15τα2 (ii)
= 15

(
2 log(1/δ)/ϵ+ 1

)2√
ϵ/T ,

where (i) uses σ′2 = 14α, (ii) uses τ = b/n =
√

ϵ/T and ϵ = 2 log(1/δ)/(α − 1). If ϵ ≤ 2 log(1/δ), we can obtain
τα

(
1+ σ′2) ≤ 1/3 if T is larger than O

(
log4(1/δ)/ϵ3

)
. If ϵ > 2 log(1/δ), we can obtain τα

(
1+ σ′2) ≤ 1/3 if T is larger

than O(ϵ). Therefore, we can get log(1/τα
(
1 + σ′2)

)
≥ 1. As a result, we have 2

(
σ′2 log(1/τα

(
1 + σ′2)

))
/3 ≥ 28α/3 >

α− 1.

2.3 PROOF OF THEOREM 5.4

In this subsection. we provide the utility guarantee of our method. According to the assumption that each component
function has L-Lipschitz continuous gradient, we can obtain that

∥∇F (x)−∇F (y)∥2 =
1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2 ≤ L∥x− y∥2,

which implies that F (x) has L-Lipschitz continuous gradient. Thus we have

F (θt+1) ≤ F (θt) + ⟨∇F (θt),θt+1 − θt⟩+ L

2
∥θt+1 − θt∥22

= F (θt)− ηt⟨∇F (θt),vt
p⟩+

η2tL

2

∥∥vt
p

∥∥2
2

= F (θt) +
ηt
2

∥∥∇F (θt)− vt
p

∥∥2
2
− ηt

2

∥∥∇F (θt)
∥∥2
2
− ηt

(
1

2
− ηtL

2

)∥∥vt
p

∥∥2
2
,

where the last equality is due to the fact that 2⟨∇F (θt),vt
p⟩ =

∥∥∇F (θt)
∥∥2
2
+

∥∥vt
p

∥∥2
2
−

∥∥∇F (θt) − vt
p

∥∥2
2
. Since ηt ≤

1/(2n0L), we can obtain that

F (θt+1) ≤ F (θt) +
1

4n0L

∥∥∇F (θt)− vt
p

∥∥2
2
− ηt

4

∥∥vt
p

∥∥2
2
.

In addition, we have

ηt
4

∥∥vt
p

∥∥2
2
=

ζ2

8n0L
min

{
2
∥∥vt

p/ζ
∥∥
2
,
∥∥vt

p/ζ
∥∥2
2

}
≥

ζ
∥∥vt

p

∥∥
2
− 2ζ2

4n0L
.



Thus we have

F (θt+1) ≤ F (θt) +
1

4n0L

∥∥∇F (θt)− vt
p

∥∥2
2
−

ζ
∥∥vt

p

∥∥
2

4n0L
+

ζ2

2n0L
. (2.6)

Summing over t = 0, . . . , T − 1 and taking expectation in (2.6), we can get

ζ

4n0L

T−1∑
t=0

E
∥∥vt

p

∥∥
2
≤ F (θ0)− EF (θT ) +

1

4n0L

T−1∑
t=0

E
∥∥∇F (θt)− vt

p

∥∥2
2
+

Tζ2

2n0L

≤ F (θ0)− F (θ∗) +
1

4n0L

T−1∑
t=0

E
∥∥∇F (θt)− vt

p

∥∥2
2
+

Tζ2

2n0L
. (2.7)

For the term E
∥∥∇F (θt)− vt

p

∥∥2
2
, we can bound it as follows: we first consider the conditional expectation

Et

∥∥vt
p −∇F (θt)

∥∥2
2
= Et

∥∥(1− γ)
(
vt−1
p −∇FBt

(θt−1)
)
+∇FBt

(θt)−∇F (θt) + ut
∥∥2
2

= Et

∥∥(1− γ)
(
vt−1
p −∇F (θt−1)

)
+ (1− γ)∇F (θt−1)

− (1− γ)∇FBt
(θt−1) +∇FBt

(θt)−∇F (θt)
∥∥2
2
+ Et∥ut∥22

= Et

∥∥(1− γ)
(
vt−1
p −∇F (θt−1)

)
+ (1− γ)

(
∇FBt

(θt)−∇FBt
(θt−1)

+∇F (θt−1)−∇F (θt)
)
+ γ

(
∇FBt(θ

t)−∇F (θt)
)∥∥2

2
+ Et∥ut∥22, (2.8)

where Et is taken over the randomness at the t-th iteration given the observations after (t− 1)-th iteration, the first equation
comes from the definition of vt

p, the second one is due to the independence of the random variables. Therefore, we can
obtain that

Et

∥∥vt
p −∇F (θt)

∥∥2
2
= (1− γ)2Et

∥∥vt−1
p −∇F (θt−1)

∥∥2
2

+ 2γ2Et

∥∥∇FBt
(θt)−∇F (θt)

∥∥2
2
+ Et∥ut∥22

+ 2(1− γ)2Et

∥∥∇FBt
(θt)−∇FBt

(θt−1) +∇F (θt−1)−∇F (θt)
∥∥2
2
, (2.9)

where the equality is due to the expansion of (2.8) and Cauchy-Schwartz inequality. In addition, we have

Et

∥∥∇F (θt)−∇F (θt−1)−∇FBt
(θt) +∇FBt

(θt−1)
∥∥2
2

≤ 1

b
· 1
n

n∑
i=1

∥∥∇F (θt)−∇F (θt−1)−∇fi(θ
t) +∇fi(θ

t−1)
∥∥2
2

≤ 1

b
· 1
n

n∑
i=1

∥∥∇fi(θ
t)−∇fi(θ

t−1)
∥∥2
2

≤ L2

b
∥θt − θt−1∥22,

where the first inequality is due to Lemma 4.1, the second one comes from the fact that E∥X − EX∥22 ≤ E∥X∥22 for any
random variable X , and the last one is due to the gradient Lipschitz property of each component function. According to the
update rule, we have

∥θt − θt−1∥2 ≤ ηt−1

∥∥vt−1
p

∥∥
2
≤ min

{
ζ

n0L
∥∥vt−1

p

∥∥
2

,
1

2n0L

}
·
∥∥vt−1

p

∥∥
2
≤ ζ

n0L
,

which implies

Et

∥∥∇F (θt)−∇F (θt−1)−∇FBt
(θt) +∇FBt

(θt−1)
∥∥2
2
≤ ζ2

n2
0b
. (2.10)



Thus plugging (2.10) into (2.9), we can obtain that

Et

∥∥vt
p −∇F (θt)

∥∥2
2
≤ (1− γ)2

∥∥vt−1
p −∇F (θt−1)

∥∥2
2
+

2(1− γ)2L2

b
∥θt − θt−1∥22

+ 2γ2Et

∥∥∇FBt
(θt)−∇F (θt)

∥∥2
2
+ Et∥ut∥22

≤ (1− γ)2
∥∥vt−1

p −∇F (θt−1)
∥∥2
2
+

2(1− γ)2ζ2

n2
0b

+
2γ2G2

b
+ Et∥ut∥22, (2.11)

where the second inequality follows the following inequality (using Lemma 4.1, E∥X − EX∥22 ≤ E∥X∥22, and the
G-Lipschitz of each component function)

Et

∥∥∇FBt(θ
t)−∇F (θt)

∥∥2
2
≤ 1

b
· 1
n

n∑
i=1

∥∥∇fi(θ
t)
∥∥2
2
≤ G2

b
. (2.12)

Therefore, taking expectations over all iterations in (2.11), we can get

E
∥∥vt

p −∇F (θt)
∥∥2
2
≤ (1− γ)2E

∥∥vt−1
p −∇F (θt−1)

∥∥2
2
+

2(1− γ)2ζ2

n2
0b

+
2γ2G2

b
+ dσ2. (2.13)

Following the proof of Lemma 9 in Yuan et al. [2020], we have

γ

T−1∑
t=0

E
∥∥vt

p −∇F (θt)
∥∥2
2
≤ 2T (1− γ)2ζ2

n2
0b

+
2Tγ2G2

b
+ Tdσ2 + E

∥∥v0
p −∇F (θ0)

∥∥2
2

≤ 2T (1− γ)2ζ2

n2
0b

+
2Tγ2G2

b
+ Tdσ2 +

G2

b0
+ dσ2

0 ,

where the last line comes from the definition of v0
p = ∇FB0

(θ0)+u0 and the inequality E
∥∥∇FB0

(θ0)−∇F (θ0)
∥∥2
2
≤ G2/b0

(see equation (2.12)). Therefore, we can obtain that

T−1∑
t=0

E
∥∥vt

p −∇F (θt)
∥∥2
2
≤ 2T (1− γ)2ζ2

n2
0γb

+
2TγG2

b
+

Tdσ2 + dσ2
0

γ
+

G2

γb0
. (2.14)

Combining (2.7) and (2.14), we can get

ζ

4n0L

T−1∑
t=0

E
∥∥vt

p

∥∥
2
≤ F (θ0)− F (θ∗) +

1

4n0L

T−1∑
t=0

E
∥∥∇F (θt)− vt

p

∥∥2
2
+

Tζ2

2n0L

≤ F (θ0)− F (θ∗) +
T (1− γ)2ζ2

2n3
0Lγb

+
TγG2

4Ln0b

+
Tdσ2 + dσ2

0

4n0Lγ
+

G2

4Lγn0b0
+

Tζ2

2n0L
.

Hence we have

1

T

T−1∑
t=0

E
∥∥vt

p

∥∥
2
≤ 4n0L

Tζ

(
F (θ0)− F (θ∗)

)
+

2ζ

n2
0γb

+
γG2

ζb
+

dσ2 + dσ2
0/T

ζγ
+

G2

Tζγb0
+ 2ζ

≤ 6ζ +
2ζ

n2
0γb

+
γG2

ζb
+

dσ2 + dσ2
0/T

ζγ
+

G2

Tζγb0
, (2.15)

where the first inequality is due to T = ⌊4n0L
(
F (θ0) − F (θ∗)

)
/ζ2⌋ + 1. In addition, according to (2.14) and Jensen’s

inequality, we have

1

T

T−1∑
t=0

E
∥∥∇F (θt)− vt

p

∥∥
2
≤

√
2ζ

n0

√
γb

+

√
2γG√
b

+

√
dσ +

√
dσ0/

√
T

√
γ

+
G√
Tγb0

. (2.16)



Thus by the definition of θ̃, we have

E∥∇F (θ̃)∥2 =
1

T

T−1∑
t=0

E∥∇F (θt)∥2

≤ 1

T

T−1∑
t=0

E
∥∥vt

p

∥∥
2
+

1

T

T−1∑
t=0

E
∥∥∇F (θt)− vt

p

∥∥
2

≤ 6ζ +
2ζ

n2
0γb

+
γG2

ζb
+

dσ2

ζγ
+

dσ2
0

Tζγ
+

G2

Tζγb0
+

√
2ζ

n0

√
γb

+

√
2γG√
b

+

√
dσ

√
γ

+

√
dσ0√
Tγ

+
G√
Tγb0

, (2.17)

where the second inequality comes from (2.15) and (2.16). Let γ2 = 2ζ2/(n2
0G

2), b = G/(n0ζ), b0 = G3/(ζLDF ), where
DF = F (θ0)− F (θ∗) and F (θ∗) is a global minimum of F , by the definition of T , we can get

E∥∇F (θ̃)∥2 ≤ 15ζ +
dσ2

ζγ
+

√
dσ

√
γ

+
dσ2

0

Tζγ
+

√
dσ0√
Tγ

. (2.18)

Furthermore, we have

σ2 =
14T

(
(1− γ)ζ/n0 + γG

)2
log(1/δ)

n2ϵ2
, σ2

0 =
14TG2 log(1/δ)

n2ϵ2
. (2.19)

Plugging (2.19) into (2.18), we can obtain

E∥∇F (θ̃)∥2 ≤ 15ζ +
C1TdG log(1/δ)

n0n2ϵ2
+

√
C1TζdG log(1/δ)

nϵ
√
n0

+
C2dn0G

3 log(1/δ)

n2ϵ2ζ2

+

√
C2n0dG3 log(1/δ)

nϵ
√
ζ

≤ 15ζ +
C3LDFGd log(1/δ)

n2ϵ2ζ2
+

√
C4GLDF d log(1/δ)

nϵ
√
ζ

+
C5n0dG

3 log(1/δ)

n2ϵ2ζ2
+

√
C6n0dG3 log(1/δ)

nϵ
√
ζ

, (2.20)

where the second inequality is due to the fact that T = ⌊4n0LDF /ζ
2⌋ + 1. Without loss of generality, we can assume

G ≥ 1 and ζ ≤ 1. Therefore, let n0 = LDF /G
2 · (G/ζ)κ with κ ∈ [0, 1], and plugging n0 into (2.20), we can obtain

E∥∇F (θ̃)∥2 ≤ 15ζ +
C7LDFGd log(1/δ)Gκ

n2ϵ2ζ2+κ
+

C8

√
GLDF d log(1/δ)G

κ
2

nϵζ
1+κ
2

. (2.21)

Thus, choosing

ζ = C9

(
G

κ
2

√
GLDF d log(1/δ)

nϵ

) 2
3+κ

, (2.22)

we can get

E∥∇F (θ̃)∥2 ≤ C10

(
G

κ
2

√
GLDF d log(1/δ)

nϵ

) 2
3+κ

. (2.23)

Note that we require γ ≤ 1, which gives us nϵ ≥ O
(
G2(d log(1/δ))1/2/(LDF )

)
.

Furthermore, according to Theorem 5.1 to achieve the desired privacy guarantee, we require σ′2 = min{b2σ2/
(
4((1 −

γ)ζ/n0 + γG)2
)
, b20σ

2
0/(4G

2)} ≥ 0.7. Note that b = G/(n0ζ), b0 = G3/(ζLDF ), n0 = LDF /G
2 · (G/ζ)κ, we have



b = b0 · (ζ/G)κ. Thus, the aforementioned requirement reduces to

14b20T log(1/δ)

4n2ϵ2
· ζ2κ

G2κ
=

14b20n0LDF log(1/δ)

ζ4n2ϵ2
· ζ2κ

G2κ

≥ 14b0n0LDF log(1/δ)

ζ4n2ϵ2
· ζ2κ

G2κ

=
14GLDF log(1/δ)

ζ3n2ϵ2
· ζκ

Gκ

≥ 0.7,

where the first equality comes from the definition of T and the first inequality is due to b0 ≥ 1. Therefore, we need

ζ ≤
(
4
G−κ

2

√
GLDF d log(1/δ)

nϵ

) 2
3−κ

. (2.24)

Combining (2.22) and (2.24), we need to choose κ = 0 in n0, which gives us

E∥∇F (θ̃)∥2 ≤ C10

(√
GLDF d log(1/δ)

nϵ

) 2
3

, (2.25)

where {Ci}10i=1 are absolute constants. Furthermore, the requirement α− 1 = log(1/δ)/
(
(1− β)ϵ

)
≤ 2σ′2 log

(
1/
(
τα(1 +

σ′2)
))
/3 in Theorem 5.1 can be satisfied under our choice of parameters given large enough n. Since we have σ′2 ≥ 0.7,

we have 2σ′2 log
(
1/
(
τα(1 + σ′2)

))
/3 ≥ 0.4 log

(
1/
(
τα(1 + σ′2)

))
≥ 0.4 log

(
1/
(
3τασ′2)). Furthermore, we have

τασ′2 =
G3

nζLDF
· log(1/δ) + (1− β)ϵ

(1− β)ϵ
· 14GLDF log(1/δ)

ζ3n2ϵ2

≤ 28G4 log2(1/δ)

(1− β)n3ϵ3ζ4

≤ C11
G4 log2(1/δ)

(nϵ)3
· (nϵ)8/3

(GLDF d log(1/δ))4/3

= C11
G8/3 log2/3(1/δ)

(nϵ)1/3(LDF d)4/3
,

where the first inequality comes from assumining ϵ ≤ log(1/δ) without loss of generality, and the second inequality is due
to the definition of ζ. Thus we have

log
(
1/
(
3τασ′2)) ≥ log

(
3C11

(nϵ)1/3(LDF d)
4/3

G8/3 log2/3(1/δ)

)
.

As a result, the requirement reduces to

0.4 log

(
3C11

(nϵ)1/3(LDF d)
4/3

G8/3 log2/3(1/δ)

)
≥ log(1/δ)

(1− β)ϵ
,

which can be satisfied if we have

n ≥ C12
G8 log2(1/δ)

(LDF d)4ϵ
,

where C11, C12 are some large constants.

Gradient Complexity. Since we have b = b0 = G3/(ζLDF ), the total gradient complexity is

2(T − 1)b+ b0 ≤ 8LDFn0

ζ2
· G3

LDF ζ
+

G3

LDF ζ
.

According to the definition of ζ and n0, we have the total gradient complexity is O
(
n2ϵ2/(d log(1/δ))

)
.



3 PROOF OF LEMMA 3.7

Without loss of generality, we assume ∆(q) = 1. According to Theorem 9 in Wang et al. [2019b], we have

ρ′(α) ≤ 1

α− 1
log

(
1 + τ2

(
α

2

)
min

{
4(eρ(2) − 1), 2eρ(2)

}
+

α∑
j=3

τ j
(
α

j

)
2e(j−1)ρ(j)

)
, (3.1)

where τ is the subsample rate, ρ(j) = j/(2σ2). Next, we will show that the summation term in the right hand side of the
above inequality is dominated by the second term under certain conditions. First of all, when σ2 is large, i.e., σ2 ≥ 0.7, we
have

min
{
4(eρ(2) − 1), 2eρ(2)

}
≤ 6/σ2,

which implies that

τ2
(
α

2

)
min

{
4(eρ(2) − 1), 2eρ(2)

}
≤ τ2

(
α

2

)
6/σ2.

Next, we consider the summation term in (3.1), and we have

α∑
j=3

τ j
(
α

j

)
2e(j−1)ρ(j) ≤ τ2

(
α

2

)( α∑
j=3

τ j−2αj−2e
(α−1)j

2σ2

)

≤ τ2
(
α

2

)
ταe

3(α−1)

2σ2

1− ταe
α−1

2σ2

,

where the first inequality is due to the fact that

e(j−1)ρ(j) = e
(j−1)j

2σ2 ≤ e
(α−1)j

2σ2 and
(
α

j

)
=

α!

j!(α− j)!
≤ α2αj−2

3!
.

In addition, the last inequality comes from the condition that τα exp
(
(α− 1)/(2σ2)

)
< 1 and the sum of the geometric

sequence. Therefore, as long as

α− 1 ≤ 2

3
σ2 log

1

τα(1 + σ2)
, (3.2)

we have
α∑

j=3

τ j
(
α

j

)
2e(j−1)ρ(j) ≤ τ2

(
α

2

)
1

σ2
.

In addition, we require that τα exp
(
(α− 1)/(2σ2)

)
< 1. By plugging the condition of α into the above requirement, we

can obtain that this condition can hold if τ < 1.

As a result, under the conditions that σ2 ≥ 0.7, α ≤ log(1/τ
(
1 + σ2)

)
, we can obtain that

ρ′(α) ≤ 1

α− 1
log

(
1 + τ2

(
α

2

)
10

σ2

)
≤ 1

α− 1
τ2
(
α

2

)
7

σ2
≤ 3.5ατ2/σ2.

4 AUXILIARY LEMMAS

Lemma 4.1 (Lei et al., 2017). Consider vectors ai satisfying
∑n

i=1 ai = 0. Let B be a uniform random subset of
{1, 2, . . . , n} with size m, we have

E
∥∥∥∥ 1

m

∑
i∈B

ai

∥∥∥∥2
2

≤ 1{|B| < n}
mn

n∑
i=1

∥ai∥22.
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