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Abstract

Ensemble methods combine multiple individual
models for prediction, which have demonstrated
their effectiveness in accurate uncertainty quan-
tification (UQ) and strong robustness. Obtaining
a diverse ensemble set of model parameters re-
sults in better model averaging performance and
better approximation of the true posterior distri-
bution of these parameters. In this paper, we pro-
pose the diversity-enhanced probabilistic ensemble
method with the adaptive uncertainty-guided en-
semble learning strategy for better quantifying un-
certainty and further improving the model robust-
ness. Specifically, we construct the probabilistic
ensemble model by building a Gaussian distribu-
tion of the model parameters for each ensemble
component using Laplacian approximation in a
post-processing manner. Then a mixture of Gaus-
sian model is established with learnable and refin-
able parameters in an EM-like algorithm. During
ensemble training, we leverage the uncertainty es-
timated from previous models as guidance when
training the next one such that the new model will
focus more on the less explored regions by pre-
vious models. Various experiments including out-
of-distribution detection and image classification
under distributional shifts have demonstrated better
uncertainty estimation and improved model gener-
alization ability of our proposed method.

1 INTRODUCTION

The real world is full of uncertainty. However, determinis-
tic deep learning models might be overconfident in some
predictions that they actually do not know due to the lack
of knowledge of those data regions [Lakshminarayanan
et al., 2017a]. Hence, establishing deep learning models in a

probabilistic manner is very important for a trusted system,
which will enable us to tell when the models will fail in their
predictions and guide human behaviors with confidence.

There are mainly two types of uncertainty, namely, epis-
temic uncertainty and aleatoric uncertainty [Kendall and
Gal, 2017]. Epistemic uncertainty represents the prediction
uncertainty due to the lack of knowledge when building the
models. Aleatoric uncertainty measures the inherent data
noise in the distribution, which is irreducible. For quanti-
fying those uncertainties, we can rely on Bayesian neural
networks (BNNs) which aim at constructing the posterior
distribution of the neural network parameters. However, the
Bayesian inference performs marginalization over the poste-
rior distribution, which is often intractable in practice.

Alternatively, the deep ensemble method [Lakshmi-
narayanan et al., 2017a] trains an ensemble of deep neu-
ral networks from random initializations, which demon-
strates great success in predictive uncertainty calibration
and outperforms various approximate BNNs. Generating
sufficient and diverse ensemble components can better ap-
proximate the complex posterior distribution. Ensemble di-
versity is also a good indicator of uncertainty quantification
performance and model robustness Dusenberry et al. [2020].
Higher diversity enables different models to make inde-
pendent errors such that their individual mistakes will be
canceled out during majority voting and model averaging,
leading to better prediction accuracy and improved gener-
alization ability [Bian and Chen, 2021, Zhang et al., 2020].
However, traditional ensemble methods have limited diver-
sity since each component is trained independently with only
different initializations. Generating sufficient and diverse
ensemble models requires many initializations and is hence
computationally expensive. With limited computational re-
sources, ensemble-based methods can only provide several
modes to approximate the posterior distribution, which is
hard to describe the complex posterior landscape. Moreover,
previous methods often train each component independently
and ignore the important knowledge from previous models
when getting a new model. Finally, there are also multi-
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ple resources that we can gain additional diversity during
ensemble training besides random initializations.

To overcome the above limitations, we propose the diversity-
enhanced probabilistic ensemble (PE) method, which has
the following contributions.

• We leverage the PE, a Bayesian framework to model
aleatoric and epistemic uncertainty by combining
the ensemble method and Laplacian approximation
(LA) [MacKay, 1992] for Bayesian inference. The di-
versity of ensemble components is enhanced through
exploring the neighborhood of each ensemble member
by LA, where performance guarantees are provided.

• Given the LA for ensemble members, a mixture of
Gaussian (MoG) is constructed with learnable and re-
finable parameters in an EM-like algorithm, enabling a
better posterior approximation of model parameters.

• We propose an adaptive uncertainty-guided ensemble
training strategy (AUEL), where the new ensemble
model is trained based on the knowledge of previous
models with the guidance of uncertainty, leading to an
improved ensemble diversity and a better joint model
averaging performance.

• Various applications have been conducted including
out-of-distribution detection and image classification
under distributional shifts, which showcase the com-
petitive performance of our method in uncertainty esti-
mation and domain generalization.

2 RELATED WORK

Laplacian Approximation Laplace approximation as-
sumes a Gaussian posterior distribution by performing Tay-
lor expansion around the mode. However, constructing the
Gaussian posterior for large models by LA is not applicable
mainly because of the computational difficulty of the large
covariance matrix for high-dimensional model parameters.
Several methods are proposed to improve the efficiency of
LA. For example, subnetwork LA [Daxberger et al., 2021b]
and last-layer LA [Kristiadi et al., 2020] reduce the num-
ber of Bayesian parameters by constructing the posterior
distribution only for partial neural network weights. Dif-
ferent Hessian matrix factorization methods are also pro-
posed such as Kronecker-factored approximation curvature
(KFAC) [Ritter et al., 2018] and low-rank KFAC [Lee et al.,
2020]. Please refer to the survey paper [Daxberger et al.,
2021a] for more information.

Ensemble Methods for Uncertainty Estimation Be-
sides the deep ensemble method, different ensemble-based
variants have been proposed to improve the UQ effi-
ciency or accuracy. For improving efficiency, deep sub-
ensemble [Valdenegro-Toro, 2019] ensembles only the lay-
ers close to the output. The snapshot ensemble [Huang et al.,

2017] method collects different ensemble components in
different epochs of one training attempt. Considering weight
sharing, the batch-ensemble [Wen et al., 2020] method
proposes a parameter-efficient representation of ensemble
weights. For improving the accuracy, some ensemble meth-
ods further explore each ensemble subspace by an approxi-
mate posterior estimation such as Multi-SWAG [Wilson and
Izmailov, 2020] and ensemble with subspace sampling [Fort
et al., 2019]. Multi-SWAG combines the deep ensemble with
SWAG to form a mixture of Gaussian distribution with uni-
form coefficients while Fort et al. [2019] built an ensemble
model by training multiple variational BNNs with empiri-
cal analysis. Recently, Eschenhagen et al. [2021] connected
ensemble methods with LA for better uncertainty quantifi-
cation. Some ensemble techniques such as MIMO [Havasi
et al., 2020] and Rank-1 BNN [Dusenberry et al., 2020] also
use a mixture of approximate posteriors to capture ensemble
components. However, they are mainly designed for train-
ing multiple subnetworks in one model’s capacity, which
is less accurate. Compared to the above methods, we focus
on diversity-enhanced ensemble learning for improving UQ
accuracy and proposed three sub-modules, including prob-
abilistic ensemble, adaptive uncertainty-guided ensemble
learning, and MoG refinement.

Diversity-enhanced Ensemble Learning Diversity mat-
ters for improving ensemble performance. One line of work
trains ensemble models with special diversity regulariza-
tion [Zhang et al., 2020, Zaid et al., 2021, Jain et al., 2020,
Liu and Yao, 1999, Pearce et al., 2018, Wabartha et al.,
2021]. For example, Zhang et al. [2020] utilized the pair-
wise difference between classifiers as regularization. Zaid
et al. [2021] created a diversity-promoted ensemble loss
based on mutual information. Jain et al. [2020] leveraged
out-of-distribution samples as regularization to increase en-
semble diversity. Another line of work focuses on training
each ensemble component with a subset of data so that each
ensemble model has its own learning specialty to increase
diversity [Lee et al., 2015, Zhou et al., 2018]. Moreover,
EDST [Liu et al., 2021] and SeBayS [Jantre et al., 2022]
make adjustments to the learning process to obtain ensem-
bles sequentially from diverse models. Finally, Wenzel et al.
[2020] tried to increase ensemble diversity by training with
different hyperparameters. Zaidi et al. [2020] further con-
structed the ensemble models with different architectures
and proposed a special selection procedure for choosing
diverse ensemble members from a pre-trained ensemble
model pool. Recently, several particle-based function-space
variational inference methods [Tiulpin and Blaschko, 2021,
D’Angelo and Fortuin, 2021, Yashima et al., 2022] try to uti-
lize a finite number of models to approximate the Bayesian
posterior distribution through optimization, where they of-
ten consider the interaction between models with an explicit
diversity measurement as regularization. We exclude them
from comparisons since our proposed method is in weight
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space and is a randomization-based method, which is often
more efficient than function-space methods. In the devel-
opment of diversity-enhanced learning, different diversity
metrics are studied [Wu et al., 2020, 2021]. There are also
many related applications such as active learning [Tan et al.,
2021] and computer vision tasks [Dvornik et al., 2019].

3 PROPOSED METHOD

3.1 BACKGROUND

General Notations and Assumptions. Denote the input
as x, the target variable as y, the training data as D =
{xm, ym}Mm=1. In this paper, we will focus on classifica-
tion tasks. We denote f(x, θ) ∈ RC as the output of the
neural network with input x parameterized by θ, which is
the probability logit before the softmax layer. C represents
the number of classes. When constructing the ensemble
models, f(x, θi) represents the output of the ith ensemble
component. β represents the hyperparameter of LA for the
prior distribution of θ. E(·) represents the expectation.H(·)
represents the entropy.

Laplacian Approximation. The LA constructs the posterior
distribution p(θ|D, β) by a Gaussian distribution around the
MAP estimate θmap where

θmap = arg max
θ

log p(θ|D, β). (1)

By taking the second-order Taylor expansion of
log p(θ|D, β) around θmap, we can observe that

p(θ|D, β) ≈ N (θmap,Σ) (2)

where Σ = −(H)−1 and H = ∇2
θ log p(θ|D, β)|θ=θmap

.
Please refer to Appendix A.1 for more details. This paper
utilizes the last-layer LA [Kristiadi et al., 2020] to achieve
competitive accuracy with high efficiency.

Uncertainty Quantification. For classification problems,
we estimate the epistemic uncertainty and the aleatoric un-
certainty by the mutual information and the expected en-
tropy [Depeweg et al., 2018]. Details can be found in Ap-
pendix A.2.

𝒑(𝜽|𝑫)

Samples of the deep ensemble

Samples of ours

Figure 1: Posterior Approximation by Samples.

3.2 PROBABILISTIC ENSEMBLE

Given N pre-trained ensemble models, we denote θi as
the MAP estimation of the ith ensemble component pa-
rameters. Inspired by [Eschenhagen et al., 2021], we per-
form the Laplacian approximation for each ensemble com-
ponent as an approximation of the true posterior, denoted as
N (θ; θi,Σi). A mixture of Gaussian model is constructed
with coefficients {λi}Ni=1 as shown in Eq. (3), which can
better approximate the posterior distribution p(θ|D, β).

p(θ|D, β) ≈
N∑
i=1

λiN (θ; θi,Σi) (3)

where λi ∈ [0, 1], i = 1, 2, ..., N and
∑N
i=1 λi = 1.

As shown in Figure 1, PE can better approximate the poste-
rior distribution than the deep ensemble method by explor-
ing each ensemble subspace using LA. Given the probabilis-
tic ensemble model, the Bayesian inference is performed
shown in Eq. (4):

p(y|x,D) ≈
∫
p(y|x, θ)

N∑
i=1

λiN (θ; θi,Σi)dθ

≈ 1

S

S∑
s=1

p(y|x, θs).

(4)

where θs ∼
∑N
i=1 λiN (θ; θi,Σi) represents the sth sam-

ple from the Gaussian mixture model. While our suggested
probabilistic ensemble approach may bear resemblances to
the method outlined in [Eschenhagen et al., 2021], especially
in the context of merging LA with ensemble models, our re-
search is primarily driven by a focus on diversity-enhanced
ensemble learning, backed with theoretical validations. The
most notable distinctions between our strategies and [Es-
chenhagen et al., 2021] predominantly involve our process
of securing the diverse modes {θi}Ni=1, and our methodol-
ogy in formulating the Gaussian mixture.

Several propositions are shown to demonstrate the effective-
ness of the PE model with theoretical guarantees. They are
valid for the PE of any pre-trained deterministic ensemble
models, regardless of their training methodology. All the
proofs can be found in Appendix B. Specifically, approxima-
tion guarantees are shown in Proposition 3.1 and 3.2. When
the sample size is large, Proposition 3.1 guarantees that the
PE model converges to the true posterior distribution. Other-
wise, Proposition 3.2 shows theoretical evidence that the PE
model bridges the connection of the deep ensemble method
to approximate Bayesian inference and has better posterior
approximation than single LA.

Proposition 3.1 (Convergence of PE). Denote the data
samples as D = {xm, ym}Mm=1. Under mild regularity con-
ditions [Gelman, 2011], as the sample size M → ∞, the
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probabilistic ensemble representation of θ approaches its
posterior distribution, i.e.,

sup
θ

∣∣∣∣∣p(θ|D, β)−
N∑
i=1

λiN (θ; θi,Σi)

∣∣∣∣∣→ 0. (5)

Proposition 3.2 (Better posterior approximation). PE
models extend the deep ensemble method for ap-
proximate Bayesian inference. Denote pPE(θ) =∑N
i=1 λiN (θ; θi,Σi), p

(i)
LA(θ) = N (θ; θi,Σi) as the PE ap-

proximation and the ith-network LA, respectively. The PE
model has better posterior approximation compared to the
single LA with a measure of KL divergence.

KL(p(θ|D, β)||pPE(θ)) ≤
N∑
i=1

λiKL(p(θ|D, β)||p(i)LA(θ))

(6)

Proposition 3.3 (Error reduction of the PE and the role of
diversity). Denote θ ∼

∑N
i=1 λiN (θ; θi,Σi) as PE param-

eters, x as the input, and y∗ as the corresponding label. The
PE model fulfills

− logEθ[p(y∗|x, θ)] ≤Eθ[− log p(y∗|x, θ)]

− inf
θ

1

2p(y∗|x, θ)2
Vθ[p(y∗|x, θ)]

(7)

where infθ
1

p(y∗|x,θ)2 is bounded given p(y∗|x, θ) ∈ [0, 1]

and Vθ[p(y∗|x, θ)] is the variance of probabilistic ensemble
model prediction.

Vθ[p(y∗|x, θ)] = Eθ[(p(y∗|x, θ)− Eθ[p(y∗|x, θ)])2] (8)

Proposition 3.3 shows that the errors of the PE model
are reduced compared to single models, which are also
bounded by variance Vθ[p(y∗|x, θ)]. The diversity measure-
ment Vθ[p(y∗|x, θ)] can be applied for both regression and
classification tasks since p(y∗|x, θ) is a scalar variable pa-
rameterized by θ given label y∗. With a larger variance,
the upper bound of the negative log-likelihood (NLL) is
reduced. As a result, we can theoretically show that enhanc-
ing diversity improves the prediction performance when
Eθ[− log p(y∗|x, θ)] remains similar. Moreover, Proposi-
tion 3.4 shows that PE has better diversity compared to deep
ensemble method as the theoretical basis of the improved
performance.

Proposition 3.4 (Enhanced diversity of PE). Let µD,ΣD be
the mean and covariance matrix of the deep ensemble rep-
resentation pDE(θ) =

∑N
i=1 λiδ(θ, θi) where δ represents

the delta function. Let µP ,ΣP be the mean and covariance
matrix of pPE(θ). We show that

µD = µP ΣP ≥ ΣD (9)

where ΣP ≥ ΣD means ΣP − ΣD is positive semi-definite.
Compared to deep ensemble method, the PE model gains
improved diversity.

Proposition 3.5 (Overconfidence reduction of PE). Given a
probabilistic ensemble model with N components, let fθi :
R|x| → RC be a ReLU network parameterized by θi. Let |x|
represent the dimension of x and θ ∼

∑N
i=1 λiN (θ; θi,Σi).

Then for any input x, the estimated probability based on
multi-class probit approximation (see Appendix A.1) of the
PE fulfills

lim
η→∞

pPE(y = c|ηx) ≤
N∑
i=1

λi

1 +
∑
j 6=c exp{−t(j)i − t

(c)
i }
(10)

where

t
(k)
i =

||w(k)
i ||

smin(J
(k)
i )

√
π
8λmin(Σi)

k = 1, 2, · · · , C

and wi = [w
(1)
i , w

(2)
i , · · · , w(C)

i ] ∈ R|x|×C is a matrix

that only depends on θi. J
(j)
i =

∂w
(j)
i

∂θ |θ=θi is the Jacobian
matrix of w(j)

i at θ = θi. λmin represents the minimum
eigenvalue. smin represents the minimum singular value.

Deterministic models suffer from the overconfidence issue
such that the estimated probability is very high even if the
input is far away from the data distribution. The Proposition
3.5 builds an upper bound for the predictive probability of
samples {ηx} when η → ∞, which prevents pPE(y =
c|ηx) to be extremely large. The Proposition 3.5 also shows
that the confidence for far-away samples is upper bounded
by the uncertainty estimated from LA. Especially, when the
uncertainty is large, i.e., λmin(Σi)→∞, i = 1, 2, · · · , N ,
we have limη→∞ pPE(y = c|ηx) ≤ 1

C .

3.3 ADAPTIVE UNCERTAINTY-GUIDED
ENSEMBLE LEARNING

The deep ensemble method trains ensemble models indepen-
dently, which ignores the information obtained from previ-
ous models when getting a new one. This may cause knowl-
edge redundancy that limits the diversity among ensemble
models. The key idea of the proposed adaptive uncertainty-
guided ensemble learning is to always make the new model
focus on the regions which previous models have less ex-
plored, measured by uncertainty. Thus the new model will
have the ability to provide complementary information to
the previous models, which will improve the model averag-
ing performance as well as implicitly enhance the diversity.

Given k trained deterministic models with parameters
{θi}ki=1, we perform the adaptive uncertainty-guided ensem-
ble learning to get the (k+1)th model in the following steps.
First, we construct the probabilistic ensemble illustrated in
Sec. 3.2 such that θ ∼

∑k
i=1 λiN (θ; θi,Σi). Then, the epis-

temic uncertainty u(x) of each training data x is computed.
Finally, we use the estimated epistemic uncertainty u(x)
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Figure 2: The Adaptive Uncertainty-guided Ensemble Learn-
ing Framework

from previous models as weights to guide the training of the
(k+1)th model. Given a batch of dataDB = {xm, ym}Bm=1

of size B, the uncertainty-guided training loss can be ex-
pressed as

Lnll(θ) = − 1

B

B∑
m=1

w(xm) log p(ym|xm, θ) (11)

where w(xm) is the weight for sample xm as a function of
u(xm), which is shown in Eq. (12).

w(xm) =
exp(a ∗ log(u(xm)) + b)∑B
j=1 exp(a ∗ log(u(xj)) + b)

(12)

Eq. (12) guarantees that samples with larger uncertainty
will receive larger weights and the weights for a batch of
data sum to 1. A log function is applied on u(xm) since the
epistemic uncertainty is usually small. a, b > 0 are hyper-
parameters that can be tuned. The following propositions
provide some theoretical evidence of the proposed method
with proofs shown in Appendix C.

Proposition 3.6 (Prediction error bound). The prediction
error is bounded by the total uncertainty. The epistemic
uncertainty is positively correlated with the prediction error.

Proposition 3.7 (Striking the right balance with uncertainty
[Khan et al., 2019]). For the imbalanced classification prob-
lems, minimizing the empirical loss results in a hypothesis
that the classification boundary is towards the minority
classes, leading to a larger classification region for the
majority ones.

Proposition 3.6 provides theoretical support for uncertainty-
guided learning. By putting higher weights on problematic
samples, the proposed method can reduce their uncertainty
through adaptive ensemble learning to improve overall ac-
curacy. Proposition 3.7 shows that a single model tends to
sacrifice minority samples to obtain a good overall perfor-
mance. It motivates us to adaptively learn complementary

models focusing on minority samples, in order to achieve
better ensemble performance.

Although our method is similar to boosting methods [Freund
and Schapire, 1997, Hastie et al., 2009] in terms of reweigh-
ing the samples, they, however, are fundamentally different.
As a discriminative model, boosting methods build an en-
semble classifier by combining a set of weak classifiers to
better classify the data. In contrast, we construct a genera-
tive ensemble that better models the posterior distribution of
model parameters, through which we perform uncertainty
quantification. Moreover, instead of using classification er-
rors to weigh the samples, we use epistemic uncertainty
to weigh the training samples. As epistemic uncertainty in-
versely measures training sample density, training of the
next model will focus more on the samples that are not well
represented by previous models.

3.4 MIXTURE OF GAUSSIAN REFINEMENT

In this section, we will establish an EM-like algorithm
for refining the mixture of Gaussian parameters. To our
knowledge, most of the ensemble methods assume that
each ensemble component has the same importance, which
may not be the case for real-world applications. Denote
φ = {{λi}Ni=1, {θi}Ni=1, {Σi}Ni=1} as the mixture of Gaus-
sian parameters, φ0 = {{λ0i }Ni=1, {θ0i }Ni=1, {Σ0

i }Ni=1} as the
previous learned parameters before the refinement, and
the training data as D = {Dm}Mm=1 = {xm, ym}Mm=1.
Let Z ∼ Cat(λ1, λ2, . . . , λN ) be the latent variable in-
dicating membership of (x, y) belonging to which ensem-
ble component. We learn non-uniform {λi}Ni=1 and refine
{{θi}Ni=1, {Σi}Ni=1} in the following EM steps.

E-step: construct the loss function Q(φ|φ0,D) as the ex-
pected value of the log-likelihood function of φ with respect
to the current conditional distribution of Z given φ0 and D.

logp(D|φ) =

M∑
m=1

log p(Dm|φ)

=

M∑
m=1

log

N∑
i=1

p(Z = i|Dm, φ0)

p(Z = i|Dm, φ0)
p(Dm, Z = i|φ)

≥
M∑
m=1

N∑
i=1

p(Z = i|Dm, φ0) log
p(Dm, Z = i|φ)

p(Z = i|Dm, φ0)

:= Q(φ|φ0,D)

(13)

M-step: maximize Q(φ|φ0,D) with respect to φ.

φ∗ = arg max
φ

Q(φ|φ0,D) (14)

Optimizing Eq. (14) returns a close-form expression of
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{λ∗i }Ni=1.

λ∗i =

∑M
m=1 p(Z = i|Dm, φ0)∑M

m=1

∑N
j=1 p(Z = j|Dm, φ0)

(15)

Letting pm(θ) = p(ym|xm, θ),

p(Z = i|Dm, φ0) =
λ0i
∫
pm(θ)N (θ; θ0i ,Σ

0
i )dθ∑N

j=1 λ
0
j

∫
pm(θ)N (θ; θ0j ,Σ

0
j )dθ

(16)
Then given the distribution Z ∼ Cat({λ∗i }Ni=1), we assign
each data samples to its top l nearest components based
on their weighted log-likelihood (i.e., l = N/2). The re-
finement is conducted by fine-tuning the existing ensemble
components on the data samples they receive to further
strengthen the specialty and diversity of each ensemble
model. Details can be found in Appendix D.

3.5 PROBABILISTIC ENSEMBLE TRAINING
STRATEGY

In this paper, three sub-modules are proposed: the proba-
bilistic ensemble built by LA, the uncertainty-guided en-
semble learning, and the mixture of Gaussian refinement.
The pseudocode of the overall proposed method is shown
in Algorithm 1, consisting of four steps. Although the final
refinement step can further improve performance, it is not
required.

During training, we admit that AUEL requires sequential
training, which takes more time than parallel training. How-
ever, our methods can achieve similar UQ results with fewer
ensemble components, compared to other ensemble base-
lines in Sec. 4.4. It could be more useful when there are
limited capacities for parallel training or when there ex-
ist parallelly trained ensemble models with low diversity
and we want to add a new one for providing complementary
information. PE can be applied to any trained ensemble mod-
els with high efficiency. The last-layer LA is efficient whose
complexity is O(m+ c3 + p3), where m, c, p represents the
total number of parameters, the number of classes, and the
number of last-layer parameters. For the inference complex-
ity of PE, we can generate an arbitrary number of samples
from the mixture of Gaussian. Compared to the deep ensem-
ble method, the additional cost to obtain one more sample
is O(p), which is minimal since we only sample the last-
layer parameters and reuse the intermediate outputs. More
importantly, each sub-module can be applied to other en-
semble methods separately to make further improvements.
Although incorporating all sub-modules leads to the best
performance, only applying PE could be an alternative way
for efficient training.

The possible parallel training extensions may include: (1)
Train one deterministic model using LA for UQ, then par-
allelly train other models with varying uncertainty-driven

weights from Eq. 11 with different hyperparameters a, b;
(2) Train all models in parallel, compute LA for each near
completion to build PE, and use uncertainty-guided weights
to refine the models in their final training phase. We will
investigate those possibilities in our future research. It is
also worth noting that the proposed method can be applied
to autoregressive ensemble training Havasi et al. [2020],
Dusenberry et al. [2020]. Uncertainty-guided weights can
promote diversity in MIMO sub-networks, and LA can be
used to construct a probabilistic ensemble model after train-
ing.

Algorithm 1 Probabilistic Ensemble with Adaptive
Uncertainty-guided Ensemble Learning

Input: Training data D = {xm, ym}Mm=1. Initialize the
model pool P = {}
Ouput: The probabilistic ensemble model parameters
θ ∼

∑N
i=1 λiN (θ; θi,Σi)

Step 1 (single model): Train the first model using NLL
loss to obtain θ1; P = P + {θ1}
Step 2 (AUEL): Perform the adaptive uncertainty-guided
ensemble learning to obtain {θi}Ni=2

for k = 2 : N do
(1) Given P , construct the probabilistic ensemble

model with uniform weights.
θ ∼ pk−1(θ) = 1

k−1
∑k−1
i=1 N (θ; θi,Σi)

(2) Estimate the epistemic uncertainty {u(xm)}Mm=1

using θ ∼ pk−1(θ)
(3) Use the weighted loss in Eq. (11) to train θk
(4) Update the model pool: P = P + {θk}

end for
Step 3 (AUEL+PE): Based on current P = {θi}Ni=1,
construct the probabilistic ensemble model
Step 4 (AUEL+RPE): We refine the Gaussian mixture
model parameters based on Sec. 3.4

4 EXPERIMENT

4.1 OUT-OF-DISTRIBUTION DETECTION

Out-of-distribution (OOD) detection tries to detect anoma-
lous data that is inconsistent with the training data distri-
bution. Utilizing epistemic uncertainty as a measure for
out-of-distribution detection is one of the major applica-
tions for demonstrating the quality of UQ performance.
We evaluate our methods on benchmark image classifica-
tion datasets MNIST [Deng, 2012] and CIFAR-10 (C10)
[Krizhevsky et al., 2014], respectively. We choose Omniglot
[Lake et al., 2015], EMNIST [Cohen et al., 2017], and KM-
NIST [Clanuwat et al., 2018] as OOD datasets for MNIST.
For C10 dataset, the SVHN [Netzer et al., 2011], LSUN
[Yu et al., 2015], and CIFAR-100 (C100) [Krizhevsky et al.,
2009] are the OOD datasets. We compare our proposed
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Table 1: OOD Detection Results for AUROC (%) and AUPR (%) on MNIST-related and C10-related Datasets with Epistemic
Uncertainty. Each experiment result is aggregated over 3 independent runs.

Method MNIST→ Omniglot MNIST→ EMNIST MNIST→ KMNIST
AUROC AUPR AUROC AUPR AUROC AUPR

Ours 98.49± 0.01 98.23± 0.03 98.01± 0.07 97.26± 0.08 98.39± 0.11 97.98± 0.08
ESB 97.92± 0.25 97.33± 0.34 97.32± 0.14 96.10± 0.46 97.92± 0.10 97.13± 0.27
Batch-E 95.95± 0.17 94.74± 0.22 95.79± 0.70 93.76± 0.75 96.59± 0.45 94.72± 0.43
Hyper-E 97.97± 0.26 97.55± 0.24 97.56± 0.31 96.68± 0.51 97.92± 0.43 97.32± 0.53
Bayes-E 97.42± 0.28 96.94± 0.46 97.07± 0.29 95.86± 0.33 97.73± 0.06 96.72± 0.14
LPBNN 95.94± 0.52 94.41± 0.57 92.84± 0.69 92.54± 0.39 97.40± 0.71 95.96± 0.95
LA 97.87± 0.39 97.49± 0.37 97.72± 0.48 97.02± 0.44 98.11± 0.19 97.54± 0.17
Multi-SWAG 96.52± 0.37 94.56± 0.84 95.81± 0.60 90.64± 1.70 96.70± 0.42 94.34± 0.98
Diversified-E 97.92± 0.19 97.21± 0.23 94.40± 0.16 96.21± 0.37 97.93± 0.12 97.01± 0.32
MCT 97.04± 0.34 95.62± 0.93 96.65± 0.46 95.61± 0.82 97.31± 0.10 95.81± 0.56

Method C10→ SVHN C10→ LSUN C10→ C100
AUROC AUPR AUROC AUPR AUROC AUPR

Ours 93.88± 0.57 90.58± 1.58 89.57± 0.08 86.81± 0.14 93.80± 0.11 91.67± 0.36
ESB 91.23± 1.35 86.16± 1.73 88.42± 0.85 84.99± 0.65 91.87± 0.58 88.69± 0.55
Batch-E 90.40± 1.62 85.12± 2.64 86.10± 0.24 81.42± 0.40 90.15± 0.18 85.48± 0.49
Hyper-E 91.11± 0.32 85.86± 0.46 88.82± 0.15 85.29± 0.25 92.59± 0.24 89.65± 0.71
Bayes-E 90.96± 3.35 86.57± 5.27 87.85± 1.22 84.56± 1.01 91.80± 0.45 88.83± 0.02
LPBNN 89.99± 2.44 85.18± 4.00 86.87± 0.01 82.14± 0.49 90.80± 0.22 85.62± 1.59
LA 93.39± 0.46 91.17± 0.98 87.27± 0.19 85.77± 0.21 93.45± 1.17 92.59± 1.47
Multi-SWAG 94.06± 0.54 93.92± 0.59 87.23± 0.29 85.44± 0.61 90.24± 0.86 88.05± 1.02
Diversified-E 92.56± 1.36 88.04± 3.29 89.06± 0.09 85.53± 0.20 92.90± 0.07 90.01± 0.16
MCT 91.04± 0.44 84.73± 0.35 88.71± 0.16 84.86± 0.18 92.18± 0.03 88.67± 0.24

method (AUEL+PE) with general ensemble-based meth-
ods (i.e., ESB [Lakshminarayanan et al., 2017b], Batch-E
[Wen et al., 2020], Bayes-E [Pearce et al., 2018]), Diversity-
promoted ensemble methods (Hyper-E [Wenzel et al., 2020],
Multi-SWAG [Wilson and Izmailov, 2020], Diversified-E
[Zhang et al., 2020], MCT [Lee et al., 2015]), and approxi-
mate BNNs (i.e., LPBNN [Franchi et al., 2020], LA). We ex-
clude sequential ensemble methods (EDST [Liu et al., 2021],
SeBayS [Jantre et al., 2022]) and other mixture posterior
approximation methods (MIMO [Havasi et al., 2020], Rank-
1 BNN [Dusenberry et al., 2020]) for comparison since
they are shown to perform worse than ESB method. The
evaluation metrics include the area under the receiver op-
erating characteristic curve (AUROC ↑) and the area under
the precision-recall curve (AUPR ↑). All ensemble-based
methods have size 5. The experiment settings and imple-
mentation details can be found in Appendix E.

The out-of-distribution detection performance is shown in
Table 1. It is obvious that the proposed method (AUEL+PE)
can achieve significant improvement over recent ensemble-
based methods on various OOD detection tasks. Additional
OOD detection experiments are shown in Sec. 4.2 for
MNIST and C10 under different levels of distributional
shifts. Since the post-processing refinement of the MoG
is not required, we will show the effectiveness of the re-
finement (AUEL+RPE) in Sec. 4.4. Compared to diversity-

enhanced ensemble learning such as Hyper-E and Multi-
SWAG, our better OOD detection performance also indi-
cates enhanced diversity.

4.2 IMAGE CLASSIFICATION UNDER
DISTRIBUTIONAL SHIFT

Bayesian models marginalize all possible solutions for the
final prediction, leading to improved robustness. In this sec-
tion, we will demonstrate the effectiveness of the proposed
method for image classification tasks on MNIST and C10
with synthetic distributional shifts. For MNIST, we create
the synthetic rotated MNIST dataset, where we increasingly
rotate the MNIST testing data from 0◦ to 180◦ with a step of
20◦. For the C10 dataset, we add the Gaussian noise with 0
mean and variance ranging from 0 to 0.25 with a step of 0.05
to the testing data as the corrupted C10 dataset. Additional
adversarial shifts can be found in Sec. 4.4. Note that we
keep the original training strategy on MNIST/C10 training
data but test on the shifted testing data. During the evalu-
ation, the uncertainty calibration metrics include negative
log-likelihood (NLL ↓), accuracy (ACC ↑), expected cali-
bration error (ECE ↓), maximum calibration error (MCE ↓),
and brier score (BS ↓). We also provide the OOD detection
results of MNIST→ Rotated MNIST and C10→ Corrupted
C10 in terms of AUROC and AUPR. The comparisons are
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(a) ECE (b) Brier Score (c) NLL

Rotated MNIST

Corrupted CIFAR-10

Figure 3: Predictive Calibration Analysis of Rotated MINST and Corrupted C10 Datasets. The first row shows the results for
MNIST while the second row represents C10. There are three different metrics (ECE, Brier Score, NLL) that are analyzed in
each column, respectively. Each experiment result is aggregated over 3 independent runs.

conducted under the same experiment settings as Sec. 4.1.
In Figure 3, partial results for ECE, BS, and NLL are shown.
Additional analysis can be found in Appendix F.

Based on Figure 3, we can observe that the probabilistic en-
semble method can achieve better calibration performance
for both rotated MNIST and corrupted C10 datasets. As
the shift level increases, our proposed method consistently
outperforms other ensemble-based methods, which demon-
strates the great potential of our method in better general-
ization ability. Besides improved robustness of uncertainty
quantification, comparable within-dataset performance can
be found in Appendix F.1.

4.3 DIVERSITY ANALYSIS

In addition to the theoretical confirmation of augmented
diversity exhibited in Sections 3.2 and 3.3, we also supply
empirical analysis underscoring the diversity benefits de-
rived from our proposed methodology. The diversity metrics
we employ originate from Wu et al. [2020], featuring both
pairwise diversity measures like Q Statistics (QS) and Bi-
nary Disagreement (BD), and non-pairwise metrics such as
Fleiss’ Kappa (FK) and Kohavi-Wolpert Variance (KW).

We undertake a normalization process for all these scores

Table 2: Diversity Analysis of Ensemble-based Methods
Trained on C10 dataset

Method QS BD FK KW
Ours 0.174 0.538 0.383 0.857
ESB 0.185 0.552 0.404 0.860
Batch-E 0.284 0.576 0.422 0.868
Hyper-E 0.199 0.554 0.406 0.861
Bayes-E 0.174 0.548 0.406 0.859
LPBNN 0.209 0.557 0.405 0.862
Multi-SWAG 0.246 0.566 0.418 0.865
Diversified-E 0.184 0.552 0.402 0.860
MCT 0.190 0.553 0.405 0.861

to ensure that lower values (↓) signify a higher degree of
diversity. As illustrated in Table 2, our approach surpasses
other ensemble-based techniques in relation to diversity.

It is crucial to highlight that our proposed method leverages
uncertainty-guided learning via AUEL to generate diverse
modes, utilizes LA for neighborhood exploration to yield di-
verse samples, and employs an EM-like refinement strategy
to further boost diversity. On the other hand, the baseline
methods generally concentrate on fostering diversity in a
single area.
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Table 3: Ablation Studies: OOD Detection Results and Robustness Analysis on MNIST/C10 Datasets. The first table shows
the effectiveness of the sub-modules. The second table shows the improvement when PE serves as a plug-and-play module.
Each experiment result is aggregated over 3 independent runs.

Method MNIST→ Omniglot C10→ SVHN Rotated MNIST 60◦ Noisy C10 Level 0.1
AUROC AUPR AUROC AUPR NLL ECE NLL ECE

Ensemble 97.92 97.33 91.23 86.16 2.30 0.256 3.58 0.435
AUEL 98.02 97.50 92.98 88.97 2.24 0.243 3.28 0.394
AUEL+PE 98.49 98.23 93.88 90.58 2.09 0.210 3.06 0.380
AUEL+RPE 98.95 98.90 93.93 91.93 1.92 0.163 3.02 0.375

Method MNIST→ Omniglot C10→ SVHN Rotated MNIST 120◦ Noisy C10 Level 0.1
AUROC AUPR AUROC AUPR NLL ECE NLL ECE

Hyper-E 97.97 97.55 91.11 85.86 4.40 0.468 3.23 0.407
Hyper-E + PE 98.56 98.37 92.09 87.52 3.72 0.416 2.66 0.342
Bayes-E 97.42 96.94 90.96 86.57 4.55 0.502 3.36 0.404
Bayes-E + PE 98.21 98.02 93.27 90.41 3.68 0.450 2.40 0.298

Aside from numerical findings, we provide visualizations
of both parameter space and prediction space diversity in
Appendix G. Essentially, we represent the neural network
parameters and the predictive logits for MNIST testing data
within a two-dimensional space, utilizing principal compo-
nent analysis (PCA).

4.4 ABLATION STUDIES AND FURTHER
ANALYSIS

Effectiveness of Sub-modules. In this section, we evaluate
the effectiveness of each step illustrated in Algorithm 1.
Each proposed sub-module helps further improve the OOD
detection and uncertainty calibration performance. The
MNIST and CIFAR-10 related experiments are shown in
Table 3. More analysis for various experiment settings with
different metrics can be found in Appendix H.1.

Probabilistic Ensemble as a Plug-and-Play Mod-
ule. Our method can be a plug-and-play module for
easily applying to other ensemble methods with further
improvements. Given trained ensemble models from other
ensemble methods, we can apply the PE module to construct
the mixture of Gaussian model in the post-processing way.
For example, we combine the Hyper Ensemble (Hyper-E)
with PE and the Bayesian Ensemble (Bayes-E) with PE to
show further improvements in Table 3. Additional analysis
can be found in Appendix H.2.

Efficiency Analysis. In Appendix H.3, we present a
thorough theoretical and practical evaluation of our method-
ology’s efficiency against various ensemble baselines. In
addition, we extend our analysis to compare ensemble
baseline models with varying numbers of components.
The findings demonstrate that our approach necessitates
a smaller number of ensemble components to reach
comparable outcomes.

Application to Larger Datasets. In Appendix I, we
demonstrate the suitability of our techniques for handling
larger datasets, such as CIFAR-100 and TinyImagenet
[CS231N, 2017]. Our approach can effectively scale with a
large number of parameters in the last layer. We can utilize
diagonal or block-diagonal covariance matrices for LA,
which scale impressively while maintaining competitive
accuracy, as per [Daxberger et al., 2021a].

Other Distributional Shifts. In Appendix J, we per-
form adversarial perturbations on C10 testing dataset using
the fast gradient sign method [Goodfellow et al., 2014].
Then, we compute the ACC and NLL of our proposed
methods on the perturbed images compared to various
ensemble baselines, indicating the effectiveness of our
method against adversarial attacks.

Synthetic Experiments. In Appendix K, we pro-
vide some toy examples of the one-dimensional regression
problem and the two-moon classification problem. These
examples show that the estimated epistemic uncertainty of
the PE model inversely matches well with the training data
density.

5 CONCLUSION

In this paper, we propose the probabilistic ensemble method
with adaptive uncertainty-guided ensemble training to con-
struct the Gaussian mixture model with learnable and refin-
able parameters. Both theoretical and empirical evidence
is provided to show that our proposed method can achieve
a better approximation of the posterior distribution with
enhanced diversity. Moreover, the proposed method has
demonstrated better uncertainty quantification performance
as well as improved uncertainty calibration ability for vari-
ous applications including out-of-distribution detection and
image classification under different distributional shifts.
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