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Abstract

Knowledge distillation is a popular technique that
has been shown to produce remarkable gains in av-
erage accuracy. However, recent work has shown
that these gains are not uniform across subgroups
in the data, and can often come at the cost of ac-
curacy on rare subgroups and classes. Robust op-
timization is a common remedy to improve worst-
class accuracy in standard learning settings, but in
distillation it is unknown whether it is best to ap-
ply robust objectives when training the teacher, the
student, or both. This work studies the interplay be-
tween robust objectives for the teacher and student.
Empirically, we show that that jointly modifying
the teacher and student objectives can lead to better
worst-class student performance and even Pareto
improvement in the trade-off between worst-class
and overall performance. Theoretically, we show
that the per-class calibration of teacher scores is
key when training a robust student. Both the theory
and experiments support the surprising finding that
applying a robust teacher training objective does
not always yield a more robust student.

1 INTRODUCTION

Knowledge distillation, wherein one trains a teacher model
and uses its predictions to train a student model of similar
or smaller capacity, has proven to be a powerful tool that
improves efficiency while achieving state-of-the-art classifi-
cation accuracies [Hinton et al., 2015a, Radosavovic et al.,
2018, Anil et al., 2018, Pham et al., 2021]. Remarkably,
the student accuracy under distillation is capable of even
surpassing that of the teacher (e.g. Xie et al. [2020]).

However, recent work has shown that the gains in average
accuracy may not be uniform across subgroups, and can hurt
performance on subgroups that are rarer or more difficult to

classify. This is particularly true of long-tailed classification
settings, where the improved average accuracy often comes
at the cost of poorer accuracies on the tail classes [Lukasik
et al., 2022, Du et al., 2021], and model compression can
further amplify these performance disparities [Hooker et al.,
2020, Xu et al., 2021].

To mitigate the disparity between average and subgroup ac-
curacy, a common remedy is to train a model to achieve low
worst-group test error. Suitably modified robust optimiza-
tion techniques have successfully achieved state-of-the-art
worst-class performance with manageable computational
overhead [Sagawa et al., 2020a, Sohoni et al., 2020]. How-
ever, the evaluation of these techniques has thus far primarily
focused on the standard training setting involving a single
model. In the increasingly popular distillation setting, which
involves both a teacher and student model, there is limited
understanding of how these approaches can be applied to
achieve the best trade-offs between average and worst-class
performance. In particular, it is unknown if the best results
come from using a robust objective for the teacher, the stu-
dent or both.

This work studies the interplay between robust training ob-
jectives for the teacher and student. We focus on a multi-
class classification setting where we define worst-class accu-
racy as the lowest per-class recall. Empirically, we show that
jointly modifying both the teacher and student objectives
with robust objectives not only improves the worst-class ac-
curacy of the student, but can provide Pareto improvements
in the trade-off between average and worst-class perfor-
mance. Theoretically, we analyze what makes a good teacher
when training a robust student, and give to our knowledge
the first concrete characterization of this by showing that
the student’s robustness depends on how well-calibrated the
teacher’s scores are for the individual classes.

Our contributions proceed as follows:

(i) We begin with the problem setup (§2), and adapt ex-
isting robust optimization objectives to a distillation
setting, allowing for different combinations of modifica-
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tions to both the teacher and student objectives (§3). We
provide adapted algorithms to address practical training
issues that arise when applying robust objectives to both
the teacher and student (such as margin-based surrogate
losses and shared validation set usage).

(ii) We demonstrate empirically on benchmark image
datasets that the different combinations of student and
teacher objectives not only improve the student’s worst-
class accuracy, but yield better trade-offs between av-
erage and worst-class performance than baselines (§4).
Perhaps surprisingly, we find that the teacher’s worst-
class accuracy is not always predictive of the teacher’s
ability to yield robust students.

(iii) We show theoretically that the worst-class robustness of
the student depends on the per-class calibration of the
teacher, and additionally derive robustness guarantees
for the student in terms of the teacher’s errors (§5).

1.1 RELATED WORK

Worst-group robustness: The goal of achieving good
worst-case performance across subgroups can be framed as a
(group) distributionally robust optimization (DRO) problem,
and can be solved by iteratively updating costs on the indi-
vidual groups and minimizing the resulting cost-weighted
loss [Chen et al., 2017]. Recent variants of this approach
have sought to avoid over-fitting through group-specific reg-
ularization [Sagawa et al., 2020a,b] or margin-based losses
[Narasimhan and Menon, 2021, Kini et al., 2021], and to
handle unknown subgroups [Sohoni et al., 2020]. In the
context of distillation, Lukasik et al. [2022] propose simple
modifications to robustify the student’s objective by control-
ling the strength of the teacher’s labels for different groups.
In contrast, we propose a more direct and theoretically-
grounded procedure that seeks to explicitly optimize for the
student’s worst-case error.

Relationship to Narasimhan and Menon [2021]: This
paper builds on the margin-based DRO framework of
Narasimhan and Menon [2021], who also include prelim-
inary distillation experiments on training the teacher with
standard ERM and the student with a robust objective. How-
ever, this and other prior work [Lukasik et al., 2022] have
only explored modifications to the student loss, while train-
ing the teacher using a standard procedure. Our robust dis-
tillation proposals build on this method, but carry out a
more extensive analysis, exploring different combinations
of teacher-student objectives and different trade-offs be-
tween average and worst-class performance. Additionally,
we provide robustness guarantees for the student, equip
the DRO algorithms to achieve different trade-offs between
overall and worst-case error, and provide a rigorous analysis
of different design choices, such as the use of teacher labels
for the multiplier updates.

Long-tail learning. There has been much work on training

classifiers from long-tail data, ranging from modifications to
loss modifications [Cao et al., 2019a, Menon et al., 2021b,
Cui et al., 2021] to architectural changes [Wang et al., 2020,
Cui et al., 2022]. All these methods focus on the standard sin-
gle model training setup, and seek to maximize the balanced
(and not the worst-class) accuracy. Recent attempts have
sought to modify standard distillation for long-tail learning,
by either re-balancing the student loss [Zhang et al., 2021],
temperature-scaling the teacher predictions [He et al., 2021],
employing multiple teachers [Xiang et al., 2020], and lever-
aging the teacher’s intermediate embeddings [Iscen et al.,
2021]. The common goal in most of these papers is to mod-
ify the student’s objective to incorporate different forms of
supervision from the teacher. In contrast, we seek to explore
modifications to the teacher’s training objective to improve
the student’s robustness.

Role of the teacher’s objective. Few previous works have
studied how the objective of the teacher affects the student
performance. For example, multiple works have studied
the effect label smoothing objectives of the teacher model,
some finding it to harm the student performance [Müller
et al., 2019], improve the student [Shen et al., 2021] or
show varying impact depending on the temperature value
[Chandrasegaran et al., 2022]. In another work, Lukasik et al.
[2020] showed how applying noise correction objectives to
the teacher often yield better result than only applying noise
correction objectives in the student. We are not aware of a
previous work studying the interplay between the student
and the teacher objectives on the robustness of the student.

2 PROBLEM SETUP

We consider a multi-class classification problem with in-
stance space X and output space [m] = {1, . . . ,m}. Let
D denote the underlying data distribution over X × [m],
and DX denote the marginal distribution over X . Let
∆m denote the (m − 1)-dimensional probability simplex
over m classes. We define the conditional-class probabil-
ity as ηy(x) = P(Y = y|X = x) and the class priors
πy = P(Y = y). Note that πy = EX∼DX [ηy(X)].

Learning objectives. Our goal is to learn a multiclass clas-
sifier h : X → [m] that maps an instance x ∈ X to one of
m classes. We will do so by first learning a scoring function
f : X → Rm that assigns scores [f1(x), . . . , fm(x)] ∈
Rm to a given instance x, and construct the classifier
by predicting the class with the highest score: h(x) =
argmaxj∈[m] fj(x). We will denote a softmax transfor-

mation of f by softmaxy(f(x)) =
exp(fy(x))∑
j exp(fj(x)) , and

use the notation softmaxy(f(x)) ∝ zy to indicate that
softmaxy(f(x)) =

zy∑m
j=1 zj

.

We measure the efficacy of the scoring function f using a
loss function ` : [m] × Rm → R+ that assigns a penalty
`(y, z) for predicting score vector z ∈ Rm for true label y.
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Examples of loss functions include the 0-1 loss: `0-1(y, z) =
1
(
z 6= argmaxj fj(x)

)
, and the softmax cross-entropy

loss: `xent(y, z) = −fy(x) + log
(∑

j∈[m] exp (fj(x))
)
.

Standard objective: A standard machine learning goal en-
tails minimizing the overall expected risk:

Lstd(f) = E [`(Y, f(X))] . (1)

Balanced objective: In applications where the classes are
severely imbalanced, i.e., the class priors πy are non-
uniform and significantly skewed, one may wish to instead
optimize a balanced version of the above objective, where
we average over the conditional loss for each class. No-
tice that the conditional loss for class y is weighted by the
inverse of its prior:

Lbal(f) =
1

m

∑
y∈[m]

E [`(y, f(X)) |Y = y]

=
1

m

∑
y∈[m]

1

πy
EX [ηy(X) `(y, f(X))] . (2)

Robust objective: A more stringent objective would be to
focus on the worst-performing class, and minimize a ro-
bust version of (1) that computes the worst among the m
conditional losses:

Lrob(f) = max
y∈[m]

1

πy
E [ηy(X) `(y, f(X))] . (3)

In practice, focusing solely on either the average or the
worst-case performance may not be an acceptable solution,
and therefore, in this paper, we will additionally seek to
characterize the trade-off between the balanced and robust
objectives. One way to achieve this trade-off is to minimize
the robust objective, while constraining the balanced ob-
jective to be within an acceptable range. This constrained
optimization can be equivalently formulated as optimizing
a convex combination of the balanced and robust objectives,
for trade-off α ∈ [0, 1]:

Ltdf(f) = (1− α)Lbal(f) + αLrob(f). (4)

A similar trade-off can also be specified between the stan-
dard and robust objectives. To better understand the differ-
ences between the standard, balanced and robust objectives
in (1)–(4), we look at the optimal scoring function for each
given a cross-entropy loss:

Theorem 1 (Bayes-optimal scorers). When ` is the cross-
entropy loss `xent, the minimizers of (1)–(3) over all measur-
able functions f : X → Rm are given by:

(i) Lstd(f): softmaxy(f∗(x)) = ηy(x)
(ii) Lbal(f): softmaxy(f∗(x)) ∝ 1

πy
ηy(x)

(iii) Lrob(f): softmaxy(f∗(x)) ∝ λy

πy
ηy(x)

(iv) Ltdf(f): softmaxy(f∗(x)) ∝ (1−α) 1
m +αλ′

y

πy
ηy(x),

for class-specific constants λ, λ′ ∈ Rm+ that depend on
distribution D.

All proofs are provided in Appendix A. Interestingly, the op-
timal scorers for all four objectives involve a simple scaling
of the conditional-class probabilities ηy(x).

3 DISTILLATION FOR WORST-CLASS
PERFORMANCE

We adopt the common practice of training both the
teacher and student on the same dataset. Specifically, given
a training sample S = {(x1, y1), . . . , (xn, yn)} drawn
from D, we first train a teacher model pt : X →
∆m, and use it to generate a student dataset S′ =
{(x1, p

t(x1)), . . . , (xn, p
t(xn))} by replacing the original

labels with the teacher’s predictions. We then train a student
scorer fs : X → [m] using the re-labeled dataset, and use
it to construct the final classifier.

Teacher and student objectives. In a typical setting, both
the teacher and student are trained to optimize a version
of the standard objective in (1), i.e., the teacher is trained
to minimize the average loss against the original training
labels, and the student is trained to minimize an average loss
against the teacher’s predictions:

Teacher: L̂std(f t) =
1

n

n∑
i=1

`
(
yi, f

t(xi)
)

; (5)

Student: L̂std-d(fs) =
1

n

n∑
i=1

m∑
y=1

pty(xi) ` (y, f(xi)) ,

where pt(x) = softmax(f t(x)). It is also common to have
the student use a mixture of the teacher and one-hot labels.
For concreteness, we consider a simpler distillation setup
without this mixture, though extensions with this mixture
would be straightforward to add. This work takes a wider
view and explores what combinations of student and teacher
objectives facilitate better worst-group performance for the
student. Our experiments evaluate all nine combinations of
standard, balanced, and robust teacher objectives, paired
with standard, balanced, and robust student objectives.

Given the choice of teacher objective, the student will either
optimize a distilled version of the balanced objective in (2):

L̂bal-d(fs) =
1

m

∑
y∈[m]

1

π̂ty

1

n

n∑
i=1

pty(xi) ` (y, fs(xi)) , (6)

or a distilled version of the robust objective in (3):

L̂rob-d(fs) = max
y∈[m]

1

π̂ty

1

n

n∑
i=1

pty(xi) ` (y, fs(xi)) . (7)

In practice, the teacher’s predictions may have a different
marginal distribution from the underlying class priors, par-
ticularly when temperature scaling is applied to the teacher’s
logits to soften the predicted probabilities [Narasimhan and
Menon, 2021]. To address this, in both (6) and (7) we have

2239



replaced the class priors πy with the marginal distribution
π̂ty = 1

n

∑n
i=1 p

t
y(xi) from the teacher’s predictions.

In addition to exploring the combination of objectives that
facilitates better worst-group performance for the student,
we evaluate a more flexible approach – have both the teach-
ers and the students trade-off between the balanced and
robust objectives:

Teacher: L̂tdf(f t) = (1− αt)L̂bal(f t) + αtL̂rob(f t) (8)

Student: L̂tdf-d(fs) = (1− αs)L̂bal-d(fs) + αsL̂rob-d(fs),

where L̂bal(f t) and L̂rob(f t) are the respective empirical
estimates of (2) and (3) from the training sample, and
αt, αs ∈ [0, 1] are the respective trade-off parameters for the
teacher and student. We are thus able to evaluate the Pareto-
frontier of balanced and worst-case accuracies, obtained
from different combinations of the teachers and students,
and trained with different trade-off parameters.

3.1 ROBUST DISTILLATION ALGORITHMS

The different objectives we consider – standard, balanced
and robust – entail different loss objectives to ensure ef-
ficient optimization during training. For example, while
training the standard teacher and student in (5), we take `
to be the softmax cross-entropy loss, and optimize it using
SGD. For the balanced and robust models, we employ the
margin-based surrogates that we detail below, which have
shown to be more effective in training over-parameterized
networks [Cao et al., 2019b, Menon et al., 2021b, Kini et al.,
2021]. Across all objectives, at evaluation we take the loss `
in the student and teacher objectives to be the 0-1 loss.

Margin-based surrogate for balanced objective. When
the teacher or student model being trained is over-
parameterized, i.e., has sufficient capacity to correctly clas-
sify all examples in the training set, the use of an outer
weighting term in the objective (such as the inverse class
marginals in (6)) can be ineffective. In other words, a model
that yields zero training objective would do so irrespective
of what outer weights we choose. To remedy this problem,
we make use of the margin-based surrogate of Menon et al.
[2021b], and incorporate the outer weights as margin terms
within the loss. For the balanced student objective in (6),
this would look like:

L̃bal-d(fs) =
1

n

n∑
i=1

Lmar (pt(xi), fs(xi);1/π̂t) , (9)

where Lmar (p, f ; c) =

1

m

∑
y∈[m]

py log

(
1 +

∑
j 6=y

exp (log(cy/cj) − (fy − fj))
)
,

for teacher probabilities p ∈ ∆m, student scores f ∈ Rm,
and per-class costs c ∈ Rm+ . For the balanced teacher, the

Algorithm 1 Distilled Margin-based DRO

Inputs: Teacher pt, Student hypothesis class F , Training
set S, Validation set Sval, Step-size γ ∈ R+, Number
of iterations K, Loss `, Initial student f0 ∈ F , Initial
multipliers λ0 ∈ ∆m

Compute π̂tj = 1
n

∑
(x,y)∈S p

t
j(x), ∀j ∈ [m]

Compute π̂t,val
j = 1

nval

∑
(x,y)∈Sval ptj(x), ∀j ∈ [m]

For k = 0 to K − 1
λ̃k+1
j = λkj exp

(
γR̂j

)
,∀j ∈ [m] where R̂j =

1
nval

1

π̂t,val
j

∑
(x,y)∈Sval

ptj(x) `(j, fk(x))

λk+1
y =

λ̃k+1
y∑m

j=1 λ̃
k+1
j

,∀y

fk+1 ∈ argmin
f∈F

1
n

∑n
i=1 Lmar

(
pt(xi), f(xi);

λk+1

π̂t

)
// Replaced with a few steps of SGD
End For
Output: f̄s : x 7→ 1

K

∑K
k=1 f

k(x)

margin-based objective would take a similar form, but with
one-hot labels.

We include a proof in Appendix A.3 showing that a scor-
ing function that minimizes the surrogate objective in (9)
also minimizes the the balanced objective in (6) (when `
is the cross-entropy loss, and the student is chosen from a
sufficiently flexible function class). In practice, the margin
term log(cy/cj) encourages a larger margin of separation
for classes y for which the cost cy is relatively higher.

Margin-based DRO for robust objective. Minimizing the
robust objective with plain SGD can be difficult due to
the presence of the outer “max” over m classes. The key
difficulty is in computing reliable stochastic gradients for
the max objective, especially given a small batch size. The
standard approach is to instead use a (group) distributionally-
robust optimization (DRO) procedure, which comes in mul-
tiple flavors Chen et al. [2017], Sagawa et al. [2020a], Kini
et al. [2021]. We employ the margin-based variant of group
DRO [Narasimhan and Menon, 2021] as it naturally extends
the margin-based objective used in the balanced setting.

We illustrate below how this applies to the robust student
objective in (7). The procedure for the robust teacher is
similar, but involves one-hot labels. For a student hypothesis
classF , we first re-write the minimization in (7) over f ∈ F
into an equivalent min-max optimization using per-class
multipliers λ ∈ ∆m:

min
f∈F

max
λ∈∆m

∑
y∈[m]

λy
π̂ty

1

n

n∑
i=1

pty(xi) ` (y, f(xi)) ,

and then maximize over λ for fixed f , and minimize over f
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for fixed λ:

λk+1
y ∝ λky exp

(
γ

1

nπ̂ty

n∑
i=1

pty(xi) `
(
y, fk(xi)

))
,∀y

fk+1 ∈ argmin
f∈F

∑
y∈[m]

λk+1
y

nπ̂ty

n∑
i=1

pty(xi) ` (y, f(xi)) ,

where γ > 0 is a step-size parameter. The updates on λ
implement exponentiated gradient (EG) ascent to maximize
over the simplex [Shalev-Shwartz et al., 2011].

Following Narasimhan and Menon [2021], we make two
modifications to the above updates when used to train over-
parameterized networks that can fit the training set per-
fectly. First, we perform the updates on λ using a small
held-out validation set Sval = {(x1, y1), . . . , (xnval , ynval)},
instead of the training set, so that the λs reflect how well
the model generalizes out-of-sample. Second, in keeping
with the balanced objective, we modify the weighted ob-
jective in the f -minimization step to include a margin-
based surrogate. Algorithm 1 provides a summary of these
steps and returns a scorer that averages over the K iterates:
f̄s(x) = 1

K

∑K
k=1 f

k(x). While the averaging is needed for
our theoretical analysis, in practice, we find it sufficient to
return the last scorer fK . In Appendix D, we describe how
Algorithm 2 can be easily modified to trade-off between the
balanced and robust objectives, as shown in (8).

4 EXPERIMENTS

To empirically understand the interplay of teacher and stu-
dent objectives, we explore the following questions: what
combination of teacher and student objectives yield the high-
est worst-class accuracy? Can some combinations improve
worst-class accuracy without sacrificing average accuracy?

Datasets. We evaluate the proposed distillation protocols
on benchmark image datasets: (i) CIFAR-10, (ii) CIFAR-
100 [Krizhevsky, 2009], (iii) TinyImageNet (a subset of
ImageNet with 200 classes) [Le and Yang, 2015], and (iv)
ImageNet [Russakovsky et al., 2015]. We also include long-
tailed versions of the first three datasets created by downsam-
pling tail classes [Cui et al., 2019]. For both the original and
long-tailed versions of the datasets, there are often biases
in worst-class performance, possibly due to some classes
being easier to learn [Lukasik et al., 2022, Hooker et al.,
2020]. For all datasets, as done in prior work [Menon et al.,
2021b, Narasimhan and Menon, 2021], we randomly split
the original default test set in half to create a validation set
and test set, and use the same validation and test sets for the
long-tailed training sets as for the original versions.

Architectures. We evaluate our distillation protocols in both
a self-distillation and compression setting. On all CIFAR
datasets, all teachers were trained with the ResNet-56 ar-
chitecture and students were trained with either ResNet-56

or ResNet-32. On TinyImageNet and ImageNet, teachers
and students were trained with ResNet-18. More details on
these architectures can be found in Lukasik et al. [2022]
and He et al. [2016] (see, e.g., Table 7 in Lukasik et al.
[2022]). Self-distillation results are reported in the main
paper (teacher/student share the same architecture), and we
include results with compressed students in Appendix F.

Hyperparameters. We apply temperature scaling to the
teacher scores, i.e., compute pt(x) = softmax(f t(x)/γ),
and vary the temperature parameter γ over a range of
{1, 3, 5}. A higher temperature produces a softer proba-
bility distribution over classes [Hinton et al., 2015b]. Unless
otherwise specified, the temperature hyperparameters were
chosen to achieve the highest worst-class accuracy on the
validation set. We closely mimic the learning rate and reg-
ularization settings from prior work [Menon et al., 2021b,
Narasimhan and Menon, 2021] (see Appendix E for details).

Which objective combinations are most robust? We begin
by exploring the effect of the interaction between student
and teacher objectives on worst-class accuracy. In Table
1, we search over combinations of the standard, balanced,
and robust objectives for the teacher (Lstd, Lbal, Lrob) and
the student (Lstd-d, Lbal-d, Lrob-d) (note that on the original
datasets, Lstd is equivalent to Lbal). For each combination,
following prior conventions in long-tailed learning [Menon
et al., 2021b, Lukasik et al., 2022], we report the average
accuracy over all classes, and the worst-class accuracy,
or minimum per-class recall over all classes (see (3)). For
datasets with a long tail or high number of classes, we also
report the worst-k accuracy, which is the average of the the
worst k per-class recalls.

The first surprising finding in Table 1 is that applying the
robust objective twice isn’t always best. For all but one
dataset, theLrob/Lrob-d teacher/student combination was out-
performed by some other combination of either Lstd/Lrob-d,
Lrob/Lstd-d, or Lbal/Lrob-d. Still, in the winning combina-
tion, at least one of the objectives was robust. This suggests
that while the robust objective is effective for controlling
worst-class accuracy, there may be some information loss in
applying it twice to both the teacher and student.

To understand this information loss on the teacher’s side,
we highlight a second surprising finding that the teacher
with the best worst-class accuracy alone did not always pro-
duce the student with the best worst-class accuracy. The ro-
bust teacher had the highest worst-class accuracy across all
datasets, but for CIFAR-10 and all three long-tailed datasets,
it was actually the Lstd or Lbal teacher that produced the
best robust student. This shows that there is more to a good
teacher than just having good worst-class performance –
in fact, we show theoretically in Section 5 that the prop-
erty of the teacher that is most important for robust student
performance is a form of calibration of per-class scores.

Trading off accuracy and robustness. Table 1 focuses
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Table 1: Worst-class accuracy comparisons for different combinations of teacher/student objectives. Worst-1 test accuracy is
reported (worst-10 for TinyImageNet-LT) (best in bold), and average test accuracy is shown in parentheses. Mean accuracies
are reported over repeat trainings (see extended table in Appendix for standard errors). Note that on the original datasets,
Lstd and Lstd-d are equivalent to Lbal and Lbal-d.

CIFAR-10 Teacher Obj. CIFAR-100 Teacher Obj. TinyImageNet Teacher Obj.

St
ud

en
tO

bj
.

Lstd Lrob Lstd Lrob Lstd Lrob

None 86.48 (93.74) 90.09 (92.67) 42.22 (72.42) 43.42 (68.81) 8.42 (56.79) 11.87 (48.40)

Lstd-d 87.66 (94.34) 90.12 (94.07) 43.81 (74.61) 45.33 (73.67) 6.32 (57.83) 10.53 (55.36)

Lrob-d 90.94 (92.54) 85.14 (89.58) 42.96 (68.71) 27.59 (54.79) 9.98 (49.84) 16.58 (46.11)

CIFAR-10-LT Teacher Obj. CIFAR-100-LT Teacher Obj. TinyImageNet-LT Teacher Obj.

St
ud

en
tO

bj
. Lstd Lbal Lrob Lstd Lbal Lrob Lstd Lbal Lrob

None 57.26 (76.27) 68.52 (79.85) 74.80 (80.29) 0.00 (43.33) 3.75 (47.55) 10.33 (44.27) 0.00 (33.15) 2.11 (35.96) 4.92 (27.23)

Lstd-d 36.67 (69.50) 66.96 (79.25) 71.15 (80.95) 0.00 (43.86) 2.39 (48.95) 7.32 (47.93) 0.00 (26.05) 0.00 (27.21) 1.87 (25.34)

Lbal-d 71.23 (80.50) 70.52 (81.12) 72.96 (80.71) 4.39 (50.40) 7.08 (50.10) 7.19 (47.51) 0.20 (30.43) 2.82 (39.41) 4.77 (38.41)

Lrob-d 63.85 (76.81) 75.56 (80.81) 69.21 (76.72) 9.05 (33.75) 12.52 (34.05) 10.32 (36.83) 0.00 (22.66) 4.93 (35.43) 3.32 (25.11)

on worst-class accuracy, but practitioners often must con-
sider the trade-off between average accuracy and worst-class
accuracy when deploying any model. To address this, we
introduced the Ltdf/Ltdf-d objectives for the teacher/student
with trade-off parameters αt, αs. Figure 1 plots average and
worst-class accuracies for a full spread of αt, αs parameters.
First, we note that lower αs usually leads to higher aver-
age accuracy (this is not always the case for αt, which we
show in more detail in Appendix F). Figure 1 also shows
that combinations of αt, αs yield a roughly concave Pareto
frontier of solutions with different average and worst-class
accuracies to choose from. Selecting the best combination of
trade-off parameters αt, αs in practice depends on domain-
specific decisions regarding the importance of worst-class
vs. average accuracy. Any selection criteria based on some
trade-off of worst-class vs. average accuracy can be applied
over the validation set to select αt, αs as hyperparameters.
We demonstrate one such set of selection criteria here: in
Table 2, we select αt, αs to maximize worst-class accuracy
on validation, subject to having at least as high average
accuracy as standard distillation (within error margin) on
the validation set. Other candidate criteria include weighted
sums of worst-class accuracy and average accuracy, or con-
strained optimization criteria from Cotter et al. [2019].

Comparison to baselines. Finally, we contextualize the per-
formance of the proposedLtdf/Ltdf-d objectives and the train-
ing protocol in Algorithm 1 by comparing to several state-of-
the-art methods. In addition to standard distillation (training
the teacher with Lstd and the student with Lstd-d), we com-
pare the proposed objective combinations with two recent
works focusing on robust distillation [Lukasik et al., 2022,
Narasimhan and Menon, 2021], both of which use a stan-
dard objective for the teacher and modify only the student
objective for worst-class performance. From Narasimhan
and Menon [2021], we consider the following two meth-
ods: (i) Post-shifting: this non-distillation approach directly
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Figure 1: All αt, αs combinations for CIFAR-10 on test. The
black line traces out the Pareto frontier. Average accuracy is
roughly determined by αs. The labeled point corresponds
to the “best” combination selected in Table 2 based on vali-
dation criteria, but other domain-specific trade-off criteria
could yield any of these other points.

constructs a new scoring model by making post-hoc adjust-
ments to the teacher, so as to maximize the robust accuracy
on the validation sample. (ii) Robust student: this approach
trains a student using Lrob-d from a standard teacher. From
Lukasik et al. [2022], we compare to their two proposed
AdaMargin and AdaAlpha methods. Both methods are mo-
tivated by the observation that the margin defined for each
class y by γavg(y, pt(x)) = pt

y(x) − 1
m−1

∑
y′ 6=y p

t
y′(x)

correlates with whether distillation improves over one-hot
training [Lukasik et al., 2022]. AdaMargin uses that quantity
as a margin in the distillation loss, whereas AdaAlpha uses
it to adaptively mix between the one-hot and distillation
losses. Additionally, for long-tailed datasets, we include
a comparison to Menon et al. [2021b] which we refer to
as balanced student, where the student is distilled with a
balanced objective Lbal-d from a standard teacher. Finally,
we also include a comparison to the Group DRO method
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for subgroup robustness without distillation (Algorithm 1 in
Sagawa et al. [2020a]). This method differs from our DRO
procedure in that they do not apply a margin-based loss.

Table 2 shows the average and worst-class accuracies on
test for these baselines compared to the combination of
αt, αs selected using the selection criteria previously de-
scribed. The selection criteria for αt, αs are applied over the
validation set, and thus do not directly translate to test per-
formance: the selected αt, αs combination sometimes has
lower average test accuracy than standard distillation. Still,
overall, the selected αt, αs combination is Pareto efficient
compared to all other baselines (dominant in at least one of
average accuracy or worst-k accuracy). Among the rest of
the different αt, αs candidates (as in Figure 1), there actu-
ally exist combinations that Pareto dominate all baselines in
test performance (additional plots in Appendix F). While we
only show results from our simple example selection criteria
in Table 2, this suggests that there is room for alternative
selection criteria to yield even better results. The challenge,
as with all hyperparameter selection, is that selection on
the validation set comes with a generalization gap between
validation and test.

5 THEORETICAL ANALYSIS

Complementing our empirical findings, our theoretical anal-
ysis explores what constitutes a good teacher and how it aids
a student in achieving robustness. To simplify our exposi-
tion, we present our theoretical analysis for a student trained
using Algorithm 1 to yield good worst-class performance.
Our results easily extend to the case where the student seeks
to trade-off between average and worst-case performance.

What constitutes a good teacher? We first characterize
the properties of a good teacher when the student’s goal
is to minimize the robust population objective Lrob(fs) in
(3). In particular, does the student’s ability to perform well
on this worst-case objective depend on the teacher also
performing well on the same objective? Given scores from
a teacher pt, the student minimizes the robust distillation
objective L̂rob-d(fs) in (7), and uses this as a proxy for the
actual objective Lrob(fs) we care about. Intuitively, an ideal
teacher would then be one that provides a good proxy for
the student, and ensures that the difference |L̂rob-d(fs) −
Lrob(fs)| is as small as possible. Below, we provide a simple
bound on this difference:

Theorem 2. Suppose `(y, z) ≤ B, ∀x ∈ X for someB > 0.
Let πty = Ex

[
pty(x)

]
, and let the following denote the per-

class expected and empirical student losses respectively:

φy(fs) = 1
πt
y
Ex
[
pty(x) ` (y, fs(x))

]
;

φ̂y(fs) = 1
π̂t
y

1
n

∑n
i=1 p

t
y(xi) ` (y, fs(xi)) .

Then for teacher pt and student fs:

|L̂rob-d(fs)− Lrob(fs)| ≤B max
y∈[m]

Ex
[∣∣∣∣pty(x)

πty
− ηy(x)

πy

∣∣∣∣]︸ ︷︷ ︸
Calibration error

+ max
y∈[m]

∣∣φy(fs)− φ̂y(fs)
∣∣︸ ︷︷ ︸

Estimation error

.

The calibration error captures how well the teacher’s predic-
tions mimic the conditional-class distribution η(x) ∈ ∆m,
up to per-class normalizations π. This suggests that even if
pt does not achieve good worst-class performance, as long
as it is well-calibrated within each class (as measured by
the calibration error), it will serve as a good teacher.

The estimation error captures how well the teacher aids in
the student’s out-of-sample generalization. The prior work
by Menon et al. [2021a] study this question in detail for the
standard student objective, and provide a bound that depends
on the variance induced by the teacher’s predictions on the
student’s objective: the lower the variance, the better the
student’s generalization. In Appendix B, we carry out a
similar analysis with the estimation error in the theorem.

Calibration and worst-case error. We illustrate how, per-
haps counterintuitively, a teacher with low worst-class ac-
curacy might still have scores pt that are well calibrated to
match the true conditional-class distributions η. For this, we
use a hypothetical “image classification” task with labels
y ∈ {cat, panda, other}, and a single one-dimensional fea-
ture x ∈ [0, 1] representing the fraction of black pixels in
the image, uniformly distributed over the interval. Suppose
the solid lines in Figure 2 below give the conditional-class
distributions ηy(x) for the cat and panda classes (pandas are
rarer than cats in the dataset, with πcat = 1

2 and πpanda = 1
4 ).

Suppose the dashed lines in Figure 2 also give hypotheti-
cal teacher model scores pty(x), where ptcat(x) = 2ηcat(x),
and ptpanda(x) = 1

2ηpanda(x) (these arbitrary teacher scores
do not necessarily correspond to softmax outputs from
a neural network). This teacher model always outputs a
higher score for the cat label than the panda label. However,
the model still satisfies the necessary calibration property:
pty(x)

Ex[pty(x)] =
ηy(x)
πy

for y ∈ {cat, panda}, despite the fact
that the argmax predictions from this model has zero recall
for the panda class. This illustrates that the important prop-
erty of the teacher’s scores is how well they mimic the shape
of the conditional-class distributions, and not necessarily
their worst-class predictive accuracy.

Relation to Bayes-optimal scorers. When the teacher out-
puts the conditional-class probabilities, i.e. pt(x) = η(x),
the calibration error is trivially zero (recall that the nor-
malization term πty = πy in this case). Theorem 1 shows
that the Bayes-optimal scorer for the standard cross-entropy
loss achieves this; however, in practice with finite data and
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Table 2: Comparison to baselines for the selected αt, αs combination on test data.

CIFAR-10 CIFAR-100 TinyImageNet
Method Average acc. Worst-1 acc. Average acc. Worst-1 acc. Average acc. Worst-1 acc.

Selected αt, αs combo 94.28± 0.06 90.11± 0.23 73.22± 0.26 48.40± 1.47 58.09± 0.13 9.47± 1.76
Standard distillation 94.34± 0.07 87.66± 0.40 74.61± 0.15 43.81± 0.58 57.83± 0.13 6.32± 2.31
Post shift [NM’21] 92.16± 0.18 88.60± 0.35 61.22± 0.36 38.19± 0.40 43.02± 0.79 14.39± 1.13
Robust student [NM’21] 92.72± 0.05 89.90± 0.21 68.45± 0.13 43.62± 1.27 48.06± 0.24 16.27± 0.43
AdaMargin [LBMK’22] 93.69± 0.06 88.42± 0.36 73.58± 0.11 43.91± 1.11 52.45± 0.08 15.41± 0.71
AdaAlpha [LBMK’22] 94.31± 0.01 88.33± 0.14 74.15± 0.08 45.46± 0.67 57.22± 0.08 7.62± 2.17
Group DRO [SKHL’20] 92.34± 0.07 89.32± 0.21 65.18± 0.08 43.89± 1.12 48.78± 0.21 11.38± 1.79

CIFAR-10-LT CIFAR-100-LT TinyImageNet-LT
Method Average acc. Worst-1 acc. Average acc. Worst-1 acc. Average acc. Worst-10 acc.

Selected αt, αs combo 79.02± 0.08 75.43± 0.39 43.94± 0.16 14.52± 0.68 26.91± 0.16 6.04± 0.25
Standard distillation 77.39± 0.10 60.12± 0.56 46.01± 0.16 0.00± 0.00 26.05± 0.18 0.00± 0.00
Post shift [NM’21] 78.28± 0.05 74.33± 0.09 29.88± 0.61 10.01± 0.72 21.32± 0.49 2.58± 0.42
Robust student [NM’21] 80.05± 0.13 74.91± 0.24 30.79± 0.18 12.28± 0.46 21.59± 0.19 1.55± 0.37
Bal. student [MJRJVK’21] 81.36± 0.14 71.60± 0.38 50.40± 0.12 4.39± 0.66 30.43± 0.06 0.20± 0.18
AdaMargin [LBMK’22] 72.69± 0.24 47.52± 0.95 31.26± 0.21 0.00± 0.00 4.41± 0.09 0.00± 0.00
AdaAlpha [LBMK’22] 70.83± 0.28 43.64± 1.09 42.52± 0.08 0.00± 0.00 27.95± 0.14 0.00± 0.00
Group DRO [SKHL’20] 74.39± 0.17 59.93± 0.59 40.47± 0.17 0.19± 0.17 27.78± 0.13 0.00± 0.00

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

ηcat(x)

ptcat(x)

ηpanda(x)

ptpanda(x)

Figure 2: Hypothetical conditional-class distributions ηy(x)
and trained model scores pty(x) for y ∈ {cat, panda}.

model class limitations, a teacher trained with the cross-
entropy loss is often far from approximating η(x) exactly.
In practice, it remains an open question what methodology
might produce a teacher that most closely mimics these
conditional-class distribution shapes for all classes in fi-
nite samples. For example, while the standard cross-entropy
objective might lead to well calibrated model scores for a
majority class, the scores may not match for rare classes.
Our experiments explored training with different losses from
Section 2 that encourage the teacher to approximate scaled
versions of η(x); however, future exploration of other prac-
tical training possibilities would be interesting to compare.

Robustness guarantee for student. We next provide ro-
bustness guarantees for the student output by Algorithm 1
in terms of the calibration and estimation errors described
above. We do so for a fixed teacher pt, and a self-distillation
setup where the student is chosen from the same function

class F as the teacher, and can thus exactly mimic the
teacher’s predictions.

Proposition 3. Suppose pt ∈ F and F is closed under
linear transformations. Let λ̄y = (

∏K
k=1 λ

k
y/π

t
y)1/K ,∀y.

Then the scoring function f̄s(x) = 1
K

∑K
k=1 f

k(x) output
by Alg. 1 is of the form: softmaxj(f̄s(x)) ∝ λ̄jptj(x), ∀j ∈
[m], ∀(x, y) ∈ S.

Theorem 4. Suppose pt ∈ F and F is closed under linear
transformations. Suppose ` is the cross-entropy loss `xent,
`(y, z) ≤ B and maxy∈[m]

1
πt
y
≤ Z, for some B,Z > 0.

Furthermore, suppose for any δ ∈ (0, 1), the following
bound holds on the estimation error in Theorem 2: with
probability at least 1− δ (over draw of S ∼ Dn), ∀f ∈ F ,
maxy∈[m]

∣∣φy(f)− φ̂y(f)
∣∣ ≤ ∆(n, δ), for some ∆(n, δ) ∈

R+ that is increasing in 1/δ, and goes to 0 as n → ∞.

Then when the step size γ = 1
2BZ

√
log(m)
K and nval ≥

8Z log(2m/δ), we have that with probability at least 1− δ
(over draw of S ∼ Dn and Sval ∼ Dnval

),

Lrob(f̄s) ≤ min
f∈F

Lrob(f) + 2∆(nval, δ/2) + 2∆(n, δ/2)︸ ︷︷ ︸
Estimation error

+ 2B max
y∈[m]

Ex
[∣∣∣∣pty(x)

πty
− ηy(x)

πy

∣∣∣∣]︸ ︷︷ ︸
Calibration error

+ 4BZ

√
log(m)

K︸ ︷︷ ︸
EG convergence

.

Proposition 3 shows the student not only learns to mimic
the teacher on the training set, but improves upon it by
making per-class adjustments to its predictions. Theorem
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4 shows that these adjustments are chosen to close-in on
the gap to the optimal robust scorer in F . However, the
student’s convergence to the optimal scorer in F would still
be limited by the teacher’s calibration error: even when the
sample sizes and number of iterations n, nval,K →∞, the
student’s optimality gap may still be non-zero when the
teacher is poorly calibrated.

6 CONCLUSIONS AND FUTURE WORK

We have demonstrated the value of applying different combi-
nations of teacher/student objectives, not only for improving
worst-class accuracy, but also to achieve efficient trade-offs
between average and worst-class accuracy. Surprisingly, the
teacher and students’ objective functions can interact with
each other in nontrivial ways: for example, applying a ro-
bust objective to both the teacher and the student does not
always achieve the best worst-class accuracy (Table 1). Fur-
ther exploring the trade-off between worst-class and average
accuracy, we provided simple modifications to the teacher
and student objectives that boosted worst-class accuracy
with less degradation in average accuracy than prior meth-
ods that focus on worst-class accuracy. This confirms the
key takeaway that the teacher’s objective plays a crucial role
in the student’s robustness.

In a broader sense, our theory provides better understanding
of the interplay between teacher and student objectives, and
thus serves as a starting point for further development of
methods to modify both the teacher and students’ objectives
jointly. An interesting future avenue for exploration would
be to extend our distillation setup to incorporate other forms
of teacher supervision such as intermediate embeddings or
ensembled scores (e.g., Iscen et al. [2021]).

Training efficiency is another avenue for improvement, and
future work in reducing the hyperparameter search space
would be practically valuable. For settings where teacher re-
training is particularly expensive, one could modify a given
fixed teacher with some form of post-hoc logit adjustment
[Narasimhan and Menon, 2021], or only fine-tune a subset
of the teacher parameters with different values of αt. These
reductions in computational cost would improve the practi-
cality of joint exploration of teacher and student objectives.
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