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Abstract

Consider the problem of out-of-distribution predic-
tion given data from multiple environments. While
a sufficiently diverse collection of training environ-
ments will facilitate the identification of an invari-
ant predictor, with an optimal generalization per-
formance, many applications only provide us with
a limited number of environments. It is thus neces-
sary to consider adapting to distribution shift using
a handful of labeled test samples. We propose a
constrained Bayesian approach for this task, which
restricts to models with a worst-group training loss
above a prespecified threshold. Our method avoids
a pathology of the standard Bayesian posterior,
which occurs when spurious correlations improve
in-distribution prediction. We also show that on cer-
tain high-dimensional linear problems, constrained
modeling improves the sample efficiency of adapta-
tion. Synthetic and real-world experiments demon-
strate the robust performance of our approach.

1 INTRODUCTION

A crucial challenge in machine learning applications is to
make predictions in a novel environment, with a data dis-
tribution different from those of the training environments
[Quinonero-Candela et al., 2008, Blanchard et al., 2011]. In
such scenarios, there often exist spurious features [Sagawa
et al., 2020a] that exhibit environment-specific correlation
structures to the target variable, which can be drastically
different between training and test data. For example, in
aggregated medical imaging datasets, factors such as radio-
graphic positioning or projection often appear predictive
about the diagnostic outcome, but only because both fac-
tors are correlated with the data source; machine learning

*Equal contribution. #Corresponding author.

models may thus learn “shortcuts” based on such features,
leading to poor generalization [DeGrave et al., 2021].

A diverse body of literature is dedicated to this issue of
out-of-distribution (OOD) prediction, with different assump-
tions introduced on the forms of distribution shift and the
information available to aid generalization. We are primarliy
interested in scenarios where a causally invariant predictor
[Bühlmann, 2018, Rojas-Carulla et al., 2018] exists, and is
reasonably performant across environments. In such cases,
its recovery can be possible given a sufficiently diverse
collection of training environments [Peters et al., 2016, Ar-
jovsky et al., 2019]. It is often possible to have training data
from multiple environments, such as in medical applications
where hospitals form distinct environments; we can then
apply algorithms such as invariant risk minimization [IRM,
Arjovsky et al., 2019] and group distributionally-robust op-
timization [GDRO, Sagawa et al., 2020a].

Unfortunately, identification of the invariant predictor may
require an excessive number of training environments: for
d-dimensional linear models this may amount to O(d) en-
vironments [Rosenfeld et al., 2021]. Thus, in a large pro-
portion of practical applications, we will find ourselves in
an underidentified regime with an insufficient number of
training environments, in which case the benefits of existing
methods are far less clear. Indeed, Gulrajani and Lopez-Paz
[2020] showed that across a number of benchmarks with
a smaller number of environments, methods such as IRM
and GDRO consistently fail to outperform an ERM baseline,
even though the latter does not account for distribution shift.
The challenge of underspecification can be fundamental; as
we demonstrate in Lemma 1, in seemingly benign scenarios
with o(d) environments, there may exist spurious features
that are indistinguishable from invariant features, by any
statistical procedure working on finite data.

In light of the practical need for OOD prediction given few
environments and the inherent difficulties of generalization,
it is thus necessary to take a step back and consider adapting
a learned model to a target environment, using a handful
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of labeled samples. Such samples are often available, for
example if our deployment process involves first testing
the model in the target environment; in such cases, we can
simply set out a few samples for adaptation.

It is natural to consider a Bayesian approach given the un-
deridentified nature of our problem, as is also advocated
by Lee et al. [2022] in a connected but different setting.
The Bayesian formulation may also appear desirable due to
the interpretation as sequential belief updates — the poste-
rior given training data “naturally” serves as a prior during
adaptation. Unfortunately, the Bayesian approach can be
inherently flawed for our purpose, as long as there exists a
non-negligible gap between the in-distribution performance
of the invariant and non-invariant models. As we shall dis-
cuss in Section 3.1, this gap will get amplified by a scaling
of evidence that is required in (generalized) Bayesian mod-
eling, and cause the posterior to remain concentrated on
non-invariant models until a very large number of adapta-
tion samples have been seen. This is concerning due to the
prevelance of such performance gaps; indeed, they are part
of the reason for the failure of domain generalization algo-
rithms [e.g., Rosenfeld et al., 2021, Sagawa et al., 2020b].

In this work, we attempt to address this issue by proposing
a principled approach for the adaptation task. We assume
the knowledge of a lower bound of the invariant predic-
tor’s performance. Such knowledge is often possible, given
our implicit assumption that the invariant predictor has an
acceptable performance. We then use the training environ-
ments to define constraints: we restrict to the subset of mod-
els that do not perform significantly worse than the lower
bound, across all training environments. This ensures the
invariant predictor presents in the constraint set with high
probability, and is weighed similarly to the non-invariant
predictors, even though the latter would have induced a
much better likelihood on training data. Consequently, effi-
cient adaptation can be achieved.

Our method can be justified in many ways, by consider-
ing its behavior in the presence of performance gaps as
sketched above, or by relating it to a relaxed formulation of
GDRO. We complement these justifications with an asymp-
totic analysis, showing that in certain asymptotics for high-
dimensional linear models, adaptation with constrained
models may achieve a vanishing estimation error with a
relatively small number of training environments, whereas
using neither training nor adaptation data alone cannot
guarantee convergence. This result improves the understand-
ing of OOD learning, by showing that a smaller number of
training environments can still be useful.

We evaluate the proposed method through synthetic and real-
world experiments. On several image classification tasks
where off-the-shelf domain generalization algorithms strug-
gle to improve over ERM, our method delivers significant
improvement, with only a handful of adaptation samples.

Moreover, among all the adaptation algorithms evaluated,
our method is the only one with reliable performance across
all settings; in contrast, the baseline procedures fail intermit-
tently, in different settings, which can be attributed to their
less principled nature.

The rest of this paper is structured as follows: in Sec. 2 we
review the setup of OOD generalization and discuss its hard-
ness. Sec. 3 discusses the pitfall of standard Bayesian mod-
eling and introduces our method, which is further justified
in Sec. 4 through asymptotic analyses. We review related
work in Sec. 5, present empirical evaluations in Sec. 6, and
provide concluding remarks in Sec. 7.

2 OOD GENERALIZATION AND ITS
HARDNESS

Notations We adopt the following notations in the pa-
per: [n] := {1, . . . , n}. �,.,& denote (in)equality up to
constants. c1, . . . , denote universal constants. For finite-
dimensional vectors, ‖ · ‖2 denotes the Euclidean norm.

Invariant models and OOD generalization Consider a
prediction task with training data from m environments:
Dtr := {{(xei , yei ) ∼ Pe : i ∈ [ne]} : e ∈ Etr}, where
|Etr| = m. We are interested in an out-of-distribution test
environment where the data comes from a different P∗. We
assume the existence of an invariant predictor that only
depends on the input x through some Φinv(x), such that
pe(y | Φinv(x)) ≡ p(y | Φinv(x)) is invariant across all
environments. We also assume that Φinv(x) can be reason-
ably informative about y. Such Φinv(x) are named invariant
features, in contrast to the spurious features Φspu(x) which
induce different pe(y | Φspu(x)) across environments, and
hinder generalization when they are included in a predictor.

A variety of approaches have been proposed for learning the
invariant predictor. Of particular interest is the method of
group distributionally-robust optimization (GDRO), which
minimizes the worst-case risk across training environments:

min
f∈H

max
e∈Etr

R̂e(f), (GDRO)

and invariant risk minimization (IRM):

min
f=w◦Φ∈H

∑
e∈Etr

R̂e(w ◦ Φ),

subject to w ∈ arg min
w′

R̂e(w
′ ◦ Φ), ∀e ∈ Etr.

(IRM)

In the above, R̂e(f) := 1
ne

∑ne
i=1 `(f(xei ), y

e
i ) denotes the

empirical risk for an environment e, ` denotes a suitable
loss function, and H is our hypothesis space. For IRM, Φ
and w denote the learned invariant features and the optimal
predictor atop them.

2249



Hardness of OOD generalization It is intuitive that an
invariant predictor may be recovered, given a large and
diverse collection of training environments. For IRM and
certain linear models with dimensionality d, this amounts
to having m � d environments that are independent in a
certain sense [Arjovsky et al., 2019]. Unfortunately, such
requirements can be unrealistic for high-dimensional data,
and/or nonlinear models, and with a smallerm the empirical
performance of domain generalization algorithms can often
be disappointing: Gulrajani and Lopez-Paz [2020] show that
a wide range of methods may fail to match the performance
of an empirical risk minimization (ERM) baseline.

Let us illustrate the hardness of invariant prediction using the
following example, adapted from Rosenfeld et al. [2021]:

Example 1. Consider a classification problem with data
generated as follows:

β̄espu ∼ N (0, τ2
s I) ∈ Rdspu , yei ∼ Unif{±1},

xei =

[
xei,inv
xei,spu

]
∼ N

(
yei

[
β̄inv
β̄espu

]
,

[
σ2
i I 0
0 σ2

sI

])
,

where τs, σs, σi > 0, and β̄inv ∈ Rdinv is fixed. When
m < dspu/4, the vectors {β̄espu} are linearly independent
with high probability [Wainwright, 2019, chapter 6]. Thus,
by Theorems 5.1 and 5.3 in Rosenfeld et al. [2021], all of
ERM, IRM and GDRO will learn a non-invariant predictor.
We provide further insights through the following:

Lemma 1. In the setting of Example 1, let

xepe,i := α
∑
e∈Etr (β̄

e
spu)>xei,spu, with α 6= 0.

be a “purely environmental” feature. Then,

(i) A classifier based on xpe alone will achieve a vanish-
ing error, if m� dspu min{1, (τs/σs)2}.

(ii) For all e ∈ Etr, denote the marginal distribution of
(y, xeinv, x

e
pe) by pe,marg. Then, w.p. ≥ 1 − e−m/18

w.r.t. {β̄espu} there exists some ẽ ∈ Etr s.t.

KL
(⊗
e∈Etr

pe,marg

∥∥∥ p⊗mẽ,marg) ≤ 256m

σ2
sdspu

. (1)

Consequently, given a training sample with size

max
e∈Etr

ne � σ2
sdspu/m, (2)

no statistical test with a size of o(1) could reject xpe
as a non-invariant feature w.p. ≥ o(1).

Proof. See the supplementary material.

The above result highlights the hardness of OOD generaliza-
tion in high dimensions. It shows in the m� dspu regime
the existence of a spurious feature that has an arbitrarily

high predictive power across e ∈ Etr, yet can be indistin-
guishable from invariant features given finite samples. In
reality, the sample size threshold will be much higher than
(2), since for features learned from finite data it is only valid
to test for approximate invariance; see the supplementary
material for a detailed discussion.1 It should be noted that
quantitatively similar results do not always hold, across all
linear models: Chen et al. [2022] showed that under certain
data generating processes, identification may become pos-
sible when m = O(log d). Still, it remains concerning that
such a pathology arises from a seemingly benign setting,
with i.i.d. training environments and xpe constructed by a
simple averaging. Also note while past works have studied
adaptation based on unlabeled test samples [Zhang et al.,
2021], it would be ineffective on this setup, since the input
has the same distribution across all environments.

We note that multiple mechanisms exist that may explain
the hardness of OOD generalization, and the possible (in-
distribution) performance gap between the invariant and
non-invariant predictors: they may be inherent to the data
distribution as demonstrated above, or they can arise from
inappropriate model specifications, which may lead to the
memorization of data [Sagawa et al., 2020b], undesirable
margin-maximization behavior [Nagarajan et al., 2020,
Wald et al., 2023], or simply a larger approximation er-
ror for the invariant predictors. We take an agnostic view to
the cause, but stress the ubiquity of hard-to-learn problems:
as exemplified by claim (ii) above, there are many scenarios
where generalization to completely unseen environments
is fundamentally difficult. Instead, we may have to take a
step back, and seek additional information about the target
environment.

3 ADAPTING TO ENVIRONMENT SHIFT
WITH CONSTRAINED BAYESIAN
MODELS

In many applications, it is possible to collect a handful of
labeled samples from the test environment before deploying
the model; for example, such samples may come “for free”
if the deployment process involves first evaluating the model
in the test environment. In light of the inherent difficulties
of generalization to unseen environments, it is reasonable
to study the use of such samples to adapt our model to the
shifted environment.

3.1 WHY NOT (GENERALIZED) BAYES?

Before presenting our method, let us first consider a naïve
alternative which employs as the prior for adaptation a
(generalized/Gibbs) posterior from training data, which is

1It is also clear from the proof that if {β̄e
spu} are exactly or-

thonormal, indistinguishability will hold for all finite ne.
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then updated with samples from the test environment. Let
Dad := {(x∗i , y∗i ) ∼ P∗ : i ∈ [n∗]} denote the adaptation
samples, and θ ∈ Θ denote the parameters of a predictor fθ.
The updated posterior is then

pGB(dθ | Dtr,Dad) ∝ π(dθ)e−L(θ;Dtr)
n∗∏
i=1

e−`(y
∗
i ,fθ(x∗i )).

In the above, the “initial prior” π represents our subjec-
tive belief before seeing any data, L(θ;Dtr) can be any
properly scaled training objective, and `(y∗i , fθ(x

∗
i )) de-

notes an arbitrary loss. With `(y∗i , fθ(x
∗
i ))← − log p(y∗i |

fθ(x
∗
i )), L(θ;Dtr) ←

∑
e∈Etr

∑ne
i=1 `(y

e
i , fθ(x

e
i )) we re-

cover the standard Bayesian posterior, while using (GDRO)
or (IRM) for L, or using a different `, will lead to different
generalized posteriors [Zhang, 2006, Bissiri et al., 2016].
Note that this generalized posterior can also understood
from a variational perspective with proper posterior regular-
ization [Zhu et al., 2014].

Importantly, in (generalized) Bayesian modeling, the scale
ofL should be proportional to, or at least increasing w.r.t. the
training sample size, as otherwise the “adaptation-time prior”
πad,GB(dθ) ∝ π(dθ)e−L(θ;Dtr) would be equivalent to the
original π, rendering the training data useless. With an addi-
tive L such as in ERM or (IRM), the linear scaling is also
desirable because it allows us to maintain a coherence prop-
erty of sequential Bayesian updates [Bissiri et al., 2016].

It is precisely this necessary scaling that make the general-
ized Bayesian approach unsuitable for our adaptation goal.
The problem is that in many OOD problems, there exists
a small but non-negligible gap between the in-distribution
performance of the invariant predictor and a non-invariant
predictor, as we discussed at the end of Section 2; and such
a gap gets amplified by the scaling of the objective:

Example 2. As a pedagogical example, consider a clas-
sification task with ` being the 0/1 loss, ne ≡ 105, and a
two-point prior π supported on the invariant predictor and a
non-invariant predictor: π = Unif{θnon−inv, θinv}, where

R∗(θnon−inv)−R∗(θinv) ≥ 0.99,

min
e∈Etr

(R̂e(θinv)− R̂e(θnon−inv)) ≥ 0.01.

(Note the shorthand notation R(·)(θ) := R(·)(fθ), and R∗
denotes the population risk on the test environment.) Let
L be scaled by ne. Then we have πad,GB({θinv})

πad,GB({θnon−inv}) =

e105×0.01 for the adaptation-time prior, and the log poste-
rior mass ratio is approximately 103 − 0.99n∗. Therefore,
even though θnon−inv has catastrophic performance on the
test environment, it would take more than 103 adaptation
samples for pGB to concentrate to the right parameter.2

2Note that while the example concerns generalized Bayesian
posteriors, a similar pathology exists for the respective point esti-
mators, due to the exponential concentration of the loss functions.

While it is certainly possible to alleviate this issue with
more heuristics, e.g., by switching to a smaller scaling, it is
difficult to determine a sensible scheme that facilitates effi-
cient adaptation; a slower scaling also discounts the training
data “as a whole”, making them less useful for the invariant
features, and for identifying part of the spurious correla-
tions that could have been identified from training data. The
awkward situation reflects the inherently different roles of
training and adaptation samples, which necessitates a differ-
ent treatment for the distinct forms of evidence they provide.

3.2 CONSTRAINED BAYESIAN MODELING

In light of the pathological inefficiency of the generalized
Bayesian approach, we propose an alternative which is to
use the training environments to define constraints. Con-
cretely, let ρ ≥ Re(finv) be a prespecified upper bound for
the risk of the invariant predictor. We define our predictive
distribution using the constrained posterior

pC(dθ | Dtr,Dad) ∝ π(dθ)1{θ∈Ctr}

n∗∏
i=1

e−`(y
∗
i ,fθ(x∗i )),

where Ctr :=
{
θ : max

e∈Etr
R̂e(fθ) ≤ ρ+ εn

}
is the constraint set, and εn → 0 covers the small sampling
error |R̂e(finv)−Re(finv)| so that we can have θinv ∈ Ctr
with high probability.3 In many applications we have knowl-
edge of a good choice for ρ, due to the implicit assumption
that the invariant predictor has an acceptable performance;
e.g., in classification problems where the performance gap
between the invariant and non-invariant classifiers can be
attributed to various types of label noise, we can often upper
bound the noise level based on our domain knowledge. It is
also possible to utilize less reliable sources of information
about ρ, by viewing ρ as a model parameter and equipping it
with a prior. Alternatively, we may simply set ρ to be larger
than the risk of the ERM to achieve a better trade-off be-
tween in-distribution and OOD performance; this approach
will be evaluated in section 6.2.

When ρ is small, any θ ∈ Ctr will correspond to an ap-
proximate optima for (GDRO). Thus, the constrained pos-
terior is a natural generalization of GDRO, and will not
perform significantly worse, which is useful if the train-
ing data turns out to be informative. In the underidentified
regime, the constrained posterior allows for more efficient
adpatation, by relaxing the optimization problem and mod-
eling the uncertainty in training data. Comparing with the
naïve Bayesian approach, the constrained posterior is based
on an adaptation-time prior πad,C(dθ) ∝ π(dθ)1θ∈Ctr that
does not introduce additional weighting to models in the
constraint set; this allows us to avoid the pathological be-
havior of the former: returning to Example 2, we can see

3For subgaussian loss we can choose εn,e ∝ n
−1/2
e

√
logm.
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that the constrained posterior only requires Op(1) samples
to converge to the correct prediction.

3.3 ALGORITHM IMPLEMENTATION

We draw approximate samples from the constrained poste-
rior using a simple algorithm that augments Langevin Monte
Carlo (LMC) with line search: at each iteration, we choose
within a prescribed range the largest step-size s.t. the LMC
update could stay in the constraint set. The process is listed
as Algorithm 1. We run multiple LMC chains in parallel, a
nd use the obtained samples {θ(j)

K : j ∈ [J ]} to define the
predictor p̃C(y∗ | x∗) = 1

J

∑J
j=1 p(y

∗ | f
θ
(j)
K

(x∗)).

Algorithm 1 Approximate inference for the constrained
posterior.

Require: Training and adaptation samples (Dtr,Dad), loss
`, prior π(dθ), K, ρ, εn, εb > 0, {η̄k : k ∈ [K]}

Ensure: Approximate sample θK ∼ p̃C ≈ pC
1: initialize θ0 using e.g., ERM on Dtr . proper choices

for (ρ, ε) will ensure θ0 ∈ Ctr
2: for k ← 1, . . . ,K do
3: draw zk ∼ N (0, I)
4: gk ← ∇θ

∑n∗
i=1 `(y

∗
i , fθ(x

∗
i ))|θ=θk−1

5: θk ← θk−1 − ηkgk +
√

2ηkzk, where ηk ∈ [0, η̄k]
is the largest number s.t. θk ∈ Ctr . ηk is determined
(up to an error of εb) using binary search

6: end for
7: return θK

Intuitively, the algorithm can be viewed as simulating a
reflected Langevin equation [Lions and Sznitman, 1984,
Bubeck et al., 2018], which is the constrained counterpart to
the standard Langevin dynamics. Note that refined numer-
ical schemes exist if we can compute the boundary of Ctr
efficiently [Bubeck et al., 2018, Sato et al., 2022], which is
possible in settings like linear models with a convex `. Alter-
native constraint sampling algorithms, such as Zhang et al.
[2022], can also be utilized; we opt for algorithm 1 merely
for its simplicity. If needed, we can improve its computa-
tional efficiency through standard means, by introducing
preconditioning, stochastic gradients, or by replacing the
training set with a uniformly random or curated subset [e.g.,
Bachem et al., 2017].

4 THEORETICAL ANALYSIS

We have motivated our method by connecting it to a re-
laxation of GDRO, and by considering its small-sample
behavior in simple settings. We now provide further jus-
tifications, by showing that on a family of linear models,
constrained modeling in general can improve the sample
efficiency even when the adaptation sample size is large.

Analysis setup We consider a regression setup with data
generated as follows:

β̄espu ∼ N (0, d−1
spuI), xei = M

[
xeinv,i
xespu,i

]
∼ N (0, I),

yei ∼ N (β̄>invx
e
inv,i + (β̄espu)>xespu,i, σ

2
y). (3)

In the above, e ∈ Etr indexes the training domain, β̄inv
is an arbitrary, fixed vector with norm O(1), xeinv,i ∈
Rdinv ,xespu,i ∈ Rdspu are the invariant and spurious fea-
tures, and M is a mixing matrix assumed to be invertible
and well-conditioned. Test data (x∗,y∗) is generated sim-
ilarly using β̄∗spu in place of β̄espu, which we assume is an
arbitrary, fixed vector. We use the square loss `(s, t) =
(s − t)2, and assume access to infinite training samples
for simplicity. The invariant predictor is parameterized by
θ̄inv = M−>(β̄inv, 0).

As discussed in Section 2, on similar linear problems, identi-
fication of θ̄inv may require m = O(d) domains. To under-
stand the necessity on this setup, observe that when m� d,
the vectors {β̄espu : e ∈ Etr} are approximately orthonormal
[Wainwright, 2019, Ch. 6], and that when they are exactly or-
thonormal, ERM and GRO will both identify the parameter
θ̃ = M−>(β̄inv,

1
m

∑
e∈Etr β̄

e
spu) which leads to

Re(θ̃) ≡ σ2 +
m− 1

m
≤ σ2 + 1 ≡ Re(θ̄inv), ∀e ∈ Etr.

(IRM) learns the same fθ̃, which can fulfill its constraint
using Φ(x) = (β̄>invM

−1x, 1
m

∑
e∈Etr (β̄

e
spu)>M−1x). By

the arbitrariness of β̄∗spu, the predictor fθ̃ may incur an
arbitrarily high error on new environments.

Improved convergence of a constrained estimator We
now present our analysis. For technical simplicity, we study
a constrained point estimator:

θ̂ := arg min
θ∈Ctr∩Θ

n∗∑
i=1

`(y∗i , θ
>x∗i ),where Θ := {θ : ‖θ‖2 ≤ U}

parameterizes our hypothesis space, and U > ‖M‖−1 is a
constant. We then have the following:

Proposition 2. Suppose the data is generated as as above,
β̄∗spu ∈ Rdspu be arbitrary, and θ̂ is defined as above. Let
f̄∗ be the Bayes predictor on the test domain. Then there
exist universal constants c1, c2, c3 > 0 s.t. when n∗ ≥ 3d
we have, with probability ≥ 1− n−9

∗ ,

R∗(fθ̂)−R∗(f̄
∗) ≤ c1 inf

θ′∈Θ∩Ctr
(R∗(fθ′)−R∗(f̄∗)) + ε2n∗

≤ c1(R∗(fθ̄inv )−R∗(f̄∗)) + ε2n∗ ,

where ε2n = c2
σydinv + log n∗

n∗
+

c3σy min

{√
dspu logm

n∗m
,

2−m/dspudspu
n∗

}
.
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Proof. The full proof is in supplementary material. Its main
idea is that for any θ = M−>(βi, βs) with βs 6= 0, we have

PDtr (θ ∈ Ctr) ≤ min{e−mdspu‖βs‖
2
2 , 2−m}.

This allows us to derive high-probability bounds on the
reduced complexity of Θ ∩ Ctr.

Proposition 2 establishes an oracle inequality, which allows
us to compare the performance of the constrained estimator
with the invariant predictor. At the claimed probability, the
unconstrained maxmimum likelihood estimate (MLE) that
does not utilize training data achieves an estimation error of

ε′2n = c4
σy(dinv + dspu) + log n

n
.

Therefore, we can see that the constrained formulation (at
least) improves the efficiency in estimating the spurious
component of the model. The improvement is most interest-
ing when dspu � dinv; in particular, observe that

(i) When n∗ � dspu, unconstrained MLE will fail to
converge as we have ε′n � 1. In contrast, the con-
strained estimator satisfies ε2n = Õ(m−1/2). This is
useful on high-dimensional problems when we only
have a moderate number of environments, i.e., when
1 � m � dspu: given the previous discussion on
IRM and GDRO, we can see that using neither the
training or adaptation samples alone cannot guaran-
tee convergence in this regime, which demonstrates
the efficacy of constrained modeling.

(ii) Even as n∗ � dspu becomes larger, the training
data still remains useful, as it improved the estima-
tion error for the spurious component by a factor
of 2−m/dspu . When m/dspu is small, the expansion
2−m/dspudspu ≈ (1−m/dspu log 2)dspu shows that
each environment roughly removes one “degree of
freedom” from the adaptation process.

Our choice to analyze high-dimensional linear problems
follows previous works in this area [e.g., Arjovsky et al.,
2019, Sagawa et al., 2020b, Rosenfeld et al., 2021]. The
linear setup is also justified by the observation that the last
layer of DNN models often retain sufficient information
about the invariant features [Kirichenko et al., 2022], even
though our algorithm is not restricted to linear models. The
regression setup is adapted from Arjovsky et al. [2019];
our assumption of i.i.d. training environment is stronger.
However, our setup remains non-trivial, as existing domain
generalization approaches still underperform the invariant
predictor by a notable margin. (Also note that we did not
impose any restrictions on the test environment.) It may
be possible to demonstrate similar sample efficiency gains
in other scenarios, but they need to be established on a
case-by-case basis. Another limitation is that for simplicity,
we did not analyze the efficiency gain in estimating the
invariant component; numerical simulations will provide a
more complete understanding on the benefits of our method.

5 RELATED WORK

Our work is motivated by the practical need of deploying
machine learning models to OOD environments, given data
from a small collection of training environments and as-
suming the presence of spurious correlations. Our setup is
thus connected to, but different from, a few lines of works
on spurious correlations and/or transfer learning; given the
vast literature, we refer readers to Wilson and Cook [2020],
Wang et al. [2022], Jiang et al. [2022] for a detailed review.
Comparing with most works on spurious correlations, we do
not assume the training data contains sufficient information
for learning an invariant predictor, a common situation as
discussed in Section 2. Comparing with the transfer learning
literature, we have a specific focus on spurious correlations,
as is also noted in Kirichenko et al. [2022].

The recent works of Kirichenko et al. [2022], Ye et al.
[2022], Lee et al. [2022] operate in a similar underspec-
ified setting and also utilize adaptation samples, but all of
them assume a single training environment. We have demon-
strated how environment annotations can be utilized to im-
prove adaptation performance. Empirically, our method also
outperforms the adaptation procedures in Kirichenko et al.
[2022], Lee et al. [2022] in a multi-environment setup (sec-
tion 6.2). Still, our general idea may also be interesting for
single-environment problems, for which we may define con-
straints using alternative characterizations for the invariant
predictor (e.g., as in IRM) to address the issue of possible
performance gaps. It may be interesting for future work
to combine the development in Ye et al. [2022], Lee et al.
[2022] with our framework.

Lin et al. [2022], Lee et al. [2022] have investigated uncer-
tainty modeling for OOD generalization and are broadly
related to our work in this aspect, but both have a different
focus: Lin et al. [2022] on finite-sample estimation error
of the IRM objective, and Lee et al. [2022] on the compu-
tational cost of Bayesian inference. As such, neither work
addresses the issue of potential performance gaps between
the invariant and non-invariant predictors, which, as we
have discussed in Section 3.1, requires a careful treatment.
Finally, Wald et al. [2023] studied OOD learning in the pres-
ence of similar performance gaps, but focused on scenarios
where the invariant predictor is identifiable by alternative
strategies (e.g., by matching the class-conditional distribu-
tions of features across environments). As we discussed in
Section 2, identifiability is not always a realistic assumption.

6 EXPERIMENTS

In this section we evaluate our method empirically, on syn-
thetic data, benchmark datasets and a real-world application.
Code for the experiments can be found at https:
//gitee.com/mindspore/models/tree/
master/research/cv/ConstrainedBayesian.
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Figure 1: Synthetic experiment: test error vs. adaptation sample size for classification and regression. We report the median
and (20th, 80th) percentile across 32 independently sampled adaptation sets. Plots are slightly shifted for visibility.

6.1 SYNTHETIC EXPERIMENTS

For the synthetic experiments, we consider the classification
setup in Example 1 and the regression setup in Section 4.

Experiment setup The data generating processes are in-
stantiated as follows: we set σi = 7.5, σs = 3, τs = 1 for
classification, and σy = 0.5 for regression. For both sets of
experiments we use m = 3, ne = 6000, dinv = 20, dspu =
50, β̄inv ∼ N (0, 4σ2

vI), and β̄∗spu := 1
2m

∑
e∈Etr β̄

e
spu.

The supplementary material includes additional experiments
covering different parameters and choices of β̄∗spu.

We employ a Bayesian linear model with a Gaussian prior;
the prior variance is set to match the norm of the empirical
risk minimizer. We use a correctly specified likelihood, i.e.,
normal for regression and logistic for classification. For our
method, We define the constraint set using the 0/1 loss for
classification and the square loss for regression, and set ρ+
εn := maxe∈Etr R̂e(θ̄inv) + δ, where δ ∈ {0.05, 0.1, 0.4}
models our imprecise knowledge about Re(θ̄inv).

We compare our method (CBLR-δ) to the following:

• BLR: Bayesian inference using the same Gaussian prior,
and only the adaptation samples for the likelihood.

• BLR-LC: the (generalized) Bayesian approach discussed
in Section 3.1. The method involves scaling the empirical
risk by a factor N ; in the text we consider N := ne,
which corresponds to standard Bayesian modeling, and
N := n∗, a heuristic that may allow for faster adaptation.

• BLR-Prior-α: another heuristic approach that replaces
the prior mean with the empirical risk minimizer θ̂ERM
on training data, and scales the prior variance by α−2.

For all baselines, we run Metropolis-adjusted Langevin al-
gorithm (MALA) using 104 iterations and 50 parallel chains.
Based on the MALA acceptance rate, we set the step-size
to η̄k,u ≡ 0.016/n∗. For our method we set the step-size
upper bound to η̄k := η̄k,u/4 and use 4 × 104 iterations.
The Markov chains are initialized at θ̂ERM for our method
and BLR-Prior, and the minimizer of an interpolated em-
pirical risk for BLR-LC. We also report the performance of
θ̂ERM for reference.

Results and discussion The results are plotted in fig. 1.
Our method demonstrates competitive performance across
all choices of adaptation sample size, and is reasonably
insensitive to the choice of the performance bound hyperpa-
rameter. All baselines have less reliable performance: BLR
perform notably worse when n∗ is small. Adaptation of the
standard posterior (BLR-LC-N_train) is extremely slow
since we have n∗ � ne, in line with our discussion in Sec-
tion 3.1. With the heuristic scaling in BLR-LC-N_adapt,
the performance becomes better at moderate sample sizes,
but still not as good at smaller or larger n∗; the former
is because the variance of the adaptation likelihood domi-
nates, and the latter may be related to an asymptotic bias.
BLR-Prior demonstrates generally worse performance
with α = 3. The supplementary material includes results for
additional choices of α, which are omitted from fig. 1 for
visibility. We find that a larger α improves the performance
on regression, but at a significant cost for classification per-
formance.

Importantly, none of the baselines consistently match the
performance of our method, across both problems and all
choices of n∗. Moreover, they involve hyperparameters that
are difficult to determine a priori, in contrast to our method
where the hyperparameter ρ has a clear interpretation. Also
note that only our method has the appealing property of
never underperforming the ERM baseline.

6.2 BENCHMARK DATASETS

We now turn to two datasets adapted from the DomainBed
benchmark [Gulrajani and Lopez-Paz, 2020]: Colored
MNIST [Arjovsky et al., 2019] and PACS [Li et al., 2017].

Background and setup The PACS dataset consists of
9991 images from 4 domains and 7 categories, with im-
ages from different domains having different stylistic fea-
tures. The Colored MNIST dataset is defined as follows: let
(x̄e,i, ȳe,i) ∈ R784 × {0, . . . , 9} be a MNIST sample, and
sample yei := 1{ȳe,i < 5}⊕Bern(α), cei := yei⊕Bern(βe),
where βe ∈ {0.1, 0.2, 0.9} depends on the environment,
and ⊕ denotes the XOR operation. The input xei is obtained
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by coloring x̄e,i to green or red based on cei . The original
dataset Arjovsky et al. [2019] uses α := 0.25, implying
an accuracy of 75% for the invariant predictor. As we are
interested in scenarios where the invariant predictor is more
performant, we use a modified value of α := 0.1. We note
the different natures of the two datasets: by construction, on
Colored MNIST there is an unavoidable trade-off between
the in-distribution and test performance, whereas on PACS
there may exist an invariant predictor with near-perfect ac-
curacy, even though its recovery can still be hindered by the
inductive bias of a neural network model.

We compare the proposed method with BLR and BLR-LC
baselines in the preceding section, as well as the DivDis
method by Lee et al. [2022]. DivDis builds a finite collec-
tion of candidate predictors based on a diversity criterion,
and selects the predictor with the best performance on the
adaptation samples. All adaptation algorithms are applied
to the last linear layer of a ConvNet model, which is ini-
tialized at the ERM. Note this is not a limitation of our
algorithm (or the baselines), but is adopted for simplicity;
still, this strategy is also advocated by recent works such as
Kirichenko et al. [2022], and the BLR baseline recovers the
procedure in their work.

Contrary to many applications, on these datasets it is un-
clear whether there exists a near-perfect invariant predic-
tor within our hypothesis space. In such scenarios, it is
not necessarily reasonable to assume good prior knowl-
edge of a performance lower bound for the (best) invari-
ant predictor. Therefore, to ensure a realistic setup, we de-
termine the lower bound hyperparameter in our method
based on the ERM, using a possibly misspecified choice
of ρ + εn := maxe∈Etr R̂e(θ̂ERM ) + δ. We report the re-
sults for δ = 0.1 in the main text and defer the results for
alternative choices to the appendix.

We use the ConvNet architecture in Gulrajani and Lopez-
Paz [2020] and follow the training protocol therein. The
number of learnable parameters is thus (1024 + 1)× 2 for
Colored MNIST, and (2048 + 1) × 7 for PACS. For the
DivDis baseline, we implement the method on the same
adaptation samples, using 50 predictor heads; we vary its
hyperparameters (λmi, λreg) ∈ {0.1, 1.0, 10} and report
the configuration with the best test accuracy. The rest of the
setup largely follows the preceding section and are deferred
to the appendix.

Results and discussion For space reasons, we only report
aggregated results in the text, deferring full results to the sup-
plementary material. Table 1-2 present the average accuracy
across environments, as well as a pessimistic performance
estimate that provides intuition on unfavorable scenarios;
the latter can be particularly important for domain gener-
alization applications [Eastwood et al., 2022]. As we can
see, our method demonstrates excellent performance across
all settings. In contrast, BLR has unstable performance at

Table 1: Average accuracy and a lower estimate of perfor-
mance on the modified Colored MNIST dataset; the latter is
defined as the 20th percentile of accuracy across 20 repli-
cations, for the worst train/test environment split. CBLR
denotes the proposed method.

n∗ 0 (ERM) 4 8 16 32

BLR

82.4 / 71.5

82.5 / 75.2 85.7 / 80.9 87.4 / 85.4 88.3 / 86.3
BLR-LC-Nadapt 85.6 / 80.5 86.3 / 82.9 86.9 / 83.9 87.2 / 84.8
BLR-LC-Ntrain 81.7 / 67.9 81.9 / 68.3 82.4 / 70.1 83.1 / 72.7

DivDis 82.3 / 70.7 82.3 / 70.6 82.3 / 70.7 82.3 / 70.7
CBLR 85.7 / 81.5 87.0 / 85.0 87.6 / 86.8 88.1 / 86.7

Table 2: Average accuracy and a lower estimate of perfor-
mance on PACS. The latter is defined as in Table 1.

n∗ 0 (ERM) 16 32 64 256

BLR

83.2 / 72.6

83.8 / 70.1 86.8 / 76.4 88.3 / 79.4 89.4 / 80.6
BLR-LC-Nadapt 86.8 / 77.8 86.6 / 76.4 87.2 / 77.6 87.1 / 77.2
BLR-LC-Ntrain 85.0 / 76.1 85.1 / 75.9 85.2 / 75.5 85.6 / 76.9

DivDis 85.0 / 77.6 84.8 / 77.1 84.8 / 76.8 85.0 / 76.9
CBLR 86.4 / 77.6 87.4 / 78.6 88.4 / 79.9 90.3 / 83.7

small sample sizes, and BLR-LC becomes less competitive
as sample size increases, which is consistent with the syn-
thetic experiments. DivDis is generally less competitive
on the modified Colored MNIST dataset, and on PACS at
larger sample sizes, indicating insufficient coverage of its
candidate solution set. A possible reason is that DivDis
does not account for the performance gap between the in-
variant and non-invariant predictors, which is notably larger
on Colored MNIST. However, its performance may also be
improved if a larger number of unlabeled test samples are
available and can be selectively labeled, as is done in the
experiments of Lee et al. [2022].

On both datasets, there is a rapid improvement over the
ERM baseline after a handful of adaptation samples, which
is important because ERM is a strong baseline on these
benchmarks, having outperformed all algorithms tested in
Gulrajani and Lopez-Paz [2020]. We note the slower im-
provement of worst-case performance for PACS is because
one domain exhibits significant label shift, which is gen-
erally at odds with the assumption that invariant predictor
exists [Arjovsky et al., 2019]. It is in principle possible to
adapt our method to label shift scenarios, by redefining the
constraint set to use a reweighted accuracy, but we will not
explore this for simplicity.

6.3 REAL-WORLD EXPERIMENT

Finally, we illustrate our method on a real-world application
of out-of-distribution prediction.

Background and setup The task concerns the classifica-
tion of acoustic array data, which are spatio-temporal signals
that can be viewed as images. The input consists of certain
“primary signals” that induce approximately invariant condi-
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tionals, superimposed with environment-specific responses.
The latter induce spurious correlations and are consistently
picked up by ConvNet models. There are 4 classes; we have
data from 4 environments, each with ne ∼ 105 samples.
Domain knowledge suggests that on class-balanced data, an
invariant classifier should have an error rate lower than 5%.

Past experiments suggest that the training data do not con-
tain sufficient information to guarantee OOD generalization:
in leave-one-domain-out evaluation, a generalization gap of
up to 20% shows up, and off-the-shelf algorithms includ-
ing IRM, GDRO and domain-adversarial training all fail
to improve over ERM. Thus, test-time adaptation appears
necessary.

The experiment setup largely follows the last subsection:
we perform adaptation on the last linear layer, and conduct
leave-one-domain-out evaluation with repeatedly sampled
adaptation sets. We set ρ = 0.05. Due to the large training
sample size, we subsample 103 samples from each envi-
ronment in defining our constraint set, and set εn accord-
ingly. (We find that the result is generally insensitive to
ρ+ εn ∈ [0.03, 0.1].) We compare with BLR and BLR-LC.
For the latter, we experiment with scaling the training loss
using a factor of N ∈ {1, 2, 4, 8} × 100, and provide an
optimistic estimate for its performance by setting N based
on test performance.

Table 3: Results for Section 6.3. For each train/test domain
split, we report the mean and standard deviation of test accu-
racy across 20 trials. LB denotes an estimate of performance
in unfavorable scenarios, defined as in Table 1.

e∗ n∗ (ERM) 20 80 320

1
BLR

81.9
83.5 ±1.3 91.3 ±0.7 94.1 ±0.3

BLR-LC 86.9 ±1.7 91.3 ±0.9 93.6 ±0.3

CBLR 86.7 ±1.4 91.7 ±0.5 93.9 ±0.2

2
BLR

83.1
85.6 ±2.5 91.1 ±1.3 93.3 ±0.1

BLR-LC 89.2 ±0.2 92.4 ±0.6 93.8 ±0.1

CBLR 89.2 ±0.1 92.1 ±0.1 93.9 ±0.1

3
BLR

92.6
91.9 ±1.3 92.8 ±1.1 95.3 ±0.1

BLR-LC 93.2 ±0.1 94.8 ±0.1 95.5 ±0.1

CBLR 94.0 ±0.1 95.0 ±0.1 95.7 ±0.1

4
BLR

82.5
88.9 ±1.8 92.8 ±1.1 96.0 ±0.3

BLR-LC 87.8 ±1.1 92.6 ±0.8 96.3 ±0.5

CBLR 86.2 ±1.3 92.4 ±1.3 96.3 ±0.2

LB
BLR

81.9
82.4 90.0 93.2

BLR-LC 85.4 90.5 93.4
CBLR 85.1 91.3 93.7

Results and discussion The results are shown in Table 3.
As we can see, test-time adaptation delivers significant im-
provements over the ERM baseline, which has not been
possible in the past experiments with domain generalization
algorithms. Our method and BLR-LC has similar perfor-
mance, whereas BLR has less stable performance at smaller

sample sizes. Our method can be preferable, because its hy-
perparameter can be easily determined using domain knowl-
edge in a principled way.

7 CONCLUSION

In this work we study the problem of adaptation to distribu-
tion shift, given a small collection of training environments
and a handful of test samples. We reveal a pathological
behavior of the standard Bayesian posterior and address
it with a constrained Bayesian formulation. We prove that
constrained modeling may lead to sample efficiency gains in
certain settings, and demonstrate the robust performance of
our method on synthetic, benchmark and real-world tasks.

Our work addresses OOD prediction in the underidentified
regime, which can be inherently challenging. It is thus neces-
sary to introduce additional information or assumptions. We
note our core assumptions: the existence of an invariant pre-
dictor, some knowledge about its performance, and access
to adaptation samples. While these assumptions are satisfied
in many problems and can be relaxed to various extents,
there are inevitably scenarios where alternative assumptions
are more appropriate. It would be interesting future work to
study adaptation and uncertainty modeling in such settings.
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