On the Role of Generalization in Transferability of Adversarial Examples (Supplementary Material)

Yilin Wang¹

Farzan Farnia¹

¹ Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR

A PROOFS

A.1 PROOF OF PROPOSITION 1

To prove the proposition, note that the optimization problem for λ -optimal adversarial attack scheme can be written as

$$\max_{\delta:\mathcal{X}\times\mathcal{Y}\to\mathbb{R}^d} \mathbb{E}\bigg[\ell\big(h_{\mathbf{w}}(\mathbf{X}+\delta(\mathbf{X},Y)),Y\big)-\frac{\lambda}{2}\|\delta(\mathbf{X},Y)\|^2\bigg].$$

We observe that the above optimization problem decouples into separate problems for every (\mathbf{x}, y) , and hence $\delta^*(\mathbf{x}, y)$ is the optimal solution to the following optimization problem

$$\max_{\boldsymbol{\delta} \in \mathbb{R}^d} \ \ell \big(h_{\mathbf{w}}(\mathbf{x} + \boldsymbol{\delta}), y \big) - \frac{\lambda}{2} \| \boldsymbol{\delta} \|^2.$$

Since $l \circ h_w$ is assumed to be λ -smooth in x, the objective function in the above optimization problem is a concave function of δ . This is because the Hessian of the above objective function will be negative semi-definite as

$$\nabla_{\boldsymbol{\delta}}^{2} \left[\ell \left(h_{\mathbf{w}}(\mathbf{x} + \boldsymbol{\delta}), y \right) - \frac{\lambda}{2} \| \boldsymbol{\delta} \|^{2} \right] = \nabla_{\boldsymbol{\delta}}^{2} \ell \left(h_{\mathbf{w}}(\mathbf{x} + \boldsymbol{\delta}), y \right) - \lambda I_{d \times d} \preceq \mathbf{0}.$$
(1)

Therefore, applying the first-order necessary condition implies that a globally optimal solution $\delta^*(\mathbf{x}, y)$ to the above concave objective function will be the solution to

$$\nabla_{\mathbf{x}}\ell(h_{\mathbf{w}}(\mathbf{x}+\delta^*(\mathbf{x},y)),y)-\lambda\delta^*(\mathbf{x},y)=\mathbf{0}.$$

The above necessary and sufficient condition for $\delta^*(\mathbf{x}, y)$ can be rewritten as:

$$(\mathbf{x} + \delta^*(\mathbf{x}, y)) - \frac{1}{\lambda} \nabla_{\mathbf{x}} \ell (h_{\mathbf{w}}(\mathbf{x} + \delta^*(\mathbf{x}, y)), y) = \mathbf{x}.$$

Note that this condition is equivalent to the following equation which completes the proof:

$$\delta^*(\mathbf{x}, y) = \left(\mathrm{Id}_{\mathbf{x}} - \frac{1}{\lambda} \nabla_{\mathbf{x}} \ell \circ h_{\mathbf{w}} \right)^{-1} (\mathbf{x}) - \mathbf{x}.$$

A.2 PROOF OF THEOREM 1

Assumption 1. Loss function $\ell(y, y')$ is a c-bounded, 1-Lipschitz, and 1-smooth function of the input y, i.e. for every $y_1, y_2, y' \in \mathcal{Y}$ we have $|\ell(y_1, y')| \leq c$, $|\ell(y_1, y') - \ell(y_2, y')| \leq ||y_1 - y_2||_2$, and $||\nabla_y \ell(y_1, y') - \nabla_y \ell(y_2, y')||_2 \leq ||y_1 - y_2||_2$.

Assumption 2. The set of substitute DNNs in the black-box attack scheme $\mathcal{H}_{\mathcal{W}} = \{h_{\mathbf{w}} : \mathbf{w} \in \mathcal{W}\}$ contains *L*layer neural networks $h_{\mathbf{w}}(\mathbf{x}) = W_L \phi_L (W_{L-1} \phi_{L-1} (\cdots W_1 \phi_1 (W_0 \mathbf{x}) \cdot))$. We suppose that the dimensions of matrices W_0, \ldots, W_k is bounded by *D*, and assume every activation ϕ_i satisfies $\phi_i(0) = 0$ and is γ_i -Lipschitz and γ_i -smooth, *i.e.* $\max\{|\phi_i'(z)|, |\phi_i''(z)|\} \leq \gamma_i$ holds for every $z \in \mathbb{R}$.

Assumption 3. The class of target classifiers $\mathcal{F}_{\mathcal{V}} = \{f_{\mathbf{v}} : \mathbf{v} \in \mathcal{V}\}$ consists of K-layer neural network functions $f_{\mathbf{v}}(\mathbf{x}) = V_K \psi_L (V_{L-1}\psi_{L-1}(\cdots V_1\psi_1(V_0\mathbf{x})\cdot))$ with activation function ψ_i 's. We suppose that the dimensions of matrices V_0, \ldots, V_k is bounded by D. Also, we assume every ψ_i satisfies $\psi_i(0) = 0$ and is ξ_i -Lipschitz, i.e. $\max_z |\psi'_i(z)| \leq \xi_i$. Also, we define the capacity $R_{\mathcal{V}}$ as

$$R_{\mathcal{V}} := \sup_{\mathbf{v}\in\mathcal{V}} \left\{ \left(\prod_{i=0}^{K} \xi_{i} \|V_{i}\|_{2}\right) \left(\sum_{i=0}^{K} \frac{\|V_{i}^{\top}\|_{2,1}^{2/3}}{\|V_{i}\|_{2}^{2/3}}\right)^{3/2} \right\}.$$

To show Theorem 1, we first present the following lemmas.

Lemma 1 ([Farnia et al., 2018], Lemma 7). Under Assumptions 1, 2, the substitute neural network's loss function $\ell(h_{\mathbf{w}}(\mathbf{x}), y)$ is κ -smooth in input vector \mathbf{x} , i.e its gradient with respect to \mathbf{x} is κ -Lipschitz and satisfies

$$\forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}, y \in \mathcal{Y}: \quad \left\| \nabla_{\mathbf{x}} \ell \left(h_{\mathbf{w}}(\mathbf{x}), y \right) - \nabla_{\mathbf{x}} \ell \left(h_{\mathbf{w}}(\mathbf{x}'), y \right) \right\| \le \kappa \|\mathbf{x} - \mathbf{x}'\|,$$

where $\kappa = \left(\sum_{i=0}^{L} \prod_{j=0}^{i} \gamma_{j} \|W_{j}\|\right) \left(\prod_{i=0}^{L} \gamma_{i} \|W_{i}\|\right).$

Lemma 2. Under Theorem 1's assumptions, the λ -optimal attack scheme $\delta_{\mathbf{w}}^* : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^d$ satisfies the following output norm constraint for every $(\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y}$:

$$\left\|\delta_{\mathbf{w}}^*(\mathbf{x}, y)\right\| \leq \frac{\prod_{i=0}^L \gamma_i \|W_i\|_2}{\lambda} = \frac{L_{\mathbf{w}}}{\lambda}.$$

Proof. Note that since $\lambda > \left(\sum_{i=0}^{L} \prod_{j=0}^{i} \gamma_{j} ||W_{j}||_{2}\right) \prod_{i=0}^{L} \gamma_{i} ||W_{i}||_{2}$ holds according to Theorem 1's assumptions, the smoothness condition of Proposition **??** will hold according to Lemma 1. As a result, we have

$$\delta^*_{\mathbf{w}}(\mathbf{x}, y) = \frac{1}{\lambda} \nabla_{\mathbf{x}} \ell \big(h_{\mathbf{w}}(\mathbf{x} + \delta^*_{\mathbf{w}}(\mathbf{x}, y)), y \big).$$

Therefore,

$$\left\|\delta_{\mathbf{w}}^{*}(\mathbf{x}, y)\right\| \leq \frac{\|\nabla_{\mathbf{x}}\ell\left(h_{\mathbf{w}}(\mathbf{x} + \delta_{\mathbf{w}}^{*}(\mathbf{x}, y)), y\right)\|}{\lambda} \leq \frac{\prod_{i=0}^{L} \gamma_{i} \|W_{i}\|_{2}}{\lambda}$$

The final inequality follows from the Lipschitz coefficient of DNN function h_w which is the composition of linear transformation W_i 's (with Lipschitz constant $||W_i||_2$) and activation non-linearity ϕ_i 's (with Lipschitz constant γ_i). Therefore, the proof is complete.

Lemma 3. Under Assumption 2, the substitute neural network $h_{\mathbf{w}}$'s gradient satisfies the following error bound under a perturbation matrix Δ_k with L_2 -operator norm $\|\Delta_k\|_2 \leq t$ to wight matrix W_k , where we define $\widetilde{\mathbf{w}} = \text{vec}(W_0, \ldots, W_{k-1}, W_k + \Delta_k, W_{k+1}, \ldots, W_L)$:

$$\left\|\nabla_{\mathbf{x}} h_{\mathbf{w}}(\mathbf{x}) - \nabla_{\mathbf{x}} h_{\widetilde{\mathbf{w}}}(\mathbf{x})\right\| \leq \frac{L_{\mathbf{w}} \sum_{i=k}^{L} \prod_{j=0}^{i} \gamma_{j} \|W_{j}\|}{\|W_{k}\|_{2}} \|\Delta_{k}\|_{2}$$

Proof. Note that the neural network's Jacobian with respect to the input follows from:

$$\mathbf{J}_{h_{\mathbf{w}}}(\mathbf{x}) = \prod_{i=0}^{L} W_i^{\top} \operatorname{diag} \left(\phi_i'(h_{\mathbf{w}_{0:i}}(\mathbf{x})) \right).$$

In the above, $h_{\mathbf{w}_{0:i}}(\mathbf{x})$ denotes the neural net's output at layer *i*. Therefore, for $\tilde{\mathbf{w}}$ which is different from \mathbf{w} only at layer *k* we will have:

$$\left\| \mathbf{J}_{h_{\mathbf{w}}}(\mathbf{x}) - \mathbf{J}_{h_{\widetilde{\mathbf{w}}}}(\mathbf{x}) \right\|_{2} \leq \sum_{i=k}^{L} \left[\left(\prod_{j=0}^{L} \gamma_{j} \| W_{j} \|_{2} \right) \left(\prod_{j=0}^{i} \gamma_{j} \| W_{j} \|_{2} \right) \right] \frac{\| \Delta_{k} \|_{2}}{\| W_{k} \|_{2}}$$

$$= \left(\prod_{j=0}^{L} \gamma_{j} \|W_{j}\|_{2}\right) \sum_{i=k}^{L} \left[\prod_{j=0}^{i} \gamma_{j} \|W_{j}\|_{2}\right] \frac{\|\Delta_{k}\|_{2}}{\|W_{k}\|_{2}}$$
$$= \frac{L_{\mathbf{w}} \sum_{i=k}^{L} \prod_{j=0}^{i} \gamma_{j} \|W_{j}\|}{\|W_{k}\|_{2}} \|\Delta_{k}\|_{2}.$$

The proof is hence finished.

Lemma 4. Under Theorem 1's assumptions, the λ -optimal attack scheme $\delta_{\mathbf{w}}^* : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^d$ satisfies the following error bound under a norm-bounded perturbation $\Delta_k : \|\Delta_k\|_2 \leq t$: to wight matrix W_k where we define $\widetilde{\mathbf{w}} = \operatorname{vec}(W_0, \ldots, W_{k-1}, W_k + \Delta_j, W_{k+1}, \ldots, W_L)$:

$$\left\|\delta_{\mathbf{w}}^{*}(\mathbf{x}, y) - \delta_{\widetilde{\mathbf{w}}}^{*}(\mathbf{x}, y)\right\| \leq \frac{L_{\mathbf{w}} \sum_{i=k}^{L} \prod_{j=0}^{i} \gamma_{j} \|W_{j}\|}{\tau \lambda \|W_{k}\|_{2}} \|\Delta_{k}\|_{2}$$

Proof. Since $\lambda > \left(\sum_{i=0}^{L} \prod_{j=0}^{i} \gamma_{j} \|W_{j}\|_{2}\right) \prod_{i=0}^{L} \gamma_{i} \|W_{i}\|_{2}$ follows from Theorem 1's assumption, Proposition ?? will hold according to Lemma 1 and implies that

$$\delta^*_{\mathbf{w}}(\mathbf{x},y) = \frac{1}{\lambda} \nabla_{\mathbf{x}} \ell \left(h_{\mathbf{w}}(\mathbf{x} + \delta^*_{\mathbf{w}}(\mathbf{x},y)), y \right)$$

As a result,

$$\begin{split} \left\| \delta_{\mathbf{w}}^{*}(\mathbf{x}, y) - \delta_{\mathbf{\widetilde{w}}}^{*}(\mathbf{x}, y) \right\| \\ &= \frac{1}{\lambda} \left\| \nabla_{\mathbf{x}} \ell \left(h_{\mathbf{w}}(\mathbf{x} + \delta_{\mathbf{w}}^{*}(\mathbf{x}, y)), y \right) - \nabla_{\mathbf{x}} \ell \left(h_{\mathbf{\widetilde{w}}}(\mathbf{x} + \delta_{\mathbf{\widetilde{w}}}^{*}(\mathbf{x}, y)), y \right) \right\| \\ &\leq \frac{1}{\lambda} \left\| \nabla_{\mathbf{x}} \ell \left(h_{\mathbf{w}}(\mathbf{x} + \delta_{\mathbf{w}}^{*}(\mathbf{x}, y)), y \right) - \nabla_{\mathbf{x}} \ell \left(h_{\mathbf{w}}(\mathbf{x} + \delta_{\mathbf{\widetilde{w}}}^{*}(\mathbf{x}, y)), y \right) \right\| \\ &\quad + \frac{1}{\lambda} \left\| \nabla_{\mathbf{x}} \ell \left(h_{\mathbf{w}}(\mathbf{x} + \delta_{\mathbf{\widetilde{w}}}^{*}(\mathbf{x}, y)), y \right) - \nabla_{\mathbf{x}} \ell \left(h_{\mathbf{\widetilde{w}}}(\mathbf{x} + \delta_{\mathbf{\widetilde{w}}}^{*}(\mathbf{x}, y)), y \right) \right\| \\ &\quad \left\| \sum_{i=1}^{(a)} \frac{1}{\lambda} \| \nabla_{\mathbf{x}} \ell \left(h_{\mathbf{w}}(\mathbf{x} + \delta_{\mathbf{\widetilde{w}}}^{*}(\mathbf{x}, y)) + \frac{1}{\nabla_{\mathbf{x}} \ell} \left(h_{\mathbf{\widetilde{w}}}(\mathbf{x} + \delta_{\mathbf{\widetilde{w}}}^{*}(\mathbf{x}, y)), y \right) - \nabla_{\mathbf{x}} \ell \left(h_{\mathbf{\widetilde{w}}}(\mathbf{x} + \delta_{\mathbf{\widetilde{w}}}^{*}(\mathbf{x}, y)), y \right) \right\| \\ &\leq \frac{1}{\lambda} \left\| \sum_{i=0}^{(a)} \frac{1}{\lambda} \| \delta_{\mathbf{w}}^{*}(\mathbf{x}, y) - \delta_{\mathbf{\widetilde{w}}}^{*}(\mathbf{x}, y) + \frac{1}{\lambda} \frac{1}{W_{k}} \sum_{i=1}^{(a)} \frac{1}{\lambda} \| W_{k} \|_{2}}{\lambda \| W_{k} \|_{2}} \| \Delta_{k} \|_{2} \\ &\leq \frac{1}{(1-\tau)} \left\| \delta_{\mathbf{w}}^{*}(\mathbf{x}, y) - \delta_{\mathbf{\widetilde{w}}}^{*}(\mathbf{x}, y) \right\| + \frac{1}{2} \frac{1}{W_{i}} \sum_{i=1}^{(a)} \frac{1}{\lambda} \| W_{i} \|_{2}}{\lambda \| W_{k} \|_{2}} \| \Delta_{k} \|_{2} \end{aligned}$$

Here, (a) follows from the definition of Lipschitz constant and Lemma 3's weight perturbation bound. (b) comes from a direct application of Lemma 1, and (c) follows from Theorem 1' assumption. Therefore, the above inequalities collectively lead to the following bound, which completes the proof:

$$\tau \left\| \delta_{\mathbf{w}}^*(\mathbf{x}, y) - \delta_{\widetilde{\mathbf{w}}}^*(\mathbf{x}, y) \right\| \leq \frac{L_{\mathbf{w}} \sum_{i=k}^{L} \prod_{j=0}^{i} \gamma_j \|W_j\|}{\lambda \|W_k\|_2} \|\Delta_k\|_2.$$

To prove Theorem 1, we follow a covering-number-based approach similar to the generalization analysis in [Bartlett et al., 2017] for the standard non-adversarial deep supervised learning problem. To do this, we consider the norm constraints $||W_i||_2 \le a'_i$, $||W_i||_{2,1} \le b'_i$ for every i = 0, ..., L, and $||V_j||_2 \le a_i$, $||V_j||_{2,1} \le b_i$ for every j = 0, ..., K. Now, we define the following covering resolution parameters for the classifier and substitute DNNs' different layers:

$$\epsilon'_{k} = \frac{\tau \lambda a'_{k} \alpha'_{k} \epsilon}{2(\prod_{i=0}^{K} \xi_{i} a_{i})(\prod_{i=0}^{L} \gamma_{i} a'_{i})(\sum_{i=k}^{L} \prod_{j=0}^{i} \gamma_{j} a'_{j})}, \text{ where } \alpha'_{k} = \frac{1}{A'} \frac{{b'_{k}}^{2/3}}{{a'_{k}}^{2/3}}, A' = \sum_{i=0}^{L} \frac{{b'_{i}}^{2/3}}{{a'_{i}}^{2/3}}$$

$$\epsilon_j = \frac{a_j \alpha_j \epsilon}{2 \prod_{i=j}^K \gamma_i a_i}, \text{ where } \alpha_j = \frac{1}{A} \frac{b_j^{2/3}}{a_j^{2/3}}, \ A = \sum_{i=0}^K \frac{b_i^{2/3}}{a_i^{2/3}}.$$

Note that Lemma 4 implies that by finding an ϵ'_k -covering for each W_k and ϵ_j -covering for each V_j , the covering resolution for $\mathcal{F} \circ \Delta_H|_S$ will be upper-bounded by

$$\sum_{k=0}^{L} \left[\frac{L_{\mathbf{w}} L_{\mathbf{v}} \sum_{i=k}^{L} \prod_{j=0}^{i} \gamma_{j} \|W_{j}\|}{\tau \lambda \|W_{k}\|_{2}} \epsilon_{k}' \right] + \sum_{k=0}^{K} \left[\frac{\prod_{i=k}^{K} \gamma_{i} \|V_{i}\|_{2}}{\|V_{k}\|_{2}} \epsilon_{k} \right] = \epsilon.$$

Therefore, by applying Lemma A.7 from [Bartlett et al., 2017] we will have the following bound on the ϵ -covering-number for the set $\mathcal{F} \circ \Delta_H|_S = \{\ell(f_{\mathbf{v}}(\mathbf{X} + \delta^*_{\mathbf{w}}(\mathbf{X}, Y)) : \forall 0 \leq i \leq K : \|V_i\|_2 \leq a_i, \|V_i\|_{2,1} \leq b_i, \forall 0 \leq j \leq L : \|W_j\|_2 \leq a_j', \|W_j\|_{2,1} \leq b_j'\}$

$$\begin{split} &\log \mathcal{N} \Big(\mathcal{F} \circ \Delta_{H} | s, \| \cdot \|_{2}, \epsilon \Big) \\ &\leq \sum_{i=0}^{L} \sup_{\mathbf{w} - i, \mathbf{v} \in \mathcal{W}, \mathcal{V}} \left[\log \mathcal{N} \big(\{ \delta_{\mathbf{w}}^{*}(\mathbf{X}, Y) : \| \mathbf{W}_{i} \|_{2} \leq a_{i}', \| \mathbf{W}_{i} \|_{2,1} \leq b_{i}' \}, \| \cdot \|_{2}, \epsilon_{i}') \right] \\ &+ \sum_{i=0}^{K} \sup_{\mathbf{w} - i, \mathbf{v} \in \mathcal{W}, \mathcal{V}} \left[\log \mathcal{N} \big(\{ h_{\mathbf{v}_{0:i}}(\mathbf{X}), Y) : \| \mathbf{V}_{i} \|_{2} \leq a_{i}, \| \mathbf{V}_{i} \|_{2,1} \leq b_{i} \}, \| \cdot \|_{2}, \epsilon_{i}) \right] \\ &\leq \sum_{i=0}^{L} \sup_{\mathbf{w} - i, \mathbf{v} \in \mathcal{W}, \mathcal{V}} \left[\log \mathcal{N} \big(\{ h_{\mathbf{v}_{0:i}}(\mathbf{X}), Y) : \| \mathbf{W}_{i} \|_{2,1} \leq b_{i}' \}, \| \cdot \|_{2}, \epsilon_{i}) \right] \\ &+ \sum_{i=0}^{K} \sup_{\mathbf{w}, \mathbf{v}_{-i} \in \mathcal{W}, \mathcal{V}} \left[\log \mathcal{N} \big(\{ h_{\mathbf{v}_{0:i}}(\mathbf{X}), Y) : \| \mathbf{V}_{i} \|_{2,1} \leq b_{i} \}, \| \cdot \|_{2}, \epsilon_{i}) \right] \\ &\leq \sum_{i=0}^{L} \left[\sup_{\mathbf{w} - i, \mathbf{v} \in \mathcal{W}, \mathcal{V}} \frac{b_{i}^{2} \| h_{\mathbf{v}_{0:i}}(\mathbf{X}) \|_{2}^{2}}{\epsilon_{i}^{2}} \log(2W^{2}) \right] \\ &+ \sum_{i=0}^{L} \left[\sup_{\mathbf{w} - i, \mathbf{v} \in \mathcal{W}, \mathcal{V}} \frac{b_{i}^{2} \| h_{\mathbf{v}_{0:i}}(\mathbf{X}) \|_{2}^{2}}{\epsilon_{i}^{2}} \log(2W^{2}) \right] \\ &\leq \sum_{i=0}^{K} \left[\sup_{\mathbf{w} - i, \mathbf{v} \in \mathcal{W}, \mathcal{V}} \frac{b_{i}^{2} \| h_{\mathbf{v}_{0:i}}(\mathbf{X}) \|_{2}^{2}}{\lambda^{2} \epsilon^{2}} \log(2W^{2}) \right] \\ &+ \sum_{i=0}^{L} \left[\frac{4b_{i}^{2} (B + \frac{\prod_{i=0}^{L} \gamma_{i}a_{i}'})^{2} \prod_{i=0}^{K} \xi_{i}^{2}a_{i}^{2}}{\epsilon_{i}^{2}} \right] \\ &+ \sum_{i=0}^{L} \left[\frac{4b_{i}^{2} (B + \frac{\prod_{i=0}^{L} \gamma_{i}a_{i}'})^{2}}{\lambda^{2} \epsilon^{2}} \sum_{i=0}^{K} \alpha_{i}^{2}a_{i}^{2}} \right] \\ &+ \sum_{i=0}^{L} \left[\frac{4b_{i}^{2} (B + \frac{\prod_{i=0}^{L} \gamma_{i}a_{i}'})^{2} \prod_{i=0}^{K} \xi_{i}^{2}a_{i}^{2}}{\lambda^{2} \epsilon^{2}} \sum_{i=0}^{K} \alpha_{i}^{2}a_{i}^{2}} \right] \\ &+ \sum_{i=0}^{L} \left[\frac{4b_{i}^{2} (B + \frac{\prod_{i=0}^{L} \gamma_{i}a_{i}'})^{2} \prod_{i=0}^{K} \xi_{i}^{2}a_{i}^{2}}{\lambda^{2} \epsilon^{2}} \sum_{i=0}^{K} \alpha_{i}^{2}a_{i}^{2}} \right] \\ &+ \sum_{i=0}^{L} \left[\frac{4b_{i}^{2} (B + \frac{\prod_{i=0}^{L} \gamma_{i}a_{i}'})^{2} \prod_{i=0}^{K} \xi_{i}^{2}a_{i}^{2}}{\lambda^{2} \epsilon^{2}}} \sum_{k=0}^{K} \alpha_{i}^{2} \alpha_{k}^{2}} \right] \\ &+ \sum_{i=0}^{L} \left[\frac{4b_{i}^{2} (B + \frac{\prod_{i=0}^{L} \gamma_{i}a_{i}'})^{2} \prod_{i=0}^{K} \xi_{i}^{2}a_{i}^{2}}{\lambda^{2} \epsilon^{2}}} \sum_{k=0}^{K} \alpha_{i}^{2} \alpha_{i}^{2}} \right] \\ &+ \frac{\log(2W^{2}) \prod_{i=0}^{L} \gamma_{i}^{2} \alpha_{i}^{2} (\sum_{i=0}^{L} \prod_{i=0}^{K} \xi_{i}^{2}a_{i}^{2}} \sum_{k=0}^{K} \left[\frac{b_{i}^{2}}{\alpha_{i}^{2}}^{2} \right] \\ &+ \frac{4 \log(2W^{2}) (B$$

$$=\frac{C}{\epsilon^2}$$

where we define

$$C := 4 \log(2W^2) \left[\frac{\prod_{i=0}^L \gamma_i^2 {a'_i}^2 \left(\sum_{i=0}^L \prod_{j=0}^i \gamma_j a_j\right)^2}{\lambda^2} \left[\sum_{i=0}^L \frac{{b'_i}^{2/3}}{{a'_i}^{2/3}} \right]^3 + \left(B + \frac{\prod_{i=0}^L \gamma_i a'_i}{\lambda}\right)^2 \prod_{i=0}^K \xi_i^2 a_i^2 \left[\sum_{i=0}^K \frac{{b_i}^{2/3}}{{a_i}^{2/3}} \right]^3 \right].$$

Now, based on the above covering-number bound, we use the Dudley entropy integral bound [Bartlett et al., 2017] which bounds the empirical Rademacher complexity of $\mathcal{F} \circ \Delta_{\mathcal{H}}|_S$ as

$$\mathcal{R}(\mathcal{F} \circ \Delta_{\mathcal{H}}|_{S}) \leq \inf_{\alpha \geq 0} \left\{ \frac{4\alpha}{\sqrt{n}} + \frac{12}{n} \int_{\alpha}^{\sqrt{n}} \sqrt{\log \mathcal{N}(\mathcal{F} \circ \Delta_{H}|_{S}, \|\cdot\|_{2}, \epsilon)} d\epsilon \right\}$$
$$\leq \inf_{\alpha \geq 0} \left\{ \frac{4\alpha}{\sqrt{n}} + \frac{12\sqrt{C}}{n} \log(\frac{\sqrt{n}}{\alpha}) \right\}$$
$$\leq \frac{4}{n^{3/2}} + \frac{18\log(n)\sqrt{C}}{n}$$

where the last line follows from choosing $\alpha = 1/n$. Also, note that since for every non-negative constants $a, b \ge 0$ we have $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$, then

$$\begin{split} \sqrt{C} &\leq 2\sqrt{\log(2D^2)} \bigg[\frac{\prod_{i=0}^L \gamma_i a_i' (\sum_{i=0}^L \prod_{j=0}^i \gamma_j a_j)}{\lambda} \left[\sum_{i=0}^L \frac{{b_i'}^{2/3}}{{a_i'}^{2/3}} \right]^{3/2} \\ &+ \left(B + \frac{\prod_{i=0}^L \gamma_i a_i'}{\lambda} \right) \prod_{i=0}^K \xi_i a_i \left[\sum_{i=0}^K \frac{{b_i'}^{2/3}}{a_i^{2/3}} \right]^{3/2} \bigg]. \end{split}$$

Consequently, we have the following bound where $R_{\mathcal{V}}$ and $R_{\mathcal{W}}$ are defined as in Theorem 1:

$$\mathcal{R}(\mathcal{F} \circ \Delta_{\mathcal{H}}|_{S}) \leq \mathcal{O}\left(\frac{(B + \frac{L_{\mathbf{w}}}{\lambda})\left(R_{\mathcal{V}} + \frac{1}{\tau^{2}}L_{\mathbf{w}}R_{\mathcal{W}}\right)\log(n)}{n}\log(D)\right)$$

Therefore, according to standard Rademacher complexity-based generalization bounds [Bartlett and Mendelson, 2002], for every $\omega > 0$ with probability at least $1 - \omega$ we have for every $\mathbf{v}, \mathbf{w} \in \mathcal{V}, \mathcal{W}$:

$$\frac{1}{n}\sum_{i=1}^{n} \left[\ell \left(f_{\mathbf{v}}(\mathbf{x}_{i} + \delta_{\mathbf{w}}^{*}(\mathbf{x}_{i}, y_{i})), y_{i} \right) \right] - \mathbb{E} \left[\ell \left(f_{\mathbf{v}}(\mathbf{X} + \delta_{\mathbf{w}}^{*}(\mathbf{X}, Y)), Y \right) \right]$$
$$\leq \mathcal{O} \left(c \sqrt{\frac{\log(1/\omega)}{n}} + \frac{(B + \frac{L_{\mathbf{w}}}{\lambda}) \left(R_{\mathcal{V}} + \frac{1}{\tau^{2}} L_{\mathbf{w}} R_{\mathbf{w}} \right) \log(n)}{n} \log(D) \right),$$

which implies that

$$\epsilon_{\text{gen}}(\delta_{\mathbf{w}}^{*}) = \min_{\mathbf{v}\in\mathcal{V}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left[\ell \left(f_{\mathbf{v}}(\mathbf{x}_{i} + \delta_{\mathbf{w}}^{*}(\mathbf{x}_{i}, y_{i})), y_{i} \right) \right] \right\} - \min_{\mathbf{v}\in\mathcal{V}} \left\{ \mathbb{E} \left[\ell \left(f_{\mathbf{v}}(\mathbf{X} + \delta_{\mathbf{w}}^{*}(\mathbf{X}, Y)), Y \right) \right] \right\} \\ \leq \max_{\mathbf{v}\in\mathcal{V}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left[\ell \left(f_{\mathbf{v}}(\mathbf{x}_{i} + \delta_{\mathbf{w}}^{*}(\mathbf{x}_{i}, y_{i})), y_{i} \right) \right] - \mathbb{E} \left[\ell \left(f_{\mathbf{v}}(\mathbf{X} + \delta_{\mathbf{w}}^{*}(\mathbf{X}, Y)), Y \right) \right] \right\} \\ \leq \mathcal{O} \left(c \sqrt{\frac{\log(1/\omega)}{n}} + \frac{(B + \frac{L_{\mathbf{w}}}{\lambda}) \left(R_{\mathcal{V}} + \frac{1}{\tau^{2}} L_{\mathbf{w}} R_{\mathbf{w}} \right) \log(n)}{n} \log(D) \right).$$

Therefore, the theorem's proof is complete.

B ADDITIONAL NUMERICAL EXPERIMENTS

In this section, we report the complete set of our numerical results. Table 1 shows the complete results for DNNs regularized by early stopping, i.e. the complete version of Table **??**. Moreover, Tables 2,3,4 are the full versions of Table **??**, demonstrating the relationship between generalization errors and transferability rates of the discussed datasets and DNN architectures. In addition to our earlier results, the accuracies for adversarially-perturbed training and test samples are also included in the tables.

In addition to the previous results, we also present the transferability rates averaged over test samples whose adversarial examples are predicted correctly by both the regularized and unregularized substitute DNNs. The transferability rates over those test samples intersecting the correctly predicted samples by regularized and unregularized substitute DNNs are shown in Tables 5 and 6 under the title Transferability Rate-Int. Our numerical results suggest that over the test samples correctly predicted by both regularized and unregularized DNNs, a better generalization score again results in higher transferability rates for designed adversarial examples.

Last, Tables 7 and 8 show the numerical results when substitute model and target are trained with the same training set.

Transferability Transferability Dataset Model Method Train Acc Test Acc Gen.Err. Rate(VGG16) Rate(ResNet18) PGM 0.970 0.453 0.517 0.127 0.104 PGM-ES 0.591 0.518 0.073 0.198 0.172 Inception FGM 0.997 0.529 0.467 0.100 0.089 FGM-ES 0.657 0.530 0.126 0.170 0.147 Cifar10 PGM 1.000 0.421 0.579 0.098 0.077 PGM-ES 0.548 0.487 0.061 0.154 0.136 Alexnet FGM 1.000 0.480 0.520 0.100 0.087 FGM-ES 0.594 0.501 0.092 0.152 0.127 PGM 0.877 0.231 0.646 0.283 0.258 PGM-ES 0.408 0.271 0.137 0.330 0.286 Inception FGM 0.984 0.272 0.711 0.270 0.239 FGM-ES 0.457 0.312 0.146 0.327 0.289 Cifar100 PGM 0.966 0.202 0.764 0.252 0.227 PGM-ES 0.338 0.248 0.091 0.294 0.266 Alexnet FGM 0.990 0.234 0.756 0.261 0.232 FGM-ES 0.399 0.278 0.122 0.291 0.259 PGM 0.925 0.585 0.341 0.207 0.220 0.654 0.057 PGM-ES 0.711 0.298 0.322 Inception 0.998 0.619 0.380 0.136 FGM 0.129 0.718 0.219 FGM-ES 0.898 0.180 0.213 **SVHN** PGM 0.228 0.848 0.541 0.307 0.211 0.594 0.030 PGM-ES 0.624 0.256 0.278Alexnet FGM 0.949 0.576 0.373 0.157 0.170 FGM-ES 0.691 0.627 0.064 0.241 0.260

Table 1: Generalization and transferability rates for different DNN architectures and image datasets with and without early stopping (ES)

References

- Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. *Journal of Machine Learning Research*, 3(Nov):463–482, 2002.
- Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for neural networks. In Advances in Neural Information Processing Systems, pages 6240–6249, 2017.
- Farzan Farnia, Jesse M Zhang, and David Tse. Generalizable adversarial training via spectral normalization. *arXiv preprint* arXiv:1811.07457, 2018.

Detect	Model	Mathad	ß	Train Aga	Test Ass	Con Err	Transferability	Transferability
Dataset	Widdei	Method	ρ	ITalli Acc	Test Acc	Gen.En.	Rate(VGG16)	Rate(ResNet18)
			∞	0.998	0.532	0.466	0.092	0.078
			1	0.830	0.511	0.320	0.136	0.113
		ECM(L)	1.3	0.936	0.479	0.456	0.124	0.097
		$\operatorname{FGM}(L_2)$	1.6	0.997	0.509	0.488	0.099	0.084
			2	0.999	0.541	0.458	0.087	0.073
			3	1.000	0.554	0.445	0.090	0.077
			∞	0.951	0.443	0.508	0.104	0.084
			1	0.759	0.502	0.258	0.150	0.134
		$\mathbf{DCM}(\mathbf{I})$	1.3	0.913	0.459	0.454	0.125	0.099
		$\operatorname{PGM}(L_2)$	1.6	0.945	0.447	0.499	0.115	0.095
			2	0.979	0.451	0.529	0.110	0.092
	Incontion		3	0.988	0.468	0.520	0.103	0.082
	Inception		∞	0.946	0.442	0.504	0.124	0.101
			1	0.694	0.451	0.243	0.191	0.153
		ECM(L)	1.3	0.842	0.421	0.421	0.165	0.129
		$FGM(L_{\infty})$	1.6	0.951	0.419	0.531	0.129	0.106
			2	0.980	0.453	0.527	0.121	0.103
			3	0.988	0.470	0.517	0.112	0.091
		$PGM(L_{\infty})$	∞	0.708	0.525	0.184	0.419	0.393
			1	0.627	0.545	0.082	0.497	0.474
			1.3	0.674	0.534	0.140	0.466	0.443
C'C 10			1.6	0.710	0.520	0.190	0.442	0.422
Cifario			2	0.739	0.505	0.234	0.408	0.389
			3	0.745	0.504	0.241	0.398	0.380
			∞	1.000	0.495	0.505	0.089	0.070
			1	0.977	0.526	0.451	0.147	0.122
		ECM(L)	1.3	1.000	0.496	0.504	0.132	0.105
		$FGM(L_2)$	1.6	1.000	0.474	0.526	0.115	0.090
			2	1.000	0.477	0.523	0.108	0.088
			3	1.000	0.496	0.504	0.098	0.079
		$\mathbf{DCM}(\mathbf{I})$	∞	0.999	0.454	0.545	0.105	0.087
		$PGM(L_2)$	1	0.861	0.519	0.342	0.162	0.139
			∞	0.996	0.400	0.596	0.102	0.089
	A 1		1	0.914	0.426	0.487	0.199	0.169
	Alexnet	ECM(L)	1.3	0.998	0.387	0.610	0.169	0.142
		$FGM(L_{\infty})$	1.6	1.000	0.368	0.632	0.146	0.120
			2	1.000	0.420	0.580	0.128	0.106
			3	1.000	0.435	0.565	0.115	0.096
			∞	0.685	0.474	0.211	0.446	0.423
			1	0.628	0.473	0.156	0.472	0.457
			1.3	0.680	0.436	0.245	0.441	0.423
		$PGM(L_{\infty})$	1.6	0.697	0.420	0.277	0.421	0.403
			2	0.679	0.408	0.271	0.404	0.388
			3	0.628	0.439	0.189	0.426	0.405

Table 2: Generalization and transferability rates on CIFAR-10 data, with and without using spectral regularization

Detect	Madal	Mathad	Q	Troin Acc	Test Ass	Can Em	Transferability	Transferability
Dataset	Model	Method	ρ	ITalli Acc	Test Acc	Gen.En.	Rate(VGG16)	Rate(ResNet18)
			∞	0.996	0.279	0.717	0.268	0.236
			1	0.761	0.277	0.484	0.250	0.290
		ECM(L)	1.3	0.853	0.294	0.558	0.313	0.275
	Inception	$\operatorname{FGM}(L_2)$	1.6	0.998	0.260	0.738	0.236	0.263
			2	1.000	0.284	0.715	0.238	0.272
			3	0.999	0.262	0.736	0.221	0.257
		$PGM(L_2)$	∞	0.857	0.255	0.602	0.303	0.270
Cifor100			1.3	0.750	0.256	0.494	0.330	0.301
Charloo		$FGM(L_2)$	∞	1.000	0.242	0.758	0.258	0.232
			1	0.925	0.315	0.611	0.342	0.310
			1.3	1.000	0.289	0.710	0.304	0.266
	Alaynat		1.6	1.000	0.285	0.715	0.291	0.248
	Alexilet		2	1.000	0.284	0.716	0.288	0.253
			3	1.000	0.269	0.730	0.265	0.240
		$PGM(L_2)$	∞	1.000	0.210	0.789	0.229	0.260
			1	0.889	0.288	0.601	0.323	0.353

Table 3: Generalization and transferability rates on CIFAR-100 dataset, with and without spectral regularization.

Table 4: Generalization and transferability rates on SVHN dataset, with and without spectral regularization.

Dataset	Model	Method	β	Train Acc	Test Acc	Gen.Err.	Transferability Rate(VGG16)	Transferability Rate(ResNet18)
			∞	0.991	0.618	0.373	0.134	0.126
			1	0.848	0.645	0.203	0.277	0.257
		ECM(I)	1.3	0.967	0.605	0.362	0.223	0.209
	Inception	$\operatorname{FGM}(L_2)$	1.6	0.998	0.573	0.426	0.202	0.187
			2	1.000	0.571	0.429	0.158	0.149
			3	1.000	0.642	0.358	0.121	0.118
		$PGM(L_2)$	∞	0.934	0.592	0.342	0.193	0.177
SVHN			1	0.767	0.652	0.115	0.339	0.313
51111		$FGM(L_2)$	∞	0.991	0.618	0.373	0.134	0.126
			1	0.848	0.645	0.203	0.277	0.257
			1.3	0.967	0.605	0.362	0.223	0.209
	Alaynat		1.6	0.998	0.573	0.426	0.202	0.187
	Alexilet		2	1.000	0.571	0.429	0.158	0.149
			3	0.999	0.581	0.418	0.145	0.133
		$PGM(L_{z})$	∞	0.844	0.546	0.298	0.211	0.225
		$PGM(L_2)$	1	0.817	0.618	0.199	0.276	0.292

Table 5: Generalization and transferability rates for different DNN architectures and image datasets with and without spectral regularization. Transferability Rate-Int. means averaged transferability rate on adversarial examples correctly labeled by both the regularized and unregularized DNNs.

Detect	Madal	Mathad	ß	Con Em	Transferability	Transferability
Dataset	Model	Method	ρ	Gen.En.	Rate-Int(VGG16)	Rate-Int(ResNet18)
		ECM(L)	∞	0.466	0.032	0.026
Ciferil		$\Gamma O W (L_2)$	1	0.320	0.077	0.058
		DCM(L)	∞	0.508	0.030	0.026
	Incontion	$\operatorname{PGiv}(L_2)$	1	0.258	0.063	0.052
	meeption	ECM(L)	∞	0.504	0.029	0.028
		$\Gamma \operatorname{GWI}(L_{\infty})$	1	0.243	0.070	0.090
		DCM(L)	∞	0.184	0.136	0.181
Cifor10		$\operatorname{FGWI}(L_{\infty})$	1	0.082	0.182	0.162
Cifar10		$FGM(I_{-})$	∞	0.505	0.035	0.029
		$1 \operatorname{OWI}(L_2)$	1	0.451	0.076	0.068
		DCM(L)	∞	0.545	0.037	0.030
	Alexnet	$\operatorname{FOM}(L_2)$	1	0.342	0.077	0.063
		ECM(L)	∞	0.596	0.039	0.019
		$\Gamma \operatorname{GWI}(L_{\infty})$	1	0.487	0.089	0.070
		$\mathbf{DCM}(\mathbf{I})$	∞	0.211	0.227	0.222
		$\operatorname{FOM}(L_{\infty})$	1	0.156	0.271	0.248
	Incontion	ECM(L)	∞	0.717	0.126	0.112
		$\Gamma O M(L_2)$	1.3	0.558	0.154	0.131
	meeption	$\mathbf{DCM}(L)$	∞	0.602	0.141	0.123
Cifor100		$\operatorname{FOM}(L_2)$	1.3	0.494	258 0.063 504 0.029 243 0.070 184 0.136 082 0.182 505 0.035 451 0.076 545 0.037 342 0.077 596 0.039 487 0.089 211 0.227 156 0.271 717 0.126 558 0.154 502 0.141 494 0.160 758 0.127 511 0.180 789 0.114 601 0.159 373 0.010 203 0.103 342 0.024 115 0.102 373 0.013 203 0.092	0.141
Cital 100		$EGM(I_{-})$	∞	0.758	0.127	0.101
	Alexnet	$1 \operatorname{GWI}(L_2)$	1	0.611	0.180	0.159
	Alexiet	$PGM(I_{-})$	∞	0.789	0.114	0.108
		$1 \operatorname{OWI}(L_2)$	1	0.601	0.159	0.151
		$EGM(I_{-})$	∞	0.373	0.010	0.013
	Incention	$\Gamma O W (L_2)$	1	0.203	0.103	0.125
	Inception	$PGM(L_{\tau})$	∞	0.342	0.024	0.031
SVHN		$1 \operatorname{OWI}(L_2)$	1	0.115	0.102	0.125
		$FGM(L_{z})$	∞	0.373	0.013	0.014
	Alexnet	$\Gamma O W (L_2)$	1	0.203	0.092	0.112
	AICAIC	$PGM(I_{-})$	∞	0.298	0.044	0.053
		$1 \operatorname{OWI}(L_2)$	1	0.199	0.080	0.101

Table 6: Generalization and transferability rates for different DNN architectures and image datasets with and without early stopping (ES), Transferability Rate-Int. means averaged transferability rate on adversarial examples correctly labeled by both the regularized and unregularized DNNs.

Dataset	Model	Method	Gon Err	Transferability	Transferability
Dataset	Widdei	Wiethou	Uch.En.	Rate-Int.(VGG16)	Rate-Int.(ResNet18)
		PGM	0.517	0.030	0.127
	Incontion	PGM-ES	0.073	0.063	0.198
	Inception	FGM	0.467	0.032	0.100
Cifor10		FGM-ES	0.126	0.077	0.170
Citar10		PGM	0.579	0.037	0.098
	Alaynat	PGM-ES	0.061	0.077	0.154
	Alexilet	FGM	0.520	0.035	0.100
		FGM-ES	0.092	0.076	0.152
		PGM	0.646	0.141	0.283
	Inception	PGM-ES	0.137	0.160	0.330
Cifar100		FGM	0.711	0.126	0.270
		FGM-ES	0.146	0.154	0.327
	Alexnet	PGM	0.764	0.114	0.252
		PGM-ES	0.091	0.159	0.294
		FGM	0.756	0.127	0.261
		FGM-ES	0.122	0.180	0.291
		PGM	0.341	0.024	0.207
	Incontion	PGM-ES	0.057	0.102	0.298
	Inception	FGM	0.380	0.010	0.136
OVIIN		FGM-ES	0.180	0.103	0.213
2111		PGM	0.307	0.044	0.211
	Alexnet	PGM-ES	0.030	0.080	0.256
	Alexilet	FGM	0.373	0.013	0.157
		FGM-ES	0.064	0.092	0.241

Table 7: Generalization error and transferability rates when the target and substitute models are trained using the same training set, with and without spectral normalization.

Detect	Madal	Mathad	Q	Train 1 ag	Test Ass	Con Em	Transferability	Transferability
Dataset	Model	Method	ρ	Ham Acc	Test Acc	Gell. Ell.	Rate (VGG16)	Rate (R18)
Cifar10 Incep		$FGM(L_2)$	∞	0.983	0.563	0.420	0.995	0.108
	Incontion		1	0.801	0.565	0.236	0.176	0.174
	Inception	$PGM(L_2)$	∞	0.896	0.498	0.398	0.129	0.134
			1	0.757	0.544	0.213	0.183	0.183
Cifar100 In	Inception	$FGM(L_2)$	∞	0.822	0.281	0.541	0.211	0.213
			1.3	0.619	0.309	0.310	0.253	0.254
		$PGM(L_2)$	∞	0.669	0.292	0.377	0.253	0.254
			1.3	0.559	0.310	0.249	0.285	0.286
		$FGM(L_2)$	∞	0.901	0.629	0.272	0.160	0.164
CVIIN	Alavaat		1	0.813	0.667	0.146	0.262	0.267
SVIIN	Alexilet	$PGM(L_2)$	∞	0.792	0.578	0.214	0.234	0.235
			1	0.775	0.637	0.139	0.281	0.286

Detect	Madal	Attoolz	Train Acc	Test Age	Gen. Err.	Transferability	Transferability
Dataset	Model	Attack	ITalli Acc	Test Acc		Rate (VGG16)	Rate (R18)
	Incontion	$FGM(L_2)$	0.984	0.553	0.431	0.010	0.108
Cifor10	inception	$FGM(L_2)-ES$	0.622	0.583	0.039	0.139	0.143
Citatio	Alaynat	$FGM(L_2)$	1.000	0.525	0.475	0.084	0.094
	Alexilet	$FGM(L_2)-ES$	0.667	0.548	0.119	0.132	0.137
	Inception	$FGM(L_2)$	0.939	0.290	0.649	0.224	0.263
Cifar100		$FGM(L_2)-ES$	0.429	0.340	0.088	0.261	0.315
Citat 100	Alexnet	$FGM(L_2)$	0.912	0.248	0.664	0.246	0.271
		$FGM(L_2)-ES$	0.338	0.307	0.032	0.283	0.306
	Incontion	$FGM(L_2)$	0.997	0.621	0.376	0.130	0.136
SVUN	inception	$FGM(L_2)-ES$	0.883	0.667	0.216	0.226	0.224
SVIIN	Alexnet	$FGM(L_2)$	0.948	0.578	0.370	0.171	0.160
	Alexilet	$FGM(L_2)-ES$	0.685	0.628	0.057	0.250	0.253

Table 8: Generalization error and transferability rates when the target and substitute models are trained using the same training set, with and without early stopping.

Table 9: Transferability rates when adversarial examples are generated by different methods and from different substitute models.

aubatituta DNN	regularization mathed of DNN	target DNN	Transferability	Transferability	Transferability
substitute Dinin	regularization method of DNN	target Divin	Rate of FGM	Rate of I-FGSM	Rate of PGD
PGD-trained Inception	spectral normalization		0.134	0.148	0.151
	early stop	ERM-trained VGG16	0.172	0.177	0.198
	None		0.092	0.097	0.106
ERM-trained	spectral normalization		0.071	0.070	0.062
	early stop	ERM-trained VGG16	0.088	0.099	0.113
inception	None		0.030	0.044	0.024