
Supplementary Material: Bidirectional Attention as a Mixture of Continuous
Word Experts

A SUMMARY OF NOTATIONS

Below is a summary of commonly-used notations in Section 4.

Notation Explanation
|V | Vocabulary size
S Sentence length
p Embedding dimension

WLOV Center embedding matrix
C Token (context) embedding matrix
w⊤

i i-th row of WLOV

c⊤i i-th row of C
P Position encoding matrix
X One-hot encoding matrix of the masked sentence
y One-hot encoding of the target word
m Position of the masked word
b The masked word
ej A zero vector of length S with 1 on the j-th entry

fj(·) The output generated by expert j
πj(·) The contribution of expert j
as The word on the s-th position of the masked sentence

B A SKETCH OF THE ATTENTION-BASED ARCHITECTURE

1. Let X = XC ∈ RS×p be a matrix consisting of the token embeddings of each word in the masked sentence, and
X ′ = X + P ∈ RS×p.

2. Introduce attention weight matrices WV ∈ Rd×p, WQ ∈ Rdw×p and WK ∈ Rdw×p. Let Xattn =

softmax
(

X′(WQ)⊤WK(X′)⊤√
dw

)
X ′(WV )⊤ ∈ RS×d, where the softmax is taken row-wise.

3. Let WO ∈ Rd×p, and write Z = XattnWO ∈ RS×p.

4. Introduce a residual connection, and write Z ′ := X ′ + Z ∈ RS×p.

5. For each position i ∈ [S], apply a linear layer LIN1(Z
′
i) = W ′Z ′

i ∈ Rp, where W ′ ∈ Rp×p.

6. Introduce another residual connection, and write Z ′′ = Z ′ + LIN1(Z
′) ∈ RS×p.

7. For each position i ∈ [S], apply a linear layer LIN2(Z
′′
i ) := W ′′Z ′′

i ∈ R|V |, where W ′′ ∈ R|V |×p.

8. Perform the softmax operation and calculate the cross-entropy loss corresponding to predicting the masked word in the
sentence.

C PROOF OF LEMMA 1

Proof. Recall that m ∈ [S] and b ∈ [|V |] represent the masked position and masked word, respectively. It is easy to see that
X⊤em = c|V |+1, where em ∈ {0, 1}S is a zero vector with 1 on the m-th entry. Note that steps 1 to 4 of Appendix B give us

Z ′ = X + P + softmax
(
(X + P )(WQ)⊤WK(X + P )⊤√

dw

)
(X + P )(WV )⊤WO ∈ RS×p.



This is followed by steps 5 and 6, which yield Z ′′ = Z ′ + LIN1(Z
′) where the i-th row of Z ′′ is given by (Z ′′

i )
⊤, where

Z ′′
i = Z ′

i +W ′Z ′
i for some W ′ ∈ Rp×p. Lastly, steps 7 and 8 result in αm = softmax(W ′′Z ′′

m) for some W ′′ ∈ R|V |×p,
from which the loss is simply − log(e⊤b αm), where eb ∈ {0, 1}|V | is a zero vector with 1 on the b-th entry. See that

W ′′Z ′′
m = (W ′′ +W ′′W ′)(Z ′)⊤em

= W ℓ

(
(X + P )⊤ + (WO)⊤WV (X + P )⊤softmax

(
(X + P )(WK)⊤WQ(X + P )⊤√

dw

))
em,

where W ℓ = W ′′ +W ′′W ′ ∈ R|V |×p and the softmax is taken column-wise. Writing W ℓc|V |+1 = g ∈ R|V |, W ℓP⊤ =

D ∈ R|V |×S , W ℓ(WO)⊤WV = WLOV ∈ R|V |×p and (WK)⊤WQ = WKQ ∈ Rp×p, we obtain

W ′′Z ′′
m = g +Dem +

S∑
j=1

exp

(
e⊤j (X+P )WKQ(c|V |+1+P⊤em)

√
dw

)
∑S

j=1 exp
(

e⊤j (X+P )WKQ(c|V |+1+P⊤em)
√
dw

) (WLOV (X + P )⊤ej
)

=

S∑
j=1

exp

(
e⊤j (XC+P )WKQ(c|V |+1+P⊤em)

√
dw

)
∑S

j=1 exp

(
e⊤j (XC+P )WKQ(c|V |+1+P⊤em)

√
dw

) (WLOV (XC + P )⊤ej + g +Dem
)
,

and the objective for this particular instance is

−
S∑

j=1

exp

(
e⊤j (XC+P )WKQ(c|V |+1+P⊤em)

√
dw

)
∑S

j=1 exp

(
e⊤j (XC+P )WKQ(c|V |+1+P⊤em)

√
dw

) (WLOV (XC + P )⊤ej + g +Dem
)
b

+ log

 |V |∑
k=1

exp

 S∑
j=1

exp

(
e⊤j (XC+P )WKQ(c|V |+1+P⊤em)

√
dw

)
∑S

j=1 exp

(
e⊤j (XC+P )WKQ(c|V |+1+P⊤em)

√
dw

) (WLOV (XC + P )⊤ej + g +Dem
)
k


 ,

completing the proof.

D TABULAR DATA GENERATION PROCESS

We set the number of features K to be 5, the number of classes C to be 10, and the training and test set size to be 2,000
each. Twenty data sets are generated for each combination of hyperparameters: (1) nc ∈ {1, 5}, the number of features
which generate Y ; (2) noise ∈ {0, 0.5, 1.5}, where a larger value indicates a larger noise in the observed features; and (3)
corr ∈ {0.1, 0.9}, where a larger value indicates a larger between-feature correlation in the training set as compared to the
test set.

To simulate covariate shift, we introduce the parameter corr: the correlation of any covariate pair is ± corr in the training
set, and 1 − corr in the test set. We generate the responses as a linear combination of the covariates. Moreover, we add
Gaussian noise to the covariates, mimicking settings where covariates are measured with error. Lastly, we bin each covariate
and response into C = 10 categories based on their quantiles. This results in a 10-class classification problem with ordinal
covariates and responses.

For a fixed nc ∈ {1, 5}, noise ∈ {0, 0.5, 1.5} and corr ∈ {0.1, 0.9}, our data generation process can be described as follows.

1. Let train_cov = corr ·J5+(1− corr) · I5 and test_cov = (1− corr) ·J5+ corr · I5. Here, J5 represents a 5× 5 matrix
whose entries are all 1, and I5 represents a 5× 5 identity matrix.

2. Generate samples train_x_true and test_x_true from zero-mean multivariate normal distributions with covariance
matrices train_cov and test_cov, respectively. Each sample is of size 2,000.

3. Introduce positively and negatively correlated covariates in the training samples by multiplying data in the first two
features by −1.



4. Add Gaussian observation noises to the training and test samples. For the nc features which generate the response, add
0.4 · noise · N (0, 1); otherwise, add 0.3 · noise · N (0, 1). Let the resulting samples be train_x and test_x.

5. Generate the true coefficient for each of the nc features from U(0, 10).

6. Generate the training response train_y, which is a linear combinations of the nc features of train_x_true with the true
coefficients as weights, plus a Gaussian noise from N (0, 4). Generate the test response test_y in a similar manner.

7. Bin each feature and response of (train_x, train_y) and (test_x, test_y) into 10 quantile-based categories.

E IMPLEMENTATION AND HYPERAMETER TUNING PROCESS FOR COMPETING
MODELS

We fit the proposed tabular extension of bidirectional attention model to each training set, together with a few competing
methods, namely logistic regression (LR), random forests (RF), gradient boosting (GB) and multilayer perceptron (MLP).
We then evaluate the prediction accuracy (Acc) and mean squared error (MSE) on the corresponding test set. For each set of
hyperparameters, we take the average of both metrics across the 20 generated data sets.

We implement the proposed extension of bidirectional attention (ATN) in Keras using a single-layer BERT [Devlin et al.,
2018] with 5 heads, an embedding size of 20, and a feed-forward layer of dimension 5. We use the Adam optimizer with the
default parameters, and a batch and epoch size of 128 and 200, respectively. For the competing methods, we use sklearn’s
implementation with hyperparameters chosen via 5-fold cross-validation in classification accuracy.

For each data set, the hyperparameters of the random forest (RF), gradient boosting (GB) and multilayer perceptron (MLP)
models are chosen via 5-fold cross-validation based on the classification accuracy.

Random forest. We consider every combination of the following hyperparameters: (a) criterion: gini or entropy; (b)
n_estimators: 50, 100 or 200; and (c) max_depth: 1, 3 or None.

Gradient boosting. We consider every combination of the following hyperparameters: (a) learning_rate: 0.01, 0.1 or 1; (b)
n_estimators: 50, 100 or 200; and (c) max_depth: 1, 3 or 5.

Multilayer perceptron. We consider every combination of the following hyperparameters: (a) hidden_layer_sizes: (50,),
(100,) or (100,50); (b) alpha: 0.0001, 0.001 or 0.01; and (c) learning_rate: constant or adaptive.

F DETAILS OF THE WORD ANALOGY EXPERIMENT

Data description. We use the analogy data set first introduced in Pennington et al. [2014]. This data set contains 19,544
questions of the form “a is to b as c is to ?", together with the correct answers. As an example, the first question in the data
set is “Athens is to Greece as Baghdad is to ?" (correct answer: Iraq). Overall, these questions can be categorized into two
groups: semantic (about people and places) and syntactic (about word forms such as comparative, superlative and plural). For
each question, we look for the word d ̸= a, b, c in the vocabulary such that the cosine similarity between xd and xb+xc−xa

is maximized; xi represents the embedding of word i.

We only include a question when all four words involved are present in the vocabulary list of each model. Out of 19,544
questions in the data set, 9,522 (49%) of them satisfy this condition. Analyzing each category separately, we find that the
condition is satisfied for 2,278 (26%) out of 8,869 semantic questions, and 7,244 (68%) out of 10,675 syntactic questions.

Models. We consider three models: (1) BERT base uncased, which is used in the original BERT paper [Devlin et al., 2018];
(2) GloVe trained on Wikipedia [Pennington et al., 2014]; (3) word2vec trained with CBOW [Mikolov et al., 2013]. The
embedding dimensions of these models are 768, 300, 300 and 768, respectively, while the vocabulary size are around 30K,
400K, 3M and 30K, respectively. Since all questions in the data set consist of single words (e.g., not golden_retriever). In
order to perform a fair comparison among these models, we only consider single words as possible answers to each question;
we also exclude non-words (e.g., [unused9], ## ?) from the list of possible answers.



G DETAILED ANALYSIS OF EMBEDDINGS FOR continuous bag of words (cbow) AND
BIDIRECTIONAL ATTENTION

We begin with theoretically characterize under which conditions can cbow embeddings exhibit linear word analogies.
Adopting Allen and Hospedales’s [2019] argument for skip-gram with negative sampling (sgns), we extend the argument to
both cbow and attention-based token embeddings, thanks to the equivalence we established in Theorem 2.

G.1 LINEAR WORD ANALOGIES IN cbow EMBEDDINGS

To perform this theoretical analysis, we follow existing analyses about sgns: Levy and Goldberg [2014] showed that for a
sufficiently large embedding dimension, embeddings from sgns satisfy w⊤

i cj = log
(

p(wi,cj)
p(wi)p(cj)

)
− log k = PMI(wi, cj)−

log k, where k is the number of negative samples for each positive sample; WLOV , C ∈ R|V |×p are the center and context
embedding matrix, respectively. For each i ∈ [|V |], w⊤

i (c⊤i ) is the i-th row of WLOV (C), which represents the center
(context) embedding of word i.

Using this result, Allen and Hospedales [2019] considered embeddings which factorize the unshifted PMI matrix, namely
w⊤

i cj = PMI(wi, cj), compactly written as W⊤C = PMI. Through the ideas of paraphrases and word transformations,
they explained why linear relationships exist for analogies on sgns word embeddings.

We next perform similar analyses for cbow and bidirectional attention to characterize their conditions required for linear
word analogies.

What matrix does CBOW (approximately) factorize? Proposition 9 is the CBOW version of Levy and Goldberg’s [2014]
classical result on between-token similarities for sgns. The proof can be found in Appendix H.

Proposition 9. Consider CBOW without negative sampling. Using the same notation as before, we have

w⊤
i cj ≈ log

(
p(wi, cj)

p(cj)

)
+ log |V |.

From Proposition 9, we know that CBOW approximately factorizes M , a |V | × |V | matrix such that

Mi,j = log

(
p(wi, cj)

p(cj)

)
+ log |V |.

It is worth noting that this formula is similar to that for noise-contrastive estimation (NCE) as mentioned in Levy and
Goldberg [2014], with log |V | replaced by − log k. Also, observe that w⊤

i cj > w⊤
k cj if and only if p(wi, cj) > p(wk, cj).

We empirically verify Proposition 9 using a toy corpus with a vocabulary size of 12. This corpus consists of 10,000 sentences,
each of which has length 5. The corpus generation process is detailed in Appendix I. We then train a CBOW model with the
whole sentence except the center word as the context. We choose the embedding dimension to be one of {30, 100, 300, 900}.
For each dimension, we compute (1) the Spearman correlation between w⊤

i cj and p(wi, cj)/p(cj) for each i, j; and (2) the
Pearson correlation between w⊤

i cj and log (p(wi, cj)/p(cj)) + log |V | for each i, j such that the latter is well-defined. We
obtain values of (0.74, 0.77, 0.77, 0.77) for (1) and (0.67, 0.71, 0.70, 0.71) for (2), which are reasonably high.

The paraphrasing argument for CBOW. We look at what it means for two word sets to paraphrase each other.

Definition 10 (Definition D2 of Allen and Hospedales [2019]). Let E be the set of all words in the vocabulary. Two word
sets W,W∗ ⊆ E are said to paraphrase each other if the paraphrase error ρW,W∗ ∈ R|V | is element-wise small, where

ρW,W∗
j = log

(
p(cj |W∗)

p(cj |W)

)
for every cj ∈ E .

Intuitively, “word sets paraphrase one another if they induce equivalent distributions over context words". When W and
W∗ paraphrase each other, we write W ≈P W∗. From Definition 10, we observe that W ≈P W∗ if and only if W∗ ≈P W .
Also, we implicitly require both p(W∗) and p(W) to be positive. This is exactly Assumption A3 in the original paper. We
now provide an equivalent version of their Lemma 2 for the matrix M . Here, M⊤

i denotes the i-th row of M . The proof is
provided in Appendix J.



Lemma 11. For any word sets W,W∗ ⊆ E with the same cardinality, we have∑
wi∈W∗

Mi =
∑

wi∈W
Mi + ρW,W∗ + σW − σW∗ + δW,W∗

=
∑

wi∈W
Mi + ξW,W∗ + σW − σW∗ ,

where

σW
j = log

(
p(W|cj)∏

wi∈W p(wi|cj)

)
,

σW∗
j = log

(
p(W∗|cj)∏

wi∈W∗
p(wi|cj)

)
,

δW,W∗
j = log

(
p(W∗)
p(W)

)
, and ξW,W∗

j = log
(

p(W∗|cj)
p(W|cj)

)
.

Proposition 12, which is equivalent to Corollary 2.3 of Allen and Hospedales [2019], follows from multiplying both sides
of the equations in Lemma 11 by C† = (CC⊤)−1C (assuming C has full row rank) and setting W = {wb, wa∗} and
W∗ = {wb∗ , wa}.

Proposition 12. Given any wa, wa∗ , wb, wb∗ ∈ E , we have

wb∗ = wa∗ − wa + wb + C†(ρW,W∗ + σW − σW∗ + δW,W∗)

= wa∗ − wa + wb + C†(ξW,W∗ + σW − σW∗),

where W = {wb, wa∗} and W∗ = {wb∗ , wa}.

From Proposition 12, we see that when W ≈P W∗, and σW , σW∗ and δW,W∗ are small, we have wb∗ ≈ wa∗ − wa + wb.
By definition, σW (σW∗ ) is small when all wi ∈ W (wi ∈ W∗) are approximately conditionally independent given cj , and
δW,W∗ is small when p(W) ≈ p(W∗). Following the connection between analogies and word transformations described
in Sections 6.3 and 6.4 of Allen and Hospedales [2019], we now have an approximately linear relationship for CBOW
embeddings with some error terms mentioned above.

Alternatively, we can modify Definition 10 so that W ≈P W∗ if and only if ξW,W∗ (instead of ρW,W∗) is element-wise
small. Now, our error terms only depend on the approximate conditional independence of wi’s given cj .

Does this linear relationship also hold for context embeddings? In other words, if wr + ws ≈ wt + wu, do we have
cr + cs ≈ ct + cu? Proposition 13, whose proof is provided in Appendix K, answers the question.

Proposition 13. Let W = {r, s} and W∗ = {t, u}. Assume p(W) ≈ p(W∗) and wi ∈ W (wi ∈ W∗) are approximately
marginally independent. Also, assume that W has full row rank. If wr + ws ≈ wt + wu, then cr + cs ≈ ct + cu.

So far, we have argued that both the center and context embeddings of CBOW exhibit linear structures under some assump-
tions. We now extend this argument to MLM with self-attention, and show that the same conclusion holds under stronger
assumptions.

G.2 LINEAR WORD ANALOGIES IN ATTENTION-BASED EMBEDDINGS

Similar to Section 4.2, we compute the matrix MLM with self-attention factorized and construct a paraphrasing argument to
show linear structures in the learned embeddings.

What matrix does MLM with self-attention (approximately) factorize? To make calculations tractable, we exclude
both residual connections and positional encodings. Let the masked sentence be (a1, · · · , aS). As before, let m ∈ [S]
and b ∈ [|V |] denote the masked position and masked word, respectively. This means ai ∈ [|V |] for every i ̸= m and
am = |V |+ 1. From Lemma 1, the loss for this instance is given by

−
S∑

j=1

τaj∑S
j=1 τaj

w⊤
b caj

+ log

 |V |∑
k=1

exp

 S∑
j=1

τaj∑S
j=1 τaj

w⊤
k caj

 , (1)



where τj = exp

(
c⊤j WKQc|V |+1√

dw

)
. Proposition 14 approximates the matrix factorized by the attention objective, given all τj

values for each j ∈ [|V |+ 1]. The proof is similar to that of Proposition 9, and therefore omitted.

Proposition 14. Consider the attention objective as in Equation (1). We have

w⊤
i cj ≈

|V |
∑

(i,j) γ
i
j −

(∑
(1,j) γ

1
j + · · ·+

∑
(|V |,j) γ

|V |
j

)
S
(∑

(1,j)(γ
1
j )

2 + · · ·+
∑

(|V |,j)(γ
|V |
j )2

) , (2)

where for a center-context pair (d, j) in the masked sentence (a1, · · · , aS), we define γd
j = τj/

∑S
s=1 τas .

In other words, MLM with self-attention approximately factorizes a |V | × |V | matrix whose (i, j)-th entry is given
by Equation (2). It is important to note that unlike in CBOW, the token embedding for each word i is ci (the context
embedding), and not wi (the center embedding). In the case where τj is approximately the same for every j ∈ [|V |+ 1],
our problem approximately reduces to a vanilla CBOW. In particular, we always have γd

j ≈ 1/S, whence Proposition 14

yields w⊤
i cj ≈

p(wi,cj)
p(cj)

· |V | − 1 ≈ log
(

p(wi,cj)
p(cj)

)
+ log |V |. Using Proposition 12, we argue that the resulting embeddings

approximately form a linear relationship, up to some error terms.

The paraphrasing argument for MLM with self-attention. We first define

c̃j :=
S
(∑

(1,j)(γ
1
j )

2 + · · ·+
∑

(|V |,j)(γ
|V |
j )2

)
∑

(1,j) γ
1
j + · · ·+

∑
(|V |,j) γ

|V |
j

cj

for every j ∈ [|V |+ 1]. This means

w⊤
i c̃j ≈

|V |
∑

(i,j) γ
i
j∑

(1,j) γ
1
j + · · ·+

∑
(|V |,j) γ

|V |
j

− 1

≈ log

( ∑
(i,j) γ

i
j∑

(1,j) γ
1
j + · · ·+

∑
(|V |,j) γ

|V |
j

)
+ log |V |,

where we used the approximation x ≈ log(1 + x). Previously, p(wi, cj) represents a population quantity which is estimated
by #(wi, cj)/D, where D is a normalizing constant, and p(cj) =

∑
i p(wi, cj). We now define p̄(wi, cj), a population

quantity which is estimated by
∑

(i,j) γ
i
j/E for some normalizing constant E. We have

w⊤
i c̃j ≈ log

(
p̄(wi, cj)

p̄(cj)

)
+ log |V |,

where p̄(cj) =
∑

i p̄(wi, cj). Note that unlike p, p̄ is not symmetric, i.e., p̄(wi, cj) ̸= p̄(wj , ci). Having defined p̄, we are
ready to state Lemma 15, which is a version of Lemma 11 for the matrix N , where

Ni,j = log

(
p̄(wi, cj)

p̄(cj)

)
+ log |V |.

Here, N⊤
i denotes the i-th row of N . The proof is analogous to that of Lemma 11 and is thus omitted.

Lemma 15. For any word sets W,W∗ ⊆ E with the same cardinality, we have∑
wi∈W∗

Ni =
∑

wi∈W
Ni + ρ̄W,W∗ + σ̄W − σ̄W∗ + δ̄W,W∗

=
∑

wi∈W
Ni + ξ̄W,W∗ + σ̄W − σ̄W∗ ,

where

σ̄W
j = log

(
p̄(W|cj)∏

wi∈W p̄(wi|cj)

)
,



σ̄W∗
j = log

(
p̄(W∗|cj)∏

wi∈W∗
p̄(wi|cj)

)
,

ρ̄W,W∗
j = log

(
p̄(cj |W∗)
p̄(cj |W)

)
, δ̄W,W∗

j = log
(

p̄(W∗)
p̄(W)

)
, and ξ̄W,W∗

j = log
(

p̄(W∗|cj)
p̄(W|cj)

)
.

Propositions 16 and 17 are the attention versions of Propositions 12 and 13. The proof of Proposition 16 follows from
multiplying both sides of the equations in Lemma 15 by C̃† = (C̃C̃⊤)−1C (assuming C̃ has full row rank) and setting
W = {wb, wa∗} and W∗ = {wb∗ , wa}. The proof of Proposition 17 can be found in Appendix L.

Proposition 16. Given any wa, wa∗ , wb, wb∗ ∈ E , we have

wb∗ = wa∗ − wa + wb + C̃†(ρ̄W,W∗ + σ̄W − σW∗ + δ̄W,W∗)

= wa∗ − wa + wb + C̃†(ξ̄W,W∗ + σ̄W − σ̄W∗),

where W = {wb, wa∗} and W∗ = {wb∗ , wa}.

Proposition 17. Let W = {r, s} and W∗ = {t, u}. Assume p̄(W) ≈ p̄(W∗) and wi ∈ W (wi ∈ W∗) are approximately
marginally independent. Also, assume that W has full row rank and p̄(wi, cj) ≈ p̄(wj , ci). If wr + ws ≈ wt + wu, then
c̃r + c̃s ≈ c̃t + c̃u.

What do we learn from these results? One important takeaway is that the sufficient conditions to obtain linear relationships
are stronger in the case of MLM with self-attention as compared to CBOW. Concretely, we need p̄ to be approximately
symmetric. Even when this is satisfied, the linear relationships hold for the transformed embeddings c̃i’s instead of the token
embeddings ci’s. Under an additional assumption that

ζj :=

∑
(1,j)(γ

1
j )

2 + · · ·+
∑

(|V |,j)(γ
|V |
j )2∑

(1,j) γ
1
j + · · ·+

∑
(|V |,j) γ

|V |
j

is approximately the same for each j (e.g., when τj is approximately the same for every j), we approximately have linear
relationships for the token embeddings ci’s.

Remarks. It is easy to see that our result can technically be extended to incorporate positional encodings by considering
each (word, position) pair as a unit. In particular, analogies are drawn between (word, position) units.

H PROOF OF PROPOSITION 9

Proposition 9. Consider CBOW without negative sampling. Using the same notation as before, we have

w⊤
i cj ≈ log

(
p(wi, cj)

p(cj)

)
+ log |V |.

Proof. For simplicity, we assume that the window size is always 2m. Consider an instance with i as the center word and



j ∈ J as the context words. The loss for this instance can be approximated as

−
∑

j∈J w⊤
i cj

2m
+ log

 |V |∑
k=1

exp

(∑
j∈J w⊤

k cj

2m

)
≈ −

∑
j∈J w⊤

i cj

2m
+ log

 |V |∑
k=1

(
1 +

∑
j∈J w⊤

k cj

2m
+

(
∑

j∈J w⊤
k cj)

2

8m2

)
= −

∑
j∈J w⊤

i cj

2m
+ log |V |+ log

1 +

∑|V |
k=1

(∑
j∈J w⊤

k cj

)
2m|V |

+

∑|V |
k=1

(∑
j∈J w⊤

k cj

)2
8m2|V |


≈ −

∑
j∈J w⊤

i cj

2m
+ log |V |+

∑|V |
k=1

(∑
j∈J w⊤

k cj

)
2m|V |

+

∑|V |
k=1

(∑
j∈J w⊤

k cj

)2
8m2|V |

≤ −
∑

j∈J w⊤
i cj

2m
+ log |V |+

∑|V |
k=1

(∑
j∈J w⊤

k cj

)
2m|V |

+

∑|V |
k=1

(∑
j∈J(w

⊤
k cj)

2
)

4m|V |
,

where we used the Taylor expansions exp(x) ≈ 1+x+x2/2 and log(1+x) ≈ x, as well as the Cauchy-Schwarz inequality.
Ignoring the constant log |V | and multiplying by 2m|V |, the approximate loss can be written as

−|V |
∑
j∈J

w⊤
i cj +

|V |∑
k=1

∑
j∈J

w⊤
k cj

+
1

2

|V |∑
k=1

∑
j∈J

(w⊤
k cj)

2

 .

Summing this over all instances and only extracting terms which depend on w⊤
i cj , we have the following loss which we

want to minimize:
ℓ(i, j) = −|V | ·#(wi, cj)w

⊤
i cj +#(cj)w

⊤
i cj +

1

2
#(cj)(w

⊤
i cj)

2.

Taking derivative with respect to w⊤
i cj and setting it to 0 yields

w⊤
i cj =

(
#(wi, cj)

#(cj)

)
· |V | − 1 =

(
p(wi, cj)

p(cj)
· |V |

)
− 1.

The approximation x ≈ log(1 + x) completes the proof.

I CORPUS GENERATION PROCESS

1. Consider four subjects (mathematics, statistics, sociology and history) and four adjectives (fun, boring, easy and difficult).
Assign scores to each subject which represents the level of each adjective:

(a) mathematics: (4, 2, 4, 2).
(b) statistics: (6, 0, 5, 1).
(c) sociology: (1, 5, 2, 4).
(d) history: (0, 6, 0, 6).

2. Consider three types of sentence:
(a) Type 1: I like subj1 and subj2, where subj1 and subj2 are independently chosen from the list of subjects with

probability (4/11, 5/11, 1/11, 1/11).
(b) Type 2: subj1 and subj2 is adj, where subj1 and subj2 are independently chosen from the list of subjects with

uniform probability, and adj is chosen from the list of adjectives with probability proportional to the sum of the
scores of subj1 and subj2.

(c) Type 3: subj is adj1 and adj2, where subj is chosen from the list of subjects with uniform probability, and adj1
and adj2 are independently chosen from the list of adjectives with probability proportional to the score of subj.

3. To generate each sentence, we first randomly choose the sentence type with uniform probability. We then form the
sentence following the process above.
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Lemma 11. For any word sets W,W∗ ⊆ E with the same cardinality, we have∑
wi∈W∗

Mi =
∑

wi∈W
Mi + ρW,W∗ + σW − σW∗ + δW,W∗

=
∑

wi∈W
Mi + ξW,W∗ + σW − σW∗ ,

where σW
j = log

(
p(W|cj)∏

wi∈W p(wi|cj)

)
, σW∗

j = log
(

p(W∗|cj)∏
wi∈W∗ p(wi|cj)

)
, δW,W∗

j = log
(

p(W∗)
p(W)

)
, and ξW,W∗

j =

log
(

p(W∗|cj)
p(W|cj)

)
.

Proof. Observe that p(cj |W∗) =
p(W∗|cj)p(cj)

p(W∗)
and p(cj |W) =

p(W|cj)p(cj)
p(W) , whence ρW,W∗

j = log
(

p(cj |W∗)
p(cj |W)

)
=

log
(

p(W∗|cj)
p(W|cj)

)
+ log

(
p(W)
p(W∗)

)
. We have∑

wi∈W∗

Mi −
∑

wi∈W
Mi

=
∑

wi∈W∗

log

(
p(wi, cj)

p(cj)

)
−
∑

wi∈W
log

(
p(wi, cj)

p(cj)

)
= log

∏
wi∈W∗

p(wi|cj)− log
∏

wi∈W
p(wi|cj)

= log

(∏
wi∈W∗

p(wi|cj)∏
wi∈W p(wi|cj)

)
+ log

(
p(W∗)

p(W∗)

)
+ log

(
p(W)

p(W)

)
+ log

(
p(W∗|cj)
p(W∗|cj)

)
+ log

(
p(W|cj)
p(W|cj)

)

= log

(
p(W∗|cj)
p(W|cj)

)
+ log

(
p(W)

p(W∗)

)
+ log

(
p(W|cj)∏

wi∈W p(wi|cj)

)
− log

(
p(W∗|cj)∏

wi∈W∗
p(wi|cj)

)
+ log

(
p(W∗)

p(W)

)
= ρW,W∗

j + σW
j − σW∗

j + δW,W∗
j .

Also,

ρW,W∗
j + δW,W∗

j = log

(
p(W∗|cj)
p(W|cj)

)
+ log

(
p(W)

p(W∗)

)
+ log

(
p(W∗)

p(W)

)
= ξW,W∗

j ,

which completes the proof.
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Proposition 13. Let W = {r, s} and W∗ = {t, u}. Assume p(W) ≈ p(W∗) and wi ∈ W (wi ∈ W∗) are approximately
marginally independent. Also, assume that W has full row rank. If wr + ws ≈ wt + wu, then cr + cs ≈ ct + cu.

Proof. For any cv ∈ E , we have (wr + ws)
⊤cv ≈ (wt + wu)

⊤cv. From Proposition 3, this expression can be simplified as
log p(wr, cv)+ log p(ws, cv) ≈ log p(wt, cv)+ log p(wu, cv). This implies log p(wv, cr)+ log p(wv, cs) ≈ log p(wv, ct)+
log p(wv, cu). Observe that

w⊤
v (cr + cs − ct − cu)

= (log p(wv, cr) + log p(wv, cs)− log p(wv, ct)− log p(wv, cu)) + log

(
p(ct)p(cu)

p(cr)p(cs)

)
≈ 0 + log

(
p(W∗)

p(W)

)
≈ 0.

Since this holds for every v and W has full row rank, we conclude that cr + cs ≈ ct + cu, completing the proof.
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Proposition 16. Let W = {r, s} and W∗ = {t, u}. Assume p̄(W) ≈ p̄(W∗) and wi ∈ W (wi ∈ W∗) are approximately
marginally independent. Also, assume that W has full row rank and p̄(wi, cj) ≈ p̄(wj , ci). If wr + ws ≈ wt + wu, then
c̃r + c̃s ≈ c̃t + c̃u.

Proof. For any c̃v ∈ E , we have (wr + ws)
⊤c̃v = (wt + wu)

⊤c̃v . From Appendix G.2, this expression can be simplified as
log p̄(wr, cv) + log p̄(ws, cv) ≈ log p̄(wt, cv) + log p̄(wu, cv). By the assumption that p̄(wi, cj) ≈ p̄(wj , ci), this implies
log p̄(wv, cr) + log p̄(wv, cs) ≈ log p̄(wv, ct) + log p̄(wv, cu). Observe that

w⊤
v (c̃r + c̃s − c̃t − c̃u)

= (log p̄(wv, cr) + log p̄(wv, cs)− log p̄(wv, ct)− log p̄(wv, cu)) + log

(
p̄(ct)p̄(cu)

p̄(cr)p̄(cs)

)
≈ 0 + log

(
p̄(W∗)

p̄(W)

)
≈ 0.

Since this holds for every v and W has full row rank, we conclude that c̃r + c̃s ≈ c̃t + c̃u, completing the proof.
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