
Learning To Invert: Simple Adaptive Attacks for Gradient Inversion in
Federated Learning

Ruihan Wu1 * Xiangyu Chen1 * Chuan Guo2 Kilian Q. Weinberger1

1Cornell University, USA
2Meta AI, USA

*equal contribution

Abstract

Gradient inversion attack enables the recovery of
training samples from model gradients in federated
learning (FL), and constitutes a serious threat to
data privacy. To mitigate this vulnerability, prior
work proposed both principled defenses based on
differential privacy, as well as heuristic defenses
based on gradient compression as countermeasures.
These defenses have so far been very effective, in
particular those based on gradient compression that
allow the model to maintain high accuracy while
greatly reducing the effectiveness of attacks. In this
work, we argue that such findings underestimate
the privacy risk in FL. As a counterexample, we
show that existing defenses can be broken by a
simple adaptive attack, where a model trained on
auxiliary data is able to invert gradients on both
vision and language tasks.

1 INTRODUCTION

Federated learning (FL; [McMahan et al., 2017]) is a pop-
ular framework for distributed model training on sensitive
user data. Instead of centrally storing the training data, FL
operates in a server-client setting where the server hosts the
model and has no direct access to clients’ data. The clients
can apply the model to their private data and send gradient
updates back to the server. This learning regime promises
data privacy as users share only gradients but never any raw
data. However, recent work [Zhu et al., 2019, Zhao et al.,
2020, Geiping et al., 2020] showed that despite these efforts,
the server is still able to recover training data from gradient
updates, violating the promise of data privacy in FL. These
so-called gradient inversion attacks operate by optimizing
over the input space to search for samples whose gradi-
ent matches that of the observed gradient, and such attacks
remain effective even when clients utilize secure aggrega-

tion [Bonawitz et al., 2016] to avoid revealing individual
gradients [Yin et al., 2021, Jeon et al., 2021].

As countermeasures against these gradient inversion attacks,
prior work proposed both principled defenses based on dif-
ferential privacy [Abadi et al., 2016], as well as heuristics
that compress the gradient update through gradient prun-
ing [Aji and Heafield, 2017] or sign compression [Bernstein
et al., 2018]. In particular, gradient compression defenses
have so far enjoyed great success, severely hindering the
effectiveness of existing optimization-based attacks [Zhu
et al., 2019, Jeon et al., 2021] while maintaining a similar
level of model performance. As a result, these limitations
seemingly diminish the threat of gradient inversion attacks
in practical FL applications.

In this paper, we argue that evaluating defenses on existing
optimization-based attacks may provide a false sense of
security. To this end, we propose a simple learning-based
attack—which we call Learning To Invert (LTI)—that trains
a model to invert gradient updates and recover client sam-
ples; see Figure 1 for an illustration. We assume that the
adversary (i.e., the server) has access to an auxiliary dataset
whose distribution is similar to that of the private data. The
gradient inversion model trains on samples in the auxiliary
dataset, with corresponding gradients provided by the global
model. Our attack is highly adaptable to different defense
schemes, since applying a defense simply amounts to train-
ing data augmentation for the gradient inversion model.

We empirically demonstrate that LTI can successfully cir-
cumvent defenses based on gradient perturbation (i.e., using
differential privacy; [Abadi et al., 2016]), gradient prun-
ing [Aji and Heafield, 2017] and sign compression [Bern-
stein et al., 2018] on both vision and language tasks.

• Vision: We evaluate on the CIFAR10 [Krizhevsky et al.,
2009] classification dataset for both LeNet and ResNet20.
LTI attains recovery accuracy close to that of the best
optimization-based method when no defense is applied,
and significantly outperforms all prior attacks under de-
fense settings.
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Figure 1: Illustration of federated learning (FL) and gradient inversion methods. The goal of gradient inversion is to recover
training data (x, y) from the observed gradient∇w`(fw(x), y). Optimization-based methods (e.g., [Zhu et al., 2019, Geiping
et al., 2020, Yin et al., 2021, Jeon et al., 2021]) directly optimize (x̃, ỹ) in search for a sample that produces gradient similar
to that of (x, y). Our proposed learning-based approach, which we call Learning to Invert, instead trains an inversion model
gθ to reconstruct training samples from their gradient.

• NLP: We experiment with both text classification task on
CoLA [Warstadt et al., 2018] and causal language model
training on the WikiText [Merity et al., 2016] dataset,
where LTI attains state-of-the-art performance in all set-
tings, with or without defense.

Given the strong empirical performance of LTI and its adapt-
ability to different learning tasks and defense mechanisms,
we advocate for its use as a simple baseline for future studies
on gradient inversion attacks in FL.

2 BACKGROUND

Federated learning. The objective of federated learn-
ing [McMahan et al., 2017] is to train a machine learning
model in a distributed fashion without centralized collection
of training data. In detail, let fw be the global federated
model parameterized by w, and consider a supervised learn-
ing setting that optimizes w by minimizing a loss function
` over the training set Dtrain:

∑
(x,y)∈Dtrain

`(fw(x), y).
In centralized learning this is typically done by comput-
ing a stochastic gradient 1

B

∑B
i=1∇w`(fw(xi), yi) over a

randomly drawn batch of data (x1, y1), . . . , (xB , yB) and
minimizing ` using stochastic gradient descent.

In FL, instead of centrally collecting Dtrain, the training set
Dtrain is distributed across multiple clients and the model

fw is stored on a central server. At each iteration, the model
parameter w is transmitted to each client to compute the per-
sample gradients {∇w`(fw(xi), yi)}Bi=1 locally over a set
of B clients. The server and clients then execute a federated
aggregation protocol to compute the average gradient for
the gradient descent update. A major advantage of FL is data
privacy since clients do not need to disclose their data explic-
itly, but rather only send their gradient ∇w`(fw(xi), yi) to
the server. Techniques such as secure aggregation [Bonawitz
et al., 2016] and differential privacy [Dwork et al., 2006,
2014] can further reduce the risk of privacy leakage from
sending this gradient update.

Gradient inversion attack. Despite the promise of data
privacy in FL, recent work showed that the heuristic of send-
ing gradient updates instead of training samples themselves
in fact provides a false sense of security. Zhu et al. [2019]
showed in their seminal paper that it is possible for the
server to recover the full batch of training samples given
aggregated gradients. These optimization-based gradient
inversion attacks operate by optimizing a set of dummy data
x̃1, . . . , x̃B and labels ỹ1, . . . , ỹB to match their gradients
to the observed gradients with cost function:

min
x̃,ỹ

∥∥∥∥∥
B∑
i=1

∇w`(fw(x̃i), ỹi)−
B∑
i=1

∇w`(fw(xi), yi)

∥∥∥∥∥
2

2
(1)
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For image tasks, since Equation 1 is differentiable to x̃i and
ỹi, and the model parameters w are accessible to the server,
the server can simply optimize Equation 1 using gradient-
based search. Doing so yields recovered samples (x̃i, ỹi)
that closely resemble actual samples (xi, yi) in the batch.
In practice this approach is highly effective, and follow-up
works proposed several optimizations to further improve its
recovery accuracy [Geiping et al., 2020, Yin et al., 2021,
Jeon et al., 2021].

For language tasks this optimization problem is considerably
more complex since the samples x1, . . . ,xB are sequences
of discrete tokens, and optimizing Equation 1 amounts to
solving a discrete optimization problem. To circumvent this
difficulty, Zhu et al. [2019] and Deng et al. [2021] instead
optimize the token embeddings to match the observed gradi-
ent and then maps the recovered embeddings to their closest
tokens in the embedding layer to recover the private text. In
contrast, Gupta et al. [2022] leveraged the insight that the
gradient of the token embedding layer can be used to recover
exactly the set of tokens present in the training sample, and
used beam search to optimize the ordering of tokens for
fluency to recover the private text.

Gradient inversion under the malicious server setting.
The aforementioned gradient inversion attacks operate under
the honest-but-curious setting where the server faithfully
executes the federated learning protocol, but attempts to ex-
tract private information from the observed gradients. Fowl
et al. [2021], Boenisch et al. [2021] and Fowl et al. [2022]
consider a stronger malicious server threat model, which
allows the server to transmit arbitrary model parameters
w to the clients. Under this threat model, it is possible to
carefully craft the model parameters such that the training
sample can be recovered exactly from its gradient even when
the batch size B is large. While this setting is certainly re-
alistic and relevant, our paper operates under the weaker
honest-but-curious threat model.

3 LEARNING TO INVERT:
LEARNING-BASED GRADIENT
INVERSION ATTACKS

3.1 PROBLEM SET-UP

Motivation. The threat of gradient inversion attack has
prompted prior work to employ defense mechanisms to
mitigate this privacy risk in FL [Zhu et al., 2019, Jeon et al.,
2021]. Intuitively, such defenses reduce the amount of infor-
mation contained in the gradient about the training sample
by either perturbing the gradient with noise [Abadi et al.,
2016] or compressing them [Aji and Heafield, 2017, Bern-
stein et al., 2018], making recovery much more difficult.
However, doing so also reduces the amount of informa-
tion a sample can provide for training the global model,

and hence has a negative impact on the model’s perfor-
mance. This is certainly true for principled defenses based
on differential privacy [Dwork et al., 2006] such as gradient
perturbation [Abadi et al., 2016]. However, defenses based
on gradient compression seemingly provide a much better
privacy-utility trade-off, effectively preventing the attack
and reducing communication costs with minor reduction in
model performance [Zhu et al., 2019].

The empirical success of existing defenses seemingly dimin-
ish the threat of gradient inversion attacks in FL. However,
we argue that optimization-based attacks underestimate the
power of the adversary: If the adversary has access to an
auxiliary dataset Daux, they can train a gradient inversion
model to recover Daux from its gradients computed on the
global model. As we will establish later, this greatly empow-
ers the adversary, exposing considerable risks to federate
learning.

Threat model. We consider the setting where the adversary
is an honest-but-curious server, who executes the learning
protocol faithfully but aims to extract private training data
from the observed gradients. Hence, in each FL iteration,
the adversary has the knowledge of model weights w and
aggregated gradients. Moreover, we assume the adversary
has an auxiliary datasetDaux, which could be in-distribution
or a mixture of in-distribution and out-of-distribution data.
This assumption is similar to the setting in Jeon et al. [2021],
which assumes a generative model that is trained from the
in-distribution data, and is common in the study of other
privacy attacks such as membership inference [Shokri et al.,
2017].

In this paper, we focus on the attack against defense mech-
anisms (DM) in prior work [Zhu et al., 2019, Jeon et al.,
2021]. Thus, we assume the adversary receives the aggre-
gated gradients

∑B
i=1 DM[∇w`(fw(xi), yi)] at one of fol-

lowing DM settings:

1. Gradient without defense. The gradient before the aggre-
gation is the original gradient without any defense. Most
previous papers focus on this common setting.

2. Sign compression. [Bernstein et al., 2018] applies a
element-wise sign function to gradient before the ag-
gregation, which compresses the gradient to one bit per
dimension.

3. Gradient pruning with pruning rate α [Aji and Heafield,
2017] zeroes out the bottom 1−α fraction of coordinates
of ∇w`(fw(x), y) in terms of absolute value, which ef-
fectively compresses the gradient to (1 − α)m dimen-
sions, where m denotes the model size.

4. Gradient perturbation with Gaussian standard deviation
σ [Abadi et al., 2016] is a differentially private mech-
anism used commonly for training private models. A
Gaussian random vector N (0, σ2I) is added to the gra-
dient, which one can show achieves ε-local differential
privacy [Kasiviswanathan et al., 2011] with ε = O(1/σ).
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3.2 LEARNING TO INVERT (LTI)

Definition of the learning problem. Having knowledge
of the model weights and the defense mechanism DM,
the adversary is able to generate the gradient gradDM

SB
=∑B

i=1 DM[∇w`(fw(xaux
i ), yauxi )] for any batch of sam-

ples SB = {(xaux
1 , yaux1 ) · · · (xaux

B , yauxB )} in the auxiliary
dataset. This allows the adversary to learn a gradient inver-
sion model gθ : Rm → RB×d (d denotes data dimension),
parameterized by θ , to predict this batch of data point SB
from the aggregated gradient gradDM

SB
. The learning goal

is to minimize the reconstruction error `attack of gθ on the
auxiliary dataset Daux:

min
θ

ESB∼Daux`attack
(
gθ

(
gradDM

SB

)
, SB

)
. (2)

We hereby explain the choice of the loss function `attack

and the inversion model gθ. Since gθ needs to reconstruct
data in batches, `attack should be permutation invariant w.r.t.
the SB . A common solution [Zhang et al., 2019] is to define
`attack as:

`attack
(
gθ

(
gradDM

SB

)
, SB

)
= min

π

B∑
i=1

`attacksingle

((
gradDM

SB

)
i
,
(
xaux
π(i), y

aux
π(i)

))
, (3)

where the minimization is over all possible permutation π.
`attacksingle is the loss function for a single pair of the prediction
and target data. In practice, `attacksingle can be a cross-entropy
loss for discrete inputs or a L2 loss for continuous-valued
inputs. As for the choice of the inversion model gθ, we em-
pirically find that a multi-layer perceptron (MLP) [Bishop
et al., 1995] is sufficiently effective for the tasks in our
experiments.

Comparison to optimization-based attacks. LTI is su-
perior in its simplicity to optimization-based methods on
generalization, for the following two aspects. Firstly, LTI
doesn’t explicitly have any terms relevant to data prior. It
will learn the data property from the auxiliary dataset. How-
ever, optimization-based attacks usually manually encode
the data prior in their objective functions, e.g. the total vari-
ation term in most optimization-based attacks to reconstruct
image samples. Secondly, there’s no need for careful adap-
tation to different defense mechanisms. As we know, in
optimization-based attacks, for any FL defense mechanism,
it is crucial to carefully design a corresponding objective
function for gradient matching. In section 4, we will show
that our simple approach is surprisingly effective at circum-
venting existing defenses for both language and vision data.

Dimensionality reduction for large models fw.
One potential problem for LTI is that the gradients∑B
i=1 DM[∇w`(fw(xaux

i ), yauxi )] can be extremely
high-dimensional. For example, ResNet20 [He et al., 2016]

for vision tasks has 270K parameters and BERT [Devlin
et al., 2019] for language tasks have approximately 110M
trainable parameters. Such high-dimensional input to the
model gθ can lead to memory issues, as the first layer of the
MLP would have 110M × h parameters, where h denotes
the size of the first hidden layer.

To address this issue, we use feature hashing [Weinberger
et al., 2009] to reduce the dimensionality of the input gradi-
ent. In feature hashing, each gradient dimension i ∈ [m] is
randomly assigned to one of k bins (k is much smaller than
the size of gradient m), formalized as r(i) ∈ [k]. We then
sum up all gradient values in each bin, producing a com-
pressed feature vector of size k. In other words, we project
the aggregated gradient

∑B
i=1 DM[∇w`(fw(xaux

i ), yauxi )]

to P
(∑B

i=1 DM[∇w`(fw(xaux
i ), yauxi )]

)
using the ran-

dom projection matrix P given by:

P ∈ {0, 1}k×ms.t. ∀i, Pj,i = 0 (∀j 6= r(i)), Pr(i),i = 1.

P in the definition is a sparse matrix with m nonzero ele-
ment that can be saved in a memory efficient way. In this
way, gθ ’s the memory footprint can be reduced to a constant
independent from the gradient dimension.

4 EXPERIMENT

We evaluate LTI on both vision and language tasks. The
evaluation results demonstrate that it vastly outperforms
prior gradient inversion attacks, especially when gradient
defenses are applied. Moreover, we show that LTI is able
to perform surprisingly well even when the auxiliary data is
out-of-distribution, which makes LTI more applicable in the
real scenario1.

4.1 EVALUATION ON VISION TASK

Federate learning tasks. For evaluating LTI on vision
tasks, we experiment with image classification on CI-
FAR10 [Krizhevsky et al., 2009] and the training loss is
the cross-entropy loss. The original test split of CIFAR10 is
used for FL training. For the generalization propose, we test
the attacks on two different architectures as the FL model
fw, which are LeNet [LeCun et al., 1998] and ResNet20 [He
et al., 2016] with 15K and 270K parameters.

Defense mechanisms set-up. The adversary will receive
the gradient aggregated from B = 1 or 4 clients, applied
with no defense, sign compression, gradient pruning (α =
0.99), or Gaussian perturbation (σ = 0.1).

Baselines. We compare our method with two gradient in-
version attack baseline methods: Inverting Gradients (IG;

1Our code is released at https://github.com/wrh14/
Learning_to_Invert.
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Geiping et al. [2020]), a representative optimization-based
method with limited data prior, and Gradient Inversion with
Generative Image Prior (GI-GIP; Jeon et al. [2021]), the
state-of-the-art optimization-based method that uses a gen-
erative model to encode the data prior. We make minor
modifications to these attacks to adapt them to various de-
fenses; see appendix for details. The threat model of LTI is
most similar to GI-GIP since both use an auxiliary dataset
to encode the data prior.

Set-up of LTI. We introduce the training set-up of LTI.

• Auxiliary dataset. We use the original train split of CI-
FAR10 as the auxiliary dataset of the adversary. Notice
that under this set-up, the auxiliary dataset is different
from the dataset that the FL tasks are trained on, i.e. the
one from which the aggregated gradients are computed.

• Inversion model architecture. Our inversion model gθ is
a three-layer MLP with hidden size 3K or 10K upon the
memory limitation. The MLP takes the flattened gradi-
ent vector as input and outputs a B × 3072-dimensional
vector representing the flattened images. Because the size
ResNet20 is large, we use feature hashing (see subsec-
tion 3.2) to reduce the target model gradient to 50% of its
original dimensionality as input to the inversion model.

• Training details. The training objective `attacksingle in Equa-
tion 3 is the mean squared error (MSE) between the output
vector from MLP and the flattened ground truth image.
We use the Adam [Kingma and Ba, 2014] optimizer for
training gθ. The model is trained for 200 epochs using
training batch size 256. The initial learning rate is 10−4

with learning rate drop to 10−5 after 150 epochs.
• Computation cost. Our experiments are conducted using

NVIDIA GeForce RTX 2080 GPUs and each training run
takes about 1.5 hours.

Evaluation methodology. We evaluate LTI and the afore-
mentioned baselines on 1, 000 random images from the
CIFAR10 test split. To measure reconstruction quality, we
use three common metrics: 1. Mean squared error (MSE)
measures the average pixel-wise (squared) distance between
the reconstructed image and the ground truth image. 2. Peak
signal-to-noise ratio (PSNR) measures the ratio between
the maximum image pixel value and MSE. 3. Learned per-
ceptual image patch similarity (LPIPS) measures distance
in the features space of a VGG [Simonyan and Zisserman,
2014] model trained on ImageNet. 4. Structural similarity
index measure (SSIM) measures the perceived change in
structural information

4.1.1 Main Results

Quantitative evaluation. Table 1 gives quantitative com-
parisons in the metric of MSE for IG, GI-GIP, and LTI
against various defense mechanisms on CIFAR10; Tables
of PSNR, LPIPS and SSIM are in the appendix due to

space limit. When no defense mechanism is applied, GI-GIP
achieves the best performance. It is not surprising because
GI-GIP, explicitly encodes image-prior in an image genera-
tor, which is more tailored than LTI to image data. However,
when the gradient is augmented with a defense mechanism
that is underexplored, both IG and GI-GIP have consider-
ably worse performance with MSE close to or above 0.1. By
comparison, LTI outperforms both baselines significantly
and consistently across all three defense mechanisms. For
example, under gradient perturbation with σ = 0.1, which
prior work believed is sufficient for preventing gradient in-
version attacks [Zhu et al., 2019, Jeon et al., 2021], MSE can
be as low as 0.012 for LTI. Our result, therefore, provides
considerable additional insight for the level of empirical
privacy achieved by DP-SGD [Abadi et al., 2016], and sug-
gests that the theoretical privacy leakage as predicted by DP
ε may be tighter than previously thought. These results vali-
date that LTI has strong adaptation performance in various
settings and can be a great baseline to show the vulnerability
in those underexplored settings.

Qualitative evaluation. Figure 2 shows 4 random CI-
FAR10 test samples and their reconstructions under differ-
ent defense mechanisms when the FL model is LeNet and
B = 1. Without any defense in place, all three methods re-
cover a considerable amount of semantic information about
the object of interest, with both GI-GIP and LTI faithfully
reconstructing the training sample. Under the sign com-
pression defense, IG completely fails to reconstruct all 4
samples, while GI-GIP only successfully reconstructs the
second image. In contrast, LTI is able to recover the seman-
tic information in all 4 samples. Results for gradient pruning
and gradient perturbation yield similar conclusions. More
examples are given in the appendix.

4.1.2 Ablation Studies for Auxiliary Dataset

Since LTI learns to invert gradients using the auxiliary
dataset, its performance depends on the quantity and qual-
ity of data available to the adversary. We perform ablation
studies to better understand this dependence by changing
the auxiliary dataset size and its distribution. All ablation
studies are conducted in the setting where the FL model is
LeNet and B = 1.

Varying the auxiliary dataset size. We randomly subsam-
ple the CIFAR10 training set to construct auxiliary datasets
of size {500, 5000, 15000, 25000, 35000, 45000, 50000}
and evaluate the performance of LTI under various defenses.
Figure 3(a) plots reconstruction MSE as a function of the
auxiliary dataset size, which is monotonically decreasing
as expected. Moreover, with just 5, 000 samples for train-
ing the inversion model (second point in each curve), the
performance is nearly as good as when training using the
full CIFAR10 training set. Notably, even with the auxiliary
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Table 1: MSE for baselines (IG and GI-GIP) and our method LTI on CIFAR10. As shown in the table, neither IG nor GIGIP
works well when the defense mechanism is applied, while our method has the power to break the privacy protection from
the compression and randomness.

FL model Methods B = 1 B = 4

None Sign Comp. Grad. Prun. Gauss. Pert. None Sign Comp. Grad. Prun. Gauss. Pert.

LeNet
IG 0.022 0.116 0.138 0.150 0.105 0.265 0.169 0.206

GI-GIP 0.001 0.091 0.043 0.124 0.009 0.082 0.180 0.157
LTI (Ours) 0.004 0.014 0.029 0.012 0.015 0.023 0.031 0.026

ResNet20
IG 0.120 0.154 0.171 0.133 0.125 0.272 0.195 0.123

GI-GIP 0.062 0.099 0.238 0.233 0.086 0.236 0.231 0.229
LTI (Ours) 0.018 0.013 0.023 0.021 0.038 0.035 0.038 0.039

None

Ground Truth
Images

Sign Compression Gradient Pruning Gradient Perturbation

IG GI-GIP LTI IG GI-GIP LTI IG GI-GIP LTI IG GI-GIP LTI

Figure 2: Comparison of LTI with IG and GI-GIP for reconstructing 4 random images in CIFAR10 when the FL model is
LeNet and B = 1. Under sign compression, only LTI can partially reconstruct the images to recover the object of interest
whereas both IG and GI-GIP fail to do so on most samples.

dataset size as small as 500, the reconstruction MSE is still
lower than that of IG and GI-GIP in Table 1. Corresponding
figures for PSNR, LPIPS, and SSIM in the appendix show
similar findings.

Varying the auxiliary data distribution. Although ac-
cess to a large set of in-distribution data may be unavailable
in practice, the adversary may still collect out-of-distribution
samples for the auxiliary dataset. This is beneficial for the
adversary since a model learning on out-of-distribution sam-
ples may transfer its knowledge to in-distribution data as
well. To simulate this scenario, we divide CIFAR10 into
two halves with disjoint classes and construct the auxiliary
dataset by combining a β fraction of samples from the first
half and a 1 − β fraction of samples from the second half
for β ∈ {0, 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1}. The target model
fw is trained only on samples from the first half, and hence
the auxiliary set has the exact same distribution as the target
model’s data when β = 1 and only has out-of-distribution
data when β = 0.

Figure 3(b) shows reconstruction MSE as a function of β.

We make the following observations:

1. Even if the auxiliary dataset only contains 250 in-
distribution samples (β = 0.01; second point in each
curve), MSE of the inversion model is still lower than
that of the best baseline in Table 1. For example, with
the sign compression defense, LTI attains an MSE of
≤ 0.02, which is much lower than the MSE of 0.116 for
IG and 0.091 for GI-GIP.

2. When the auxiliary dataset contains only out-of-
distribution data (β = 0), the inversion model has a
very high reconstruction MSE. In the next paragraph, we
will propose a data augmentation method to improve the
out-of-distribution generalization.

Out-of-distribution (OOD) auxiliary data. We fur-
ther consider the auxiliary dataset that only has out-of-
distribution data. Suppose the auxiliary data are images
of the second half classes in CIFAR10 and the target model
fw is trained only on images from the first half (i.e. the set-
ting of β = 0 when studying the data distribution). Instead
of performing LTI with only the out-of-distribution data,
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(a) Vary the size of auxiliary set (b) Vary the distribution of auxiliary set
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Figure 3: Ablation studies on size and distribution of the auxiliary dataset Daux. Under both severe data size limitation (left)
and data distribution shift (β = 0.01; right), LTI is able to outperform both baselines in Table 1 when a defense is applied.

Table 2: MSE of LTI when the auxiliary dataset is out-of-
distribution. LIT-OOD outperforms GI-GIP for all defense
mechanism settings.

None Sign Comp. Grad. Prune. Gauss. Pert.

LTI-OOD 0.015 0.036 0.045 0.029
GI-GIP 0.001 0.091 0.043 0.124

we further augment the auxiliary dataset with the following
steps:

1. Convert OOD data into the frequency domain by the
discrete cosine transform (DCT).

2. Compute the mean and variance of OOD data in the DCT
space.

3. Sample new data from a Gaussian with the mean and
variance computed in step 2.

4. Convert new data back to the original image space.

Then we can train LTI with the OOD data and the aug-
mented data from the steps above and name this method
as LTI-OOD. Table 2 presents its MSE. By comparing it
with baselines in Table 1, LTI-OOD is better or not worse
than the baselines when the defense mechanisms are ap-
plied. Although LTI-OOD is worse than GI-GIP when no
defense mechanism is applied, this is fair because GI-GIP
utilizes the in-distribution data and this is a stronger data
assumption than LTI-OOD.

To better understand this data augmentation, we also test
the data augmentation where we estimate a Gaussian in the
original image space and the MSE will increase from 0.015
to 0.045 when no defense is applied. We hypothesize this is
because by fitting a Gaussian in the DCT domain, the fre-
quency property as an image is kept so that the distribution
is closer to the target image distribution.

4.2 EVALUATION ON LANGUAGE TASK

Federate learning tasks. For the evaluation on language
data, we consider two common language tasks: text classifier
training and causal language model training2.

In the task of text classification, the classifier fw is the
BERT model [Devlin et al., 2019] with frozen token embed-
ding layer. Fixing the token embedding layer is a common
technique for language model fine-tuning [Sun et al., 2019],
which also has privacy benefits since direct privacy leakage
from the gradient magnitude of the token embedding layer
can be prevented [Fowl et al., 2022, Gupta et al., 2022]. As
a result, the trainable model contains about 86M parame-
ters. The BERT classier is trained on CoLA [Warstadt et al.,
2018] dataset using the cross-entropy loss.

In the task of causal language model, the language model
fw is a three-layer transformer [Vaswani et al., 2017] with
frozen token embedding layer. The trainable model contains
about 1.1M parameters. We train the language model on
WikiText [Merity et al., 2016], where each training sample is
limited to L = 16 tokens and the language model is trained
to predict the next token xl given x:l−1 for l = 1, . . . , L
using the cross-entropy loss.

We set the original test split of CoLA / WikiText dataset
as the dataset for the FL training, i.e. the dataset that the
attacks will be test on.

Defense mechanisms set-up. The adversary will receive
the gradient applied with no defense, sign compression,
gradient pruning (α = 0.99) and gaussian perturbation (σ =
0.001 for text classificatier training task and σ = 0.01 for
causal language model training task) when B = 1.

Baseline. We compare LTI with TAG [Deng et al., 2021]—
the state-of-the-art language model gradient inversion attack

2We follow the task setup and code in
https://github.com/JonasGeiping/breaching
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without utilizing the token embedding layer gradient3. The
objective function for TAG is a slight modification of Equa-
tion 1 that uses both the `2 and `1 distance between the
observed gradient and the gradient of dummy data. We also
modify TAG slightly to adapt it to different defenses; see
appendix for details.

Set-up of LTI. We follow the setup below for training the
gradient inversion model gθ.

• Auxiliary dataset. We use 8551 samples from the train
split of CoLA or ∼ 1.8× 105 samples from the train split
of Wikitext as the auxiliary dataset.

• Inversion model architecture. For both FL tasks, we train
a two-layer MLP with ReLU activation and first hidden-
layer size 600 and second hidden-layer size 1, 000. The
inversion model outputs L probability vectors each with
size equal to the vocabulary size (∼ 50, 000), and we
train it using the cross-entropy loss to predict the L tokens
given the target model gradient. We use feature hashing
(see subsection 3.2) to reduce the target model gradient to
1% or 10% of its original dimensions as input to the inver-
sion model when fw is BERT or three-layer transformer.

• Training details. We use Adam [Kingma and Ba, 2014]
to train the inversion model over 100 epochs with batch
size 64. Learning rates are selected separately for each
defense from {10−3, 10−4, 10−5}.

• Computation cost. Our experiments are conducted using
NVIDIA GeForce RTX 3090 GPUs and each training run
takes about 3 hours.

Evaluation methodology. We evaluate LTI and the TAG
baseline on 1, 000 samples from each task. To measure the
quality of inverted text from attacks, we use four metrics: 1.
Accuracy(%) measures the average token-wise zero-one ac-
curacy. 2. Rouge-1(%), Rouge-2(%) and Rouge-L(%) mea-
sure the overlap of unigram, bigram, and length of longest
common subsequence between the ground truth and the
reconstructed text.

We also check the reconstructed texts from both TAG and
LTI to see how the semantic meaning of the text is recovered
and analyze the type of reconstruction error. This part is put
in the appendix.

Results. Table 3 shows the quantitative comparison be-
tween LTI and TAG against various defenses. The overall
trend is remarkably consistent: in all 4 metrics, LTI signif-
icantly outperforms TAG across different settings (7 out
of 8). This shows that our method is easily adapted to the
discrete language data and different defenses and is able to
achieve great attack performance.

One observation is that the accuracy of inverted texts when
3We do not compare against a more recent attack by Gupta et al.

[2022] since it crucially depends on access to the token embedding
layer gradient.

the FL task is the causal language model training is overall
much higher than the accuracy when the FL task is the text
classifier training. We hypothesize this is because in the task
of causal language model, the label in the cross entropy loss
is the input sequence itself. On the other hand, The literature
[Yin et al., 2021, Zhao et al., 2020] shows how easy it is to
reconstruct the labels.

Another observation is that TAG has a relative low perfor-
mance at most settings, it achieves the perfect accuracy at
the setting of the sign compression when the FL task is the
causal language model training. At the first impression, this
perfect accuracy is very suspicious. By our carefully check,
the explanation is that: if we treat the objective function
when the gradient is applied sign compression as a special
objective function when the adversary receives the full gra-
dient, the result simply suggests that this special objective
function is coincidently better than the one designed for
the full gradient. Nevertheless, this phenomenon is not gen-
eralized to TAG for the other FL task. This demonstrates
that the optimization-based method is very sensitive to the
design of the object function.

Out-of-distribution (OOD) auxiliary data. Instead of
assuming the adversary has in-distribution auxiliary texts,
we relax this to only assuming the knowledge of the word
frequency. Then, we can independently sample the word to-
ken for each position in the sentence and get a set of pseudo
data. The distribution of pseudo data is out-of-distribution,
because the pseudo data loses the inner dependency be-
tween different positions of a sentence. We train LTI with
the pseudo data and name it as LTI-OOD.

The results of LTI-OOD are presented in Table 3. LTI out-
performs TAG on both CoLA and WikiText dataset at most
metrics for all settings of gradient defenses. Moreover, we
can observe that LTI-OOD is even better than LTI on Wiki-
Text dataset. We hope this promising OOD results can mo-
tivate the exploration of OOD generalization of LTI in the
future work.

5 CONCLUSION AND FUTURE WORK

We demonstrated the effectiveness of LTI—a simple
learning-based gradient inversion attack—under realistic
federated learning settings. For both vision and language
tasks, LTI can match or exceed the performance of state-
of-the-art optimization-based methods when no defense is
applied, and significantly outperform all prior works under
defenses based on gradient perturbation and gradient com-
pression. Given its simplicity and versatility, we advocate
the use of LTI as both a strong baseline for future research
and a diagnostic tool for evaluating privacy leakage in FL.

Future work. This paper serves as preliminary work to-
wards understanding the effectiveness of learning-based
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Table 3: Results for gradient inversion attack on two language tasks. The overall trend is remarkably consistent: in all 4
metrics, LTI significantly outperforms TAG across different settings (7 out of 8). This shows that our method is easily
adapted and is able to achieve great attack performance.

(a) Text classifier training on CoLA dataset.

Defense None Sign Compression

Method Acc. Rouge-1 Rouge-2 Rouge-L Acc. Rouge-1 Rouge-2 Rouge-L

TAG 8.38 51.23 6.88 29.35 1.62 8.81 0.00 8.09
LTI (Ours) 61.87 65.23 44.46 63.34 63.89 69.92 49.79 67.86

LTI-OOD (Ours) 52.03 45.86 29.46 45.79 50.77 49.07 30.86 48.80

Defense Gradient Pruning (α = 0.99) Gaussian Perturbation (σ = 0.001)

Method Acc. Rouge-1 Rouge-2 Rouge-L Acc. Rouge-1 Rouge-2 Rouge-L

TAG 5.69 43.30 6.90 26.96 5.12 33.85 2.94 22.01
LTI (Ours) 58.93 60.12 37.96 58.17 53.96 53.09 32.41 52.35

LTI-OOD (Ours) 38.68 35.66 23.11 35.46 37.96 33.75 21.85 33.55

(b) Causal language model training on WikiText dataset.

Defense None Sign Compression

Method Acc. Rouge-1 Rouge-2 Rouge-L Acc. Rouge-1 Rouge-2 Rouge-L

TAG 74.13 71.92 50.64 68.46 100.00 100.00 100.00 100.00
LTI (Ours) 89.61 86.91 80.68 86.90 71.15 64.35 45.40 64.29

LTI-OOD (Ours) 91.14 89.43 85.11 89.41 88.06 84.66 76.46 84.64

Defense Gradient Pruning (α = 0.99) Gaussian Perturbation (σ = 0.01)

Method Acc. Rouge-1 Rouge-2 Rouge-L Acc. Rouge-1 Rouge-2 Rouge-L

TAG 34.34 48.50 10.21 35.60 64.34 66.19 37.86 59.55
LTI (Ours) 70.80 64.24 45.79 64.15 82.49 78.75 67.06 78.71

LTI-OOD (Ours) 86.19 82.56 73.04 82.50 90.25 87.39 81.94 87.34

gradient inversion attacks, and our method can be further im-
proved in several directions. 1. For large models, our current
approach is to hash the gradients into a lower-dimensional
space to reduce memory cost. It may be possible to leverage
model architectures to design more effective dimensional-
ity reduction techniques to further scale up the method. 2.
Currently we only focus on the setting with batch size 4 for
vision tasks and batch size 1 for language tasks. In practice,
the batch size could be larger. For LTI, the complexity of
MLP would increase when the batch size increases, which
makes learning harder. More advanced model architectures
and loss designs may help with the large batch case. 3. LTI
in its current form does not leverage additional data priors
such as image smoothness or text fluency. We can readily
incorporate these priors by modifying the inversion model’s
loss function with total variation (for image data) or perplex-
ity on a trained language model (for text data), which may
further improve the performance of LTI.
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