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Notations. || - | denotes the ¢5-norm for vectors and Frobenius norm for matrices. || - || denotes the spectral norm for
matrices. 1 represents the all-one vector, and I is the identity matrix as a standard practice. We identify vectors at agent ¢ in
the subscript and use the superscript for the algorithm step. For example, the optimization variable of agent 7 at step & is
denoted as x¥, and ¥ is the corresponding dual variable. We use uppercase bold letters to represent the matrix that collects
all the variables from nodes (corresponding lowercase) as columns. We add an overbar to a letter to denote the average over
all nodes. For example, we denote the optimization variables over all nodes at step k as

Xy = [x’f,,mfl] .
The corresponding average over all notes can be thereby defined as

1 — 1
zh== E .’L‘i-czkal,
n
=1

n
_ 1
Xy = [zF,..., 7" =717 = =X,117.
n

For an extended valued function ¥ : R? — R U {+00}, its effective domain is written as dom(¥) = {z | ¥(x) < +o0}.
A function U is said to be proper if dom(¥) is non-empty. For any proper closed convex function ¥, = € R9, and scalar
v > 0, the proximal operator is defined as

. 1
prox (o) = argain { Ly o/ + 90 }.
yeRd 2’7

All random objects are properly defined in a probability space (€2,.%,P) and write x € H if x is H-measurable given a
sub-o-algebra H C % and a random vector x. We use o(+) to denote the o-algebra generated by all the argument random
vectors. Without loss of generality, we assume n > 2.

Assumption 1. The adjacency matrix W = (w;;) € R"*" is symmetric and doubly stochastic, i.e.,
W=W'" WI1,=1,, w;:>0,ViZj
and its eigenvalues satisfy 1 = Ay > \g > -+ > A\, and p = max{|Az|, |\n|} < 1.

Assumption 2. All functions { F;}1<;<n have Lipschitz continuous gradients with Lipschitz constants L ,, respectively.
Therefore, VF is Ly p-Lipchitz continous with Ly p = maxi<;<n{LvF, }-

Assumption 3. The function ¥ : R? — R U {+oc} is a closed proper convex function.

For stochastic oracles, we assume that each node i at every iteration k is able to obtain a local random data vector £F. The
induced natural filtration is given by %, = {0, Q} and

Fp=o0(&li=1,...,n,t=1,....k),Vk > 1.

k+1
%

We require that the stochastic gradient VG, (-, &;" ") is unbiased conditioned on the filteration .Z,.
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Algorithm 1: Prox-DASA

Input: 29 = 20 = 0,7, {ax}>0,m
fork=0,1,...,K —1do
# Local Update
for:=1,2,...,n (in parallel) do
yi = proxy (¢} —727)
BT = (1 - ap)zf + oyl
# Compute stochastic gradient
vt = VGi(af, &)

EZ“H =(1- ak)zf + akvfﬂ
end
# Communication
[,k = T E W
[zf“, 2B = [2]1”1, o W

end

Algorithm 2: Prox-DASA-GT

Input: 29 = 20 = 0,v, {a}>0,m
fork=0,1,..., K do

# Local Update

for:=1,2,...,n (in parallel) do

y¥ = proxy, (zF — vzF)

B = (- ap)af + agyf

# Compute stochastic gradient
Pt = VGi(xf,EfH)

(A

aitt = uf + vf'H - Uf

2}“ = (1 — ag)2F + aguk
end
# Communication
e e
[u]% oot | = [Etkl L lin \4%
[T 2k = [T R W

end

Assumption 4 (Unbiasness). Foranyk > 0,2 € F, and1 <i<n, E [VGi(x,ff“) | Fi] = VF(z).

Assumption 5 (Independence). Forany k > 0,1 <i,j <n,i # j, ff“ is independent of Fy, and 55“ is independent of
6]’?+1.

In addition, we consider two standard assumptions on the variance and heterogeneity of stochastic gradients.

Assumption 6 (Bounded variance). Forany k > 0,2 € Fp, and1 < i <mn,
E[|V6i(2,6) - VE@)|| %] < o2
Assumption 7 (Gradient heterogeneity). There exists a constant v > 0 such that for all 1 < i < n,z € R?,

IVFi(z) = VF(z)]| < v.

1 EXPERIMENTAL DETAILS

All experiments in Section 5.2 are conducted on a laptop with Intel Core i7-11370H Processor and Windows 11 operating
system. The total iteration numbers for a9a and MNIST are 10000 and 3000 respectively. The graph that represents the
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network topology is set to be ring (or cycle in graph theory) for a9a and random graph (given by Mancino-ball et al.{[2023]])
for MNIST (See Figure[T).

We summarize the outputs of all experiments in Table[I] from which we can tell Prox—DASA and Prox-DASA-GT achieve
good performance in a relatively short amount of time. The stationarity is defined as |G (z*, VF(z*), 1| + || Xr — Xi||%,
which is the same as that in Mancino-ball et al.|[2023]]. As mentioned in the caption of Figure 2 in the main paper, there is
an extra hyperparameter ¢ in ProxGT—SR-E, and we found that large ¢ already works well for a9a experiment, but ¢ has
to be small in the MNIST experiment otherwise the final accuracy will be much smaller than the one presented in Table
[1] Hence in ProxGT—-SR-E we choose ¢ = 1000 for a9a and ¢ = 32 for MNIST, and the plots that take this amount of
epochs into account are in Figure 2}

Table 1: Comparisons between all algorithms

. . . . Communication Computation Total time
Algorithm Accuracy | Training Loss | Stationarity time per iteration (s) | time perli)teration (s) | per iteration (s)
a%a
SPPDM 84.64% 0.3340 0.0174 0.0260 0.0305 0.0565
ProxGT-SR-E 76.38% 0.6528 0.0797 0.0521 0.0394 0.0915
DEEPSTORM v2 | 84.90% 0.3274 0.0029 0.0525 0.0398 0.0923
Prox-DASA 84.71% 0.3338 0.0017 0.0360 0.0298 0.0658
Prox-DASA-GT 84.69% 0.3342 0.0017 0.0390 0.0301 0.0691
MNIST
SPPDM 76.54% 0.7854 0.0436 0.1587 0.1246 0.2833
ProxGT-SR-E 92.26% 0.3042 0.0250 0.1771 0.3368 0.5139
DEEPSTORM v2 94.52% 0.1759 0.0016 0.1758 0.2030 0.3788
Prox-DASA 96.74% 0.1469 0.0081 0.1912 0.1299 0.3211
Prox-DASA-GT | 96.84% 0.1460 0.0058 0.1935 0.1317 0.3252
T /NS

/N A
N/

Figure 1: Network topology. The left represents the ring topology and the right represents the random graph.

2 ACCELERATED CONSENSUS

When the number of communication round m > 1, we can replace W™ with the Chebyshev mixing protocol described in
Algorithm

Algorithm 3: Chebyshev Mixing Protocol

Input: Matrix X, mixing matrix W, rounds m
Set Ag =X, A1 = XW, p=max{|[Aa(W)[, [ A\e(W)|} < 1puo=1pu1 = %
fort=1,...,m—1do

Ht+1 = %Mt — Ht—1

2 Ht—1
A= 2B AW — B2LA,
t+1 PHt+1 t Ht41 t—1

end
Output: A,,

Then, we have the following lemma.

Lemma 2.1. Suppose W satisfies Assumption|l| Let Ay, A,, be the input and output matrix of Algorithm 3| respectively.
Then, we have
- m _
A=A < 2(1=vT=5) " [0 - A
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Figure 2: Comparisons between SPPDM [Wang et al.,|2021]], ProxGT-SR~E [Xin et al.,2021]], DEEP STORM [Mancino-ball
et al| 2023, Prox-DASA[I} and Prox-DASA-GT [2] In each experiments ProxGT-SR—E computes 1 more epoch than
other algorithms every ¢ iterations. g is chosen to be 1000 for a9a and 32 for MNIST.

Hence, we obtain a linear convergence rate of (1 — /1 - p) instead of p. By virtue of that, we can set m = [ L 1 to
obtain a topology-independent iteration complexity.

3 CONVERGENCE ANALYSIS

We present the complete proof in this section. In the sequel, || - || denotes the £3-norm for vectors and Frobenius norm for
matrices. || - |2 denotes the spectral norm for matrices. 1 represents the all-one vector. We identify vectors at agent ¢ in
the subscript and use the superscript for the algorithm step. For example, the optimization variable of agent ¢ at step k is
denoted as x¥, and ¥ is the corresponding dual variable. We use uppercase bold letters to represent the matrix that collects
all the variables from agents (corresponding lowercase) as columns. To be specific,

Xk:[x’f,...,xﬁ], Zk:[zf,...,sz], Yk:[y’f,...,yfl], Vk+1:[vf+1,...,vfl+1]

We add an overbar to a letter to denote the average over all agents. For example,

n 1 B 1
S ak = ~Xpl, Xy = [ZF,..7F =717 =

i=1

Tk X,11"

1
n n
Hence, the consensus errors for iterates {x%} and dual variables {2} can be written as

1 n n

k12 1 2 1 s 1 o
;;fo—zkll = [IXe - X E;H,zf—zku = = |26 - 2"

We denote Ly p = max {Lvr,} for ease of presentation. Our proof heavily relies on the merit function below:
Stsn

W (&, 2%) = B(h) — @, + (") — n(@k, 2) +\ | VF(F) - 2|, (1)
function value gap primal convergence dual convergence
where
1 2
= 1 — —_— — \I’ . 2
ote2) = min { (e =) + 5l = ol + 00 @
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3.1 TECHNICAL LEMMAS

Lemma 3.1. For any p,q,r € N1 and matrix A € RP*? B € R?*", we have:
|AB| < min (|All2 - B, |A[l - [BT|j2) -
Lemma 3.2. Suppose W satisfies Assumption m For any m € N, we have

1,17
[ - 222 <
n

2

Lemma 3.3. Suppose we are given three sequences {an}°2 o, {bn}22 o, {Tn}52_1, and a constant r satisfying
ag+1 <rag +by, ap >0, by 20, 0=7_1 < 741 <7 <1, (3)
forall k > 0. Then for any K > 0, we have
K 1 K
’;)Tkak ST, (Toao + I;)kak>

Proof. Note that we have

K K K K K
(1—r) ZTkak < ZTk(ak — ag41 +bg) = Z(Tk — Th—1)ak — TKAK+1 + Zkak < Toao + Zkam
k=0 k=0 k=0 k=0 k=0
where the inequalities use (3]), and the equality uses summation by parts. L

Lemma 3.4. Let ¥ : R? — R U {+00} be a closed proper convex function.

(a) Let 1)(x, z) be the function defined in (2). Then, V') is C.,-Lipschitz continuous where

Y
Cy =z fu+ e rasde @

(b) Forz,z € R and v € R, let y; = proxy,(r — vz) = argmin {(z,y —x)+ %“y —z|]? + \I/(y)} then for any
y€ER?
Yy e RY, we have

U(ye) —U(y) < (z+7 "(yr —2)y —ys)

Proof. We prove (a) at first. Recall that the Moreau envelope of a convex and closed function ¥ multiplied by a scalar v is
defined by

. 1
env,o(z) = min {27 Iy — o + w<y>} ,

and its gradient is given by Venv,y (z) = %(ax — proxy,(x)) where proxy, (z) = arg min {% ly — > + \If(y)} Note
d

yeR
that n(z, 2) = envyy (z — v2) — 3 || z||?. Therefore, the partial gradients of 7 are given by

Voo, ) = —2 — 7L (prox} (v —12) ), Van(e,2) = prox} (z — 72) — . )
Hence, for any (z, z) and (2/, ),

IVn(z, 2) = V(a', 2) || < [IVan(e, 2) = Ven(a', 2| + [Ven(z, 2) = Ven(a', 2]
<2141/ flz =2/ + 2+ ) Iz = 2| < Cy I, 2) = (2, )]

To prove (b), denote the subdifferential of ¥(x) as 0¥ (z). By the optimality condition, we have 0 is a subgradient of
H(y) = (z,y — @) + 35 [ly — «[* + ¥(y) atyy, ie.,

0€z+7 " (ys — ) + 0V (ys).
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Hence, there exists a subgradient of ¥(y) at ., denoted by V¥ (y, ), such that

VU (yy) = =2z =7 (ys — ).

Finally, by the convexity of ¥, we have for any y € R,

U(y) — U(yy) > <@\I’(y+),y - y+> =(—z—7""yr — )y —ys),

which completes the proof. O

3.2 BUILDING BLOCKS OF MAIN PROOF

The following lemma connects the consensus error of Y to the consensus errors of X and Z.

Lemma 3.5. Let yi = prox(z* — yz¥). Then for any k > 0 and v > 0, we have

1 _ 1 — 2 _ _
I - 7*° ;HYk-—YkHZﬁZHyf—yiHZSg{HXk—XkIIQHZHZk—zuF}-

i=1
Proof. By the non-expansiveness of proximal operator, we have

lyf =yl < llaf =25 = (2 = 28) || < llef — %) +All2F = 28] (©)
Hence we know the consensus error of 4 can be bounded

n

1 - 1 _
alYe =Y = 2 I =9I = leyz—w Z il

=1
Ik k2 ilw 2 - 2
=D M = 1P = =Dy =) P < leyz — |
i—1 j=1
2 _ _
gﬁ{\|kaxk||2+y2\|zkfzk||2} (7

where the third equality uses the fact that

2 2
n

1 1 — 1 — 1 &
=~ vi- 5;% =g;nvz—n2— E;vj

for any vectors v; (1 < i < n). O

The following technical lemma explicitly characterizes the consensus error.

Lemma 3.6 (Conensus error of Algorithm [T} Prox—DASA). Suppose Assumptions [6l and[7 hold. Let o(m) =

2m 2m
%, and p, m and o, satisfy

1 1
ak<mm{8 %},Oa—1§ak+1ﬁak§1 (8

~—

o(m

for any k > 0. Then in Algorithm[I|for any p > 0, we have

K »p
0% _
>R [|Xy — Xil*] < 49°(0® + 3L pr?)o Zap“,
k=0 n
K
Z ‘LZ]E [1Zx, — Zy||?] < 4(0® + 3LE p%)o Zo/’”,.
0 n
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Proof. By Assumption|[T] the iterates in Algorithm [I]satisfy

Xpy1 = (1 — Olk)Xka + o Y W™, zhtl = (1 — Oék)i‘k + Oékﬂk, ©)
(1 — ak)Zka + Oszk_HWm, Rl — (1 — Ozk)fk + Ozkl_)k+1.

Ziy1 =
Hence, for the consensus error of iterates {xf} we have

||Xk+1 - Xk+1||2

(0= a0 - %) +ax (v - 1) ) (W - 1)

2m _ 92 p2m _
{(1+152 )(1—ak>zy|xk—xku2+(1+lppm) o e~ Yl | o2

2p2m
1+ 1+
P, P T ey, (10)
where the first inequality uses Lemma [3.I]and 3.2] Combining (8), (I0), and Lemma 3.3} we have
_ 1 + 2m _ 1— 2m _ _
E [|Xpi1 — Xpia %] < (27P)E [1X5 — X %] + %E X5 = Xl + 7212 = Z]?]
(B3+p") - (1=p"")? .
=—73 B [1Xk = X %] + —  E [1Zx — Z&|?]
Using Lemmain the above inequality with 7, = %ﬁ for any fixed p > 0 we know
- Z S Vaj, 7 112
Zk - ] < - :
> EE[IXe - Xel?] < Y0 TRE (12 — 2] (11)
k=0 k=0
Similarly to (T0), we can obtain the following results on the consensus error of dual variables {z"}:
- (14 p>™) 2, (L+pPm)pPm o2
1Zesr = Zin||” < —— |26 = Z| + —— pe ap [ Visr = Vi || (12)
Using (8) and Lemmain (T2) with 7, = %J’Z, we have
K ap K ap+2
k 7 112 k J 2
kg - < - .
> EE (12— Zel*] < 20(m) Y —E—E[[[Vi1 = Visal’] (13)
k=0 k=0
To bound || Vi1 — V1] we first notice that
1 n
R+l _ okl ) k+l _ b g ] — = okl _ k:+1 Z
of = ot = B [ 2] - g 7))
N RS
+E [vf T Fy] — VF,(z%) + VFi(z¥) — VF(z*) + VF(z") - - S R [FtZ]
j=1
1 1 .
—(1- 1) GF - B[R] - £ S 0h - E )
J#i
1 1
+ <1 - ) (VE;(af) — VFi(z")) + VF,(z%) - VF(@*) + = ) (VE;(2") — VEi(ah))
n n
J#i

which gives

[”q)kJrl k—i—lHQ}
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n

1\? 1
= (1 - n) E [[lof ™" = E [T Z] 7] + = DB [[0f 7 —E [ .7] ]

J#i

+ (1 — 1) (VE(a}) — VFi(z¥)) + VFi(z*) — VF(z¥) + % > (VF;(@") - VF(a}))

" i#i
2
2 2 1 ko oky2, o2, L k k|2
< 3L 1
So” +oLgp " s — "l +V+nZ||xj i [ I
J#i

where the first equality uses Assumption [5] and the second inequality uses Cauchy-Schwarz inequality, Assumptions 2] [6]
and[7l Hence we have

E [|[Vis1 — Vg |?] < 6LEE [| Xk — Xi|?] + no? + 3nLE g2, (14)
Combining (T3) and (T4), we have
K p+2

Z&ZE ||Z _Z HZ} <2Q(m)z % [||X _X ||2]+(0‘2+3L2 V Zap-i-z
n k k = . k k VF

n
k=0 =0

K

<> {120(m)aj L3 py } o E[ka—xkn | +2(0 + 3L %) Za”+2 (15)
k=0
K ap B

gZ—T’;]E [1Z1, — Z&|)?] +2(0® + 3LE pv?)0 Zaw,

b
Il

0

where the second inequality uses (§). By (IT) and (T3) we can finally obtain that

K p
3 SRR Xy - Xill?] < 492(0% + 3L p1)o Zap+2,, (16)
k=0 "’
K .p
A 72 p+2
Z p E [||Z1, — Zi||%] < 4(0® + 3LE pr*)o Za .. 17)
k=0
O
Lemma 3.7 (Conensus error of Algorithm[2} Prox—DASA-GT). Suppose Assumptions [6]and 5] hold. Let o(m) =
2m 2m
%, and p, m and o, satisfy
(m)a2 < 1. o(m)ax < 0 <o <ap <1 (18)
m - m ) = _ (6%
o _80 k_9LvF’V’ Q1 S Q41 S O =

for any k > 0, and the initialization satisfies u9 = v{ = 0 for all i. Then in Algorithm IZ| for any p > 0 we have

K p B K
> %E [1Xk = X ]?] <40v%0(m)* > ol {L3 padE (|78 — g°|%] + 207},
k=0 k=0

= oy S p+2 f 12 2
Z;E 121 — Zi||?] < 400(m)* > ob " {13 paiE [||2% — 7%[%] + 207} .
k=0 k=0

Proof. The updates in Algorithm 2] take the form:

Xk+1 = (]. — ak)Xka + akYka 7k+1 (]. — ak)x + aky R
Ups1 = UuW™ 4 (Vg — V) W™, @bt = gh gt — g~ (19)
Ziy = (1 — ak)Zka + o, U, W™, L = (1 — Ozk)ik + Ozk’ﬁk.
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Setting uY = vY, we can prove by induction that #* = *. To analyze the consensus error of Uy, we first notice:
U1 — Upps
= Tk+1 | X7k m 117
=(Ur = Up+ Vi1 — Vi = V4L VI (W I
- 117 117

which gives

[Uks1 — U |2

1—p*m 2p°™ 2( 2m
{(1 + 57 ) Uk *UkH (1 + _me) Vi1 — Vil }P

14 p?™ _ 2 (1+
R g REATY
Using Lemma 3.3} we know for any k£ > 0 and p > 0,
K K
> abl[Up = Ukl? < 20(m) Y ok [[ Vs — Vi1*. (20)
k=0 k=0

Note that we also have

Virr = Vi =V — E Vi F] — (Vi — E[Vi][F1])
+E V1| Fi] — VF(ZY) + VF(z*) — VF(z" 1) + VF (2" ) — E [V | Fk_1]

where we overload the notation and define VF(x) = [VFy(z), ..., VF,(z)]. Hence we know
E[[[Visr = Vi|?]

<5{E (Viess = E[Virs | Za IF] - E [ Ve — E [Vl For] 2] + E

> _IVEi(f) - VFi(f’“)IF]
\ @1
D _IVE @™ = VEE )P

1=1
E |3 IVE@) - VEE )P }
=1 =1

<5 (2n0” + LYl [||X5 — X + X1 = X2 4 nag 2871 = 557 HP])

+E

where the first inequality uses Cauchy-Schwarz inequality, and the second inequality uses Lipschitz continuity of V f; and
(T9). For simplicity we set ;- 1= Y; ! = 0 for all 7 so that it is easy to check the above inequality holds for all k£ > 0. Using

(20) and (1) we know:

K

oy 112
> kU, - Ty 22)
k=0 "
100(m) o p 2 72 <112 k=1 ~k—1)2 2 k=1 k12
< ay (2n0? + Ly pE [[[ Xy — X [? + [ X7 = XMH2 - naj_y [J2571 = g*7117]) .
k=0
20L% o(m) X p S X p+2
SEVESEES CofE [|X - XiP] + 10LE po(m) Y of PR [[l7* — 7] + 200%0(m Z% (23)
k=0 k=0

where the third inequality uses (T8). For other consensus error terms we follow the same proof in Lemma 3.6]to get

2 o 1+p 1—i—p ™) p?

|\Yk—Yk||2§2<HXk—XkH +9% |2k — Zi ), (25)

R e~ X+ oz e -l en
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= 2 _ (1+ 2, (1+
|21 - Zewa]* < 2D 2~z P+ ST 02 o, — 26)
Hence we know (TT) still holds:
Ko ) K
>R [1X5 — Xl E [|Zx — Zk|]] - (27)
=0 " k=0
Applying Lemma (3.3) in (26) with 7, = %i, we have
= aj 7 12 - O‘QH SHIL
> EE[1Z — Ze|*] < 20(m) Y S —E—E (|0 — Ux|P?]. (28)
k=0 k=0
The above two inequalities together with (23)) and (I8) imply
K a? B K aPt? B
> LR [ Xk — Xy |?] < 20(m)y? > E—E[|U) - O]
k=0 k=0

P
{40L% p0(m)?a}} SEE [|IX, — X |12] +207%0(m Zai+2{vaaiE[||f’“—yku2]+202}

Mx

k=0
1, oP
v 2
sikzzoﬁE[nxk_xku + 2072 0(m Zap+ 2 palE [|2F - 7°)1%] + 202},

which gives
K

P
> %E [1X5 — Xi[|?] < 407%0(m Za”“ PR [|2F - 7°)1%] + 20} (29)
k=0

Combining (T8), 23), (28), and (29), we obtain that

K P K ap+2 B
> EE[1Zk - Zil?] < 20(m) > —E—E [|[Ux — Uk?]
k=0 " k=0
K
1 P -
<53 3 %E [1X5 — X4]%] + 200(m Za,ﬁ (L% paZE [z — g*|%] + 202},
k=0
K
<40g(m)* > o { L3 rofE [||7" — 7¥)%] + 207} .
k=0
O
Lemma 3.8 (Basic inequalities of dual convergence).
r_ VF(@") - VF(@@H) ln ok R SRR I ok
ok = o HEVE(%) VE(@EF), Al =3 nZVFZ(:ci). (30)
Under Assumption |2} we have
||Zk+1 VF(z k+1)\\2 (1—ag) Hz —VF(z H +2L%Fozk|‘x -7 H +a2 HAk+1H
(€Y
+2LV7FQ’“ X — X ||* + 2 (@A (1 — ay) (2 — V(@) + aid*),

and

[ "'Hgéai{ﬂ\w( )= 2+ 25 | - X+ AR
1 (32)
2 <Ak+1, - ;VFi(a:f) - zk> }
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Proof. By definitions in (30), we have
HH_ VF@EEY) = (1 - ag) (2" = VF(@Y)) + apd® + ap AF
Hence, we can get
sz+1 VF(ij)Hz

=1](1 - o) (% - VF(”“)) + ||+ o || AR + 2 (AR (1 — ay) (25 = VF(E)) + axs®)

< (1-—ag) Hz - VF(z || +ak/|5’“|| +ai HAkJrlH +2 (g AR (1 — ay) (2F — VF(2F)) + awd™)
where the inequality uses the convexity of || - [|2. In addition, we have
2
k|2 VF(z*) - VF(z kH) ln kY o (ak
|6%]]” < 2H o +2 nZ(VFZ(xi) VE;(z"))

=1

2
<208, o - 7" + 22 oty - %,

which completes the proof of (3I). The inequality (32) can be proved similarly by noting that

24+~ 21 = f -2 + 0+

n 2

=al|(VF(aF) —2F) + <711 > (VEi(af) - vm(:z’f))) + o AR

i=1
_ _ 1 &
—az{ +HA’““||2+2<A’”1,nZVFi(xf)Z’“> }

2

(VF(zF) — 2%) + (711 zn: (VE;(2F) - VFi(:i’“)))

i=1 i=1
O
Lemma 3.9. Under Assumption 3]
U(g") —U(yh) < (ZF+47 @5 — %),k —g") +5- ||Zk - 7| +1 HXk — X, |7 (33)
Proof. By the convexity of ¥ and part (b) of Lemma[3.4] we have
ovx 1 & LemmaBA(b) 1
V() - wh) < (W) - vh)) & =~ (T -l - )
i=1 i=1
1k - TS k-
= (" +~ 1(y'“*xk)7y.’i*yk>+5;<2f°*zk+v Nyp ="+ 3" —af), 0" — b))
_ 1k - _ 0 5 112 1 o 112
< <zk +~7(gF - :Ck)7yfkF — yk> + on HZk - Zk:H + Iy HXk - Xk” .
The equality above comes from the fact that for sequences {a; }1<i<n, {bi }1<i<n € R%, we have
1 n
a; — — aza 7 b al) 1 az - bz .
The last inequality above is obtained by Young’s inequalities:
ko ¥ 2 1 2
(& =250 ) < gllaf =2+ o llwd =
1 _ 1 N2 1 2
v b ) < o ek - 2 o k-
O
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Lemma 3.10 (Basic lemma of merit function difference). Let W (z*, z¥) be the merit function defined in (I) with A = 3 L2
-1

-1
Under Assumption E| for any k > 0, setting ay, < min{g’iﬁ ol }, we have

» 8C 3207L2VF
W(£k+172k+1) _ W(i,k’zk) < —ay {@k FT* 4 apAF + Tk+1}’
where

. A ey - Cy +2X
o ={ L tat -+ Jlwrah) - ) = { SR sy,

2y(1 + 49212 2, 207 +3y1% 5
T’“z{WHZk—ZkHQJF o n7 vr) HX;@—X,C|\2}7 (34)

phtl = <Ak+1, " — ¥ + Cay (711 > VE(af) - zk> +2X\ (1 — ag) (2" = VE(@")) + akék)> .
i=1

Proof. By the smoothness of F' and 7, we have
F(zH Y — F(z%)
<(VF(E*), 257 — %) + T2 @k — ¥ = i (VF(a),2* — ) + LVTFO"%HQ-;’@ e (35)
n(z*, ) — p(zh+1, 2R+

(ON
< <_2k —7_1(yi _ .i‘k),i‘k _ jk+1> + <y~kF _ mk7zk _ zk+1> 4+ = 5 (ka—&-l k||2 + sz—i—l _ 2k}||2)

=20y, <2k’yi o i’k> + 771Qk||.fk o ylj_HQ + ag <1—)k+173—9k o gk>
_ _ _ _ _ C k- _ _
g (25— 2+ g =g+ S (ol — g - 2R 36)

Since yﬁ is the minimizer of a 1/~-strongly convex function, i.e.,

_ ~ 1 - - 1 -
(ZF gk —7%) + leyi — 2P+ () < v - %Ilyi - *|)%,

which together with (36) gives

,17(jlc7 Zk) . n(—k+1 —k:+1)
< - '7_1akH$ y+||2 +ak< k+17i'k _ yk> + ag <2k _’_,y—l(yﬂcr o jk) +1—}k+lvgk _ yi>
_ a, _ _
+ 20y, (\Il(:rk) - \I!(yﬁ)) + =1 5 (|\xk+1 |2 + || 2F - zk||2) ) 37)

By the convexity of ¥, we have

TE) = U(E) < (1- a) (@) + apB(F") — U@ = ap (B(F") - 0(a))). (38)
Combining (33), (37), and (38), we have
[(z+1) + w(a) ~ n(sfstkH | - [@@@*) + W (@) —n(z", )]
<=y Lokl — gh]? + on (0FH = VF(aF), 7 - >+2ak<‘lf(y’“>—‘1’<yi)> (39)

b (ZH gk — ) + oL g gt +LVF+C)ak B gF |2 + Cv S+l _ gky2
+

Removing non-smooth terms in (39) using (33) in Lemma [3.9} and re-organizing (39) using the decomposition that
R — 28 = (=28 + 0" ) = ap(VF(2%) — 2F) + (£ Y1 | (VFi(aF) — VFi(Z5))) + ap AR, we can get

[@(z1) + W) — (@t 2] - [@(a¥) + W (@) - n(a*, 2]
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<7‘1ak{ —|ZF —ym 1P+ {E -5 + @ - g), 5" — b)) }

1

1 -
+ ag <n > (VFi(a}) - VF(z")) 2" - y_]f_> +ay (VE(@@F) — 25,97 — %) +ou (AP 28 — )

i=1

>3

2

L C,)az C
e e

12— 2l + 2 i K

—_———

4

To further simplify the above inequalities, we analyze the terms sz, 9, 53, 324 separately as follows:
_ _ k112 _ k- _
s =y o { = [l = g |F - (& - 05,00 - vk) —2|l9F -
2
Z — VE(")

2y, L2 _ -1 -1
SJ%!EWM—Xw-#Lfﬂw—*ﬂ+”4%uf—ﬁw,

2 Ty Yo o 2
AP < ~T ok,

+

-1
s <200 Sl A

Aak

s < 208 V() — 2 20 g - g

2 Y+

CLa L 2 2L2 - - 2 — 1 — L
%4§72]C{2HVF($")— kH +%HX}C—X1¢H2+HAI€+1H +2<Ak+1,nZVFi(azf)—zk>}.

)

Combining the above results with (31) in Lemma3.8|and the definition of W (z*, 2*) in (T), we have

(Lvr + Cy)ay

5
W@, 24 - Wik, ) < {5t + 2L ot - P

2
b {3+ oo | TR - 4+ S e P OO g2
—1 2
* % | Zx — Z’“HQ N (v 2L + QAiVF + Cy LY pay) ay X5 — Xk”z

+ ag <Ak+1,xk — b+ Chay <i > VE(af) - zk> +2X (1 — ag) (2" = VE(@)) + ak5k)> . (40)
=1

rk+1

In addition, from Lemma 3.5 we already know

2 _ _
Ik =1 < = {1 =Xl + 212~ 2]}

1 -1
Finally, choosing ay, such that o, < min{ SIVF }and A = S"’L—Z, we can re-organize the terms in (40) as
VF

7 !
»8Cy 7 32C, LL
follows and complete the proof.

W(zh+ 2R —w(zk, 2
—1
gak{74 |z —yk\|2+2HVF(:7:’“) 2k|}2} af {C 22 | AR }Jrozk.rk

Ok Ak

29(1 + 4~%L2 _ 2 (v~ 4 3yL2 _
+ak{ 7( +n7 Yr) sz_ZkH2+ (v nV or) HXk_XkH2}~

Tk
(41)
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4 DISCUSSION ON THE DEFINTION OF CONSENSUS ERROR

In this section, we briefly discuss two different functions that measure the consensus violation of vectors among agents.
Suppose agent i has z; € R?, our consensus error can be viewed as

1 n
flx,.yxn) = —Z llz: — z||?,
i3

where T = % Z?:l x;, while SPPDM in|Wang et al.|[[2021]] defines (see Eq. (4a), (4b), (5a), (5b), and (41) in|Wang et al.
[2021])

gw (X1, oy Ty) = Z |z — ;]2
i~7,1<i<j<n
L 2 2 42)
=5 D (v =2l + oy — 2l = 2 (wi — 7,25 — 7))

1=j or i~j
over a connected network whose weighted adjacency matrix (i.e., mixing matrix) is W, and the stationarity therein is defined

by using gy . ¢ ~ 7 means agents ¢ and j are neighbors. Note that in general the relationship between f and gy largely
depends on W. We consider several special cases:

* W is a complete graph. By (@2) we have
gw (Z1, ., xy) = nz lz: —z||* — <Z (x; — ),
i=1 =

i=1 j

(x; — x)> =n2f(z1, ..., ).

1

* W is a cycle. By (@2) we have

gw(zn,man) < > 2(w — 2l + |z — 2)?) = dnf (1, 2n).
i~j,1<i<j<n

* W is a simple path such that ¢ and ¢ 4 1 are adjacent forall 1 < ¢ < n — 1, and ; = ¢ € R. Note that in this case, we
can directly obtain gy (z1, ...,x,) = n — 1. For f we have

n 2
f(.’L‘l, 73771) — %Z (’FL ‘2|' 1 _ ’L) _ @(nQ)’
=1

which implies gy = @(%)

We know from the above examples that the order (in terms of n) of gy / f can range from %L to n2. Hence these two types
of consensus error are not comparable if no additional assumptions are given, and thus we only include SPPDM in the
experiments and do not compare their complexity results to ours.
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